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Abstract
Purpose To establish machine learning(ML) models for the diagnosis of clinically significant prostate cancer (csPC) using
multiparametermagnetic resonance imaging (mpMRI), texture analysis (TA), dynamic contrast-enhancedmagnetic resonance
imaging (DCE-MRI) quantitative analysis and clinical parameters and to evaluate the stability of these models in internal and
temporal validation.
Methods The dataset of 194 men was split into training (n � 135) and internal validation (n � 59) cohorts, and a temporal
dataset (n � 58) was used for evaluation. The lesions with Gleason score≥7 were defined as csPC. Logistic regression (LR),
stepwise regression (SR), classical decision tree (cDT), conditional inference tree (CIT), random forest (RF) and support
vector machine (SVM) models were established by combining mpMRI-TA, DCE-MRI and clinical parameters and validated
by internal and temporal validation using the receiver operating characteristic (ROC) curve and Delong’s method.
Results Eight variables were determined as important predictors for csPC, with the first three related to texture features
derived from the apparent diffusion coefficient (ADC) mapping. RF, LR and SR models yielded larger and more stable area
under the ROC curve values (AUCs) than other models. In the temporal validation, the sensitivity was lower than that of the
internal validation (p <0.05). There were no significant differences in specificity, accuracy, positive predictive value (PPV),
negative predictive value (NPV) and AUC (p >0.05).
Conclusions Each machine learning model in this study has good classification ability for csPC. Compared with internal
validation, the sensitivity of each machine learning model in temporal validation was reduced, but the specificity, accuracy,
PPV, NPV and AUCs remained stable at a good level. The RF, LR and SR models have better classification performance in
the imaging-based diagnosis of csPC, and ADC texture-related parameters are of the highest importance.
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Introduction

Prostate cancer is the second most common type of cancer
worldwide. It represents the fifth leading cause of cancer-
related death in men globally and the most frequently
diagnosed cancer amongmen in over one-half (105 of 185) of
the countries of the world [1]. Over the past decades, despite
the relatively lowmorbidity of prostate cancer inAsian coun-
tries, the morbidity and mortality showed a trend of rapid
growth as wewitnessed a rapid development of the economic
and lifestyle changes [2]. In Chinese men, the morbidity of
clinically significant prostate cancer (csPC), which is defined
as a Gleason score (GS) of 7 or greater [3, 4], is among the
highest in Asia [5]. The 10-year survival rate for low-grade
prostate cancer is significantly higher than that for csPC
[6]. The AUA/ASTRO/SUO guideline recommends active
surveillance as the preferable care option for most low-risk
localized prostate cancer patients [7]. Therefore, the evalua-
tion of tumor invasiveness has become an important purpose
of diagnosis.

As one of the gold standard diagnostic tests, invasive
prostate biopsy may lead to discomfort, missed diagno-
sis, infection and other prostate issues. In recent years, the
influence of MRI on prostate cancer diagnosis has rapidly
grown, and multiparametric MRI (mpMRI) of the prostate
has evolved to be an integral component of the diagnosis,
risk stratification and staging process of prostate cancer [8].
Endorsed by theAmericanCollege ofRadiology, the Prostate
Imaging Reporting and Data System (PI-RADS version 2.1)
[9] stratifies prostate lesions into different categories that
reflect their relative likelihood of a csPC [10].However, some
aspects of the criteria for individual sequence scores are still
ambiguous. Even for expert readers, it is not uncommon to
encounter discrepancies when classifying such terms of PI-
RADS [11], which may affect the classification of prostate
lesions. Despite the increasing use of mpMRI for prostate
cancer diagnosis, radiologists can still miss about 15–30% of
all csPCs [12, 13]. Moreover, there is a large inter-observer
variability in the interpretation ofmpMRI among radiologists
[14].

Texture analysis is one of the important methods in
radiomics.After high-throughput extractionofmassive infor-
mation from medical images, a large amount of image
features are mined on a deeper level. This can provide a
more comprehensive and objective characteristic informa-
tion than naked eye analysis. With the establishment of
machine learning (ML) techniques and other predictivemod-
els, the state-of-the-art methods showed great potential in
prostate cancer detection, tumor stratification and progno-
sis assessment based on mpMRI. Some studies have used
one or more ML models to identify and distinguish benign
tumors and malignant prostate cancer, including csPC and
non-clinically significant prostate cancer (ncsPC) [15–19].

Although thesemodelsmay improve thepatient quality of life
and outcomes, the actual clinical impact and quality of these
predictive models may lag behind their expected potential.
One reason is that while many models have been developed,
only a small number have been more effectively validated,
including external validation and temporal validation [20].
As the prediction formula is tailored to the developmental
data, and predictive models may correspond too closely or
accidentally be fitted to idiosyncrasies in the developmental
dataset, known as overfitting, models can performwell on the
developmental population but poorly on the external cohort
or temporal cohort [21]. In this study, we established ML
models combining clinical parameters, texture analysis and
dynamic enhanced scanning quantitative parameters. As this
study focused on whether differences in the patient cohort
factors themselves would affect the stability of the models,
in addition to internal validation, temporary validation was
used to evaluate their performance in the classification of
csPC.

Materials andmethods

Ethical approval

All procedures performed in studies involving human partic-
ipants were in accordance with the ethical standards of the
institutional research committee and with the 1964 Helsinki
declaration and its later amendments or comparable ethical
standards. The study has been approved by the Institutional
Review Board (IRB) of our institute, and patient consent
form was waived because this is a retrospective study with
anonymized data.

Patients

In this study, we performed retrospective modeling, internal
validation and temporary validation. In the first part of retro-
spective modeling and internal validation, 447 patients who
were enrolled from January 2014 to November 2018, with
the following inclusion criteria: biopsy-naive status, clini-
cal suspicion of PCa owing to either an elevated PSA level
(>4 ng/mL) or an abnormalDRE (digital rectal examination),
completempMRIbefore biopsy, including target biopsy (TB)
guided by mpMRI under the PI-RADS v1, v2 or v2.1 system
and systemic biopsy in the same procedure. The exclusion
criteria included the patients with any previous treatment of
PCa, poor image quality or incomplete imaging sequence,
marked artifact on MR images attributable to hip implant, or
no TB. The selected patients were randomly divided into the
training cohort (group 1, 70%, 135 patients) and the internal
validation cohort (group 2, 30%, 59 patients). The patient
selection is detailed in Fig. 1A.
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Fig. 1 Patient selection details in training cohort and internal validation cohort (A), temporal validation cohort (B). The horizontal arrow represents
cases that meet the exclusion criteria to be removed from the study cohort

The above-mentioned inclusion and exclusion criteria
were also used in the temporary validation. A total of 112
patients enrolled between January and November 2019 were
selected according to the criteria for the temporary valida-
tion. The selected patients were assigned to the temporary
validation cohort (group 3). Patients in group 3 did not belong
to the same dataset as patients in group 1 and group 2 and
were completely different in terms of the enrollment time
and patient composition. The patient selection is detailed in
Fig. 1B. The patient characteristics are detailed in Table 1.

Multiparametric MRI

All imaging was performed using a 1.5 T system (Magnetom
Avanto, Siemens Healthcare) with a combined spine-array
coil and a body-array receive-only coil (Tim Trio, Siemens
Healthcare). None of the patients underwent bowel prepa-
ration or received butylscopolamine bromide. The scan
sequences included high-resolution axial T2-weighted imag-
ing, diffusion-weighted imaging (DWI) and DCE-MRI. The
MRI parameters are listed in Supplementary Table S1.
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Table 1 Descriptive
characteristics of the study
population

Patient
characteristics

Group 1 (n � 135) Group 2 (n � 59) Group 3 (n � 58) P-Value

Age, years

Mean(±SD)
Median
Range
IQR

73.88(±8.74)
75
50–93
69–80

76.62(±7.9)
78
62–91
71–82.5

72.33(±8.64)
73
53–90
66.25–78

group 1 vs 2:0.128
group 1 vs 3:0.273
group 2 vs 3:0.008

tPSA

Median
Range
IQR

18
0.35–300
8.23–57.5

22.9
4.56–300
11.5–91.3

15.3
0.22–159
6.96–32.92

group 1 vs 2:0.073
group 1 vs 3:0.182
group 2 vs 3:0.007

fPSA

Median
Range
IQR

2.5
0.04–25
1.17–6.265

2.73
0.3–25
1.65–10.75

1.82
0.01–25
1.01–4.99

group 1 vs 2:0.094
group 1 vs 3:0.184
group 2 vs 3:0.006

V

Median
Range
IQR

53.33
12.13–155.19
33.11–77.17

60.01
13.47–374.4
47.04–89.51

52.80
21.91–198.02
38.70–77.11

group 1 vs 2:0.038
group 1 vs 3:0.000
group 2 vs 3:0.000

PSAD

Median
Range
IQR

0.351
0.009–12.01
0.136–1.18

0.44
0.04–12.66
0.18–1.46

0.28
0.005–2.83
0.15–0.66

group 1 vs 2:0.343
group 1 vs 3:0.000
group 2 vs 3:0.000

csPC 53 22 18

ncsPC 82 37 40

GS

Grade group I
(GS0)
(GS4)
(GS5)
(GS6)

82(60.74%)
76(56.3%)
1(0.74%)
0(0%)
5(3.70%)

37(62.71%)
34(57.63%)
0(0%)
1(1.69%)
2(3.39%)

40(68.97%)
39(67.24%)
0(0%)
0(0%)
1(1.72%)

Percentage
comparison:

group 1 vs 2:0.998
group 1 vs 3:1
group 2 vs 3:1

Grade group II
(GS 3 + 4 � 7)

11(8.15%) 7(11.86%) 4(6.90%)

Grade group III
(GS 4 + 3 � 7)

8(5.93%) 0(0%) 4(6.90%)

Grade group IV
(GS8)

6(4.44%) 5(8.47%) 6(10.34%)

Grade group V
(GS9)
(GS10)

28(20.74%)
20(14.81%)
8(5.93%)

10(16.95%)
9(15.25%)
1(1.69%)

4(6.90%)
3(5.17%)
1(1.72%)

group 1, Training cohort; group 2, internal validation cohort; group 3, temporary validation cohort; IQR,
interquartile range; SD, standard deviation; tPSA, total prostate-specific antigen; fPSA, free prostate-specific
antigen; V, volume of prostate measured on MRI; PSAD, prostate-specific antigen density; csPC, number of
csPC; and ncsPC, number of ncsPC

Biopsy procedure and histopathologic examination

The standard 12-core systematic biopsy and TB were per-
formed under the guidance of transrectal ultrasound (TRUS).
Each core specimen was placed in a specific location of
the prostate biopsy collection kits according to the prostate
region that it came from. These biopsies included at least
two additional cores for each target, and TB was recog-
nized by cognitive registration based on the zonal anatomy or
imaging landmarks, such that a urologist was needed to accu-

rately associate real-time ultrasound images with the target
lesions in theMRI images, and an experienced uroradiologist
(6 years of experience in prostateMRI) helped the urologist to
identify the details in and around the target lesion (prostate
shape, verumontanum position, distance from the apex or
the prostate base, presence of benign cyst or calcification
nearby). The lesions with a GS≥7 were defined as csPC.
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Fig. 2 A 66-year-old man with Gleason score 4 + 3 � 7 lesion. A T2-weighted MR image shows ROI of lesion (red) manually drawn for transition
zone. B ADC mapping image shows ROI of lesion (red) manually drawn for transition zone. C Histogram of A. D Histogram of B

Fig. 3 Counting from left to right on the horizontal axis, the solid blue
dot is at the 8th position. It means that after dimension reduction and
feature selection, eight independent variableswere obtained. TheX-axis
represents the number of variables, and the Y-axis represents accuracy

ROI for image texture analysis and DCE-MRI
quantitative analysis

In the first part of modeling and internal validation, tex-
ture analysis (TA) was performed by one radiologist with
10 years of experience in prostate MRI, who assessed on the

T2-weighted, diffusion-weighted and DCE MR images and
independently performed TA using the Omni-Kinetics soft-
ware (version 2.01, GE Healthcare). The regions of interest
(ROIs) covering the entire tumor area were manually delin-
eated on each axial slice based on the pathological results
(Fig. 2). The ROIs of lesion layers were merged into a 3D
ROI. The ROIs should be delineated on the main lesions,
which were defined as the ones with the highest GS or most
aggressive features [4]. Necrotic areas, cystic degeneration,
hemorrhage, calcification, as well as the urethra, bladder,
seminal vesicle and vascular nerve bundles should be as far
as possible avoided. If a lesion turns out to be csPC, then it
would be selected as a ROI. The areas with ncsPC, low-grade
carcinoma, high-grade prostatic intraepithelial neoplasia or
similarity to themanifestationof prostate cancerwere defined
as ROIs. For DCE-MRI, the extended Toft’s model (ETM)
was implemented for the quantitative analysis of microcir-
culation.

In the part of temporal validation, the ROIs were indepen-
dently delineated by two radiologists (Doctor A: 10 years
and Doctor B: 3 years of experience in prostate MRI) who
were blind to the experiment following the above-described
method, but without the pathological results to accord with
when delineating.
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Fig. 4 In cDTmodel building, the cross-validation error and complexity
parameter diagram are displayed. The abscissa is the complexity param-
eter, and the ordinate is the cross-validation error. For all the trees with
cross-validation errors within one standard deviation of the minimum
cross-validation error, the tree with the lowest CP value is the optimal
tree. The tree corresponding to the left-most CP value below the dotted
line should be selected. The optimal tree is the tree divided twice (three
terminal nodes)

Fig. 5 Classical decision tree model. The optimal tree was the tree
divided twice (three terminal nodes). Start at the top of the tree, go
down to the left if the condition is true, otherwise go down to the right,
and the classification endswhen the observation point reaches the termi-
nal node. Each node has the probability of the corresponding category
and the proportion of the sample

Machine learningmodeling and statistical analysis

The SPSSAU.com online tool was used for the statistical
analyses of descriptive characteristics of the study pop-
ulation and the intra-class correlation (ICC) analysis of
temporal validation. The other parts of the study, includ-
ing modeling, validation, etc., were performed using the R
language (version 3.63) programs. Feature extraction was
also performed using the O.K. software. The types of the
computer-derived features included first-order parameters,
gradient-based histogram features, gray-level co-occurrence
matrix (GLCM), run-length matrix (RLM), DCE-MRI quan-
titative features (extendedtofts_linear algorithm) and clinical
parameters including the age, tPSA, fPSA, prostate volume
and PSAD, which were calculated based on the voxels in the
delineated ROIs (Supplementary Table S2). Although 233
features were extracted, not all of them were helpful in pre-
dicting csPC. Therefore, the R language programs were used
to reduce the dimensionality, standardize the data and select
the features. Logistic regression (LR), stepwise regression
(SR), classical decision tree (cDT), conditional inference
tree (CIT), random forest (RF) and support vector machine
(SVM) models were constructed, and their diagnostic effi-
cacy was compared with the receiver operating characteristic
curve (ROC) and confounding matrix. Delong’s method was
used to compare the difference in the area under the ROC
curve (AUC), and a P <0.05 was considered to be statis-
tically significant. Finally, the models were validated using
the data of the temporal validation group (n � 58), and the
differences in the sensitivity, specificity, negative predictive
value, positive predictive value and AUC of different models
were compared.

Results

Patient characteristics

The MLmodeling and internal validation included 194 male
patients, while the temporal validation cohort included 58
male patients. The parameters of age, tPSA and fPSA sig-
nificantly differed between groups 2 and 3. The volume of
the prostate and PSAD significantly differed between groups
1 and 3, as well as between groups 2 and 3. There was no
significant difference in the composition ratio of GS among
the three groups (Table 1).

Model construction and internal validation
evaluation

After dimensionality reduction and feature selection, the
following eight independent variables were obtained:
ADC.Quantile95, ADC.MinIntensity, ADC.uniformity,
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Fig. 6 Conditional inference treemodel. Start at the top of the tree, clas-
sify the two opposite conditions, one on the left and one on the right, and
then classify more conditions. The shaded area in each node represents

the corresponding csPC proportion, and the figure indicates the number
of cases that meet the corresponding criteria

PSAD, T2.RelativeDeviation, Vp0.1, T2.Variance and
T2.Quantile5 (Fig. 3) (Supplementary Table S3).

The independent predictors screened by the LR
model were t2.Variance, ADC.Quantile95, Vp0.1 and
ADC.MinIntensity (P <0.05). The independent pre-
dictors of the SR model were T2.RelativeDeviation,
ADC.MinIntensity, T2.Variance, ADC.Quantile95
and Vp0.1 (P <0.05). In addition, the P values of
ADC.Quantile95 and ADC.MinIntensity were less than
0.01. In the cDT model building, the cross-validation error
and complexity parameter diagram are displayed in Fig. 4.

The optimal tree was the tree divided twice (three terminal
nodes) (Fig. 5). The CIT model is shown in Fig. 6, and the
ordering of independent variables of the RFmodel according
to importance is shown in Fig. 7. Figure 8 shows the ROC of
the LR, SR, cDT, CIT, RF and SVM models in the internal
validation cohort. Table 2 shows the diagnostic predictive
features of the models of the internal validation cohort. The
models with statistically significant differences in the AUC
are displayed in Table 4. There were 7 cases with a GS � 7
in the internal validation cohort. Three cases were correctly
classified by all ML models. Two cases were correctly
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Fig. 7 The importance ordering of independent variables of RF model
is shown. MeanDecreaseAccuracy and MeanDecreaseGini indicate the
importance of the variable. MeanDecreaseAccuracy: The degree to
which the prediction accuracy of random forest decreases when the
value of a variable is changed to a random number. The larger the

value, the more important the variable. MeanDecreaseGini: The influ-
ence of each variable on the heterogeneity of observed values at each
node of the classification tree was calculated to compare the importance
of variables. The larger the value, the more important the variable

classified by some of the ML models (DT, CIT misjudged
twice; RF misjudged once). Two cases were misclassified
by all ML models (Table S4).

Temporal validation evaluation

In the temporal validation, intra-class correlation (ICC)
analysis was used to measure the degree of agreement
across the raters on each of the 8 important variables.
High concordance was found between the two observers in
T2.RelativeDeviation, ADC.MinIntensity, T2.Quantile5 and
ADC.uniformity, particularity in the last two, while a poor
internal consistency was found in ADC.Quantile95, Vp0.1

Table 2 Diagnostic predictive features of the models of the internal
validation cohort

Sensitivity Specificity PPV NPV Accuracy AUC YI

LR 0.86 0.92 0.86 0.92 0.9 0.915 0.78

SR 0.86 0.95 0.90 0.92 0.92 0.905 0.81

cDT 0.64 0.81 0.67 0.79 0.75 0.717 0.45

CIT 0.50 0.81 0.61 0.73 0.69 0.815 0.31

RF 0.82 0.81 0.72 0.88 0.81 0.925 0.63

SVM 0.86 0.92 0.86 0.92 0.9 0.891 0.78

PPV: positive predictive value; NPV: negative predictive value; and YI:
Youden index
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Fig. 8 The ROC of LR, SR, cDT, CIT, RF and SVM models in the
internal validation cohort are shown in A-C. AUC of ROC, sensitivity,
specificity and accuracy for internal and temporal validation (two doc-
tors) are shown on the radar chart in D. A-C: RF, LR and SR models
have been relatively stable in the larger AUC during internal validation
and temporal validation. In D, the blue line represents internal valida-

tion, and the orange and gray lines represent the ability of the machine
learning model to classify the ROI delineated by the two radiologists.
The orange line and gray line can be observed to almost coincide. The
sensitivity of the machine learning model was reduced, but the AUC,
specificity and accuracy were stable at a good level

and T2.Variance. The sensitivity of the temporal validation
was lower than that of the internal validation (P <0.05). The
specificity, NPV, PPV, accuracy, AUC and YI of temporal

validationwere not significantly different from those of inter-
nal validation (P >0.05). The classification ability of these
models for GS>7 cases was better than the cases with a
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GS � 7, and the classification performance remained sta-
ble for both GS>7 and GS � 7 cases. There were 8 cases
with a GS � 7 in the temporal validation cohort. Three cases
were correctly classified by all ML models. Compared with
the pathological results, the lesions with a PI-RADS score
of 4–5 of these 3 cases could be found in the MR images
(Fig. 2). The 5 cases that were misjudged by different models
were the same (Table S4). In one case, the machine learning
models misjudged 3 + 4 � 7 lesion (PI-RADS 4) in the tran-
sitional zone at the apex of the prostate. The lesion showed
slightly low signal on T2WI, no significantly high signal on
DWI (b � 800), uneven signal reduction on ADC and posi-
tive dynamic contrast enhancement with early enhancement
(Fig. 9). No lesion of these 4 remaining cases with a PI-
RADS score≥3 could be found in the MR images (Fig. 10).
When the cases with a GS of 7 were removed from the tem-
poral validation database, the sensitivity and Youden index
of all the models increased to varying degrees, as shown
in Table 3. There was no change in the specificity of the
models before and after removing the cases with a GS of 7,
the PPV was slightly reduced, and the NPV was marginally
increased.

Discussion

In this study, mpMRI-TA, DCE-MRI quantitative analy-
sis and clinical parameters were combined in a compound
database. Eight important variables with the highest pre-
diction accuracy were obtained after the feature selection
and dimensionality reduction, and then, ML modeling and
the evaluation of the models were carried out. According
to Tables 3 and 4, the RF, LR and SR models have higher
diagnostic abilities for csPC, and the overall performance of
the SVM model in the temporal validation slightly declined.
The performance of the RF, LR and SRmodels was relatively
stable, not only in the unblinded internal validation, but also
the blinded temporal validation, even though the number of
experience years of the two doctors in the temporal validation
greatly differed. Due to the existence of overfitting, predic-
tion models may correspond too closely or accidentally be
fitted to idiosyncrasies in the development dataset. In the
three groups in this study, the differences in the baselines
of some clinical parameters were statistically significant, but
the classification ability of the machine learning models for
different validation sets was still relatively stable, indicating
that these models still had good universality when dealing
with different datasets.

Fig. 9 A 78-year-old man, the
machine learning models
misjudged 3 + 4 � 7 lesion
(PI-RADS 4) in the transitional
zone at the apex of the prostate
(white arrow). The lesion
showed slightly low signal on
T2WI, no significantly high sign
on DWI (b � 800), uneven
signal reduction on ADC and
positive dynamic contrast
enhancement with early
enhancement
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Fig. 10 A 74-year-old man; only
one core in the left TZa zone
(No. 1 in A) had a GS of 4 + 3 �
7. The lesion accounted for 2%
of the tissue strips, among
which 4 score components
accounted for 60% (1.8% of the
tissue strips) and 3 score
components accounted for 40%
(0.8% of the tissue strips). The
GS of the two cores from the
right TZa and AFS (No. 3 and 2
in A, respectively) is 3 + 3 � 6,
accounting for 4% and 1% of
the tissue strips, respectively. No
lesion with a PI-RADS score≥3
could be found in the MR
images, and the ML models
misjudged

In the temporal validation, the sensitivity of each model
was lower than that of the internal validation. The specificity,
accuracy, PPV, NPV and AUC remained at a good level, sim-
ilar to the internal validation. The analysis of the validations
showed that the main misjudgments were in the cases with
a GS of 3 + 4 � 7. When all the cases with a GS of 7 were
removed from the database and verification was performed
again, the sensitivity significantly increased to a level simi-
lar to that of internal validation. The reasons were analyzed
as follows: (1) inherent differences between temporal and
internal validation cohorts. Caseswith 7 scores in the internal
validation cohort accounted for 31.81% of csPC, while in the
temporal validation cohort, cases with a score of 7 accounted
for 44.44%of csPC, and the classification of caseswithGS�
7 was difficult for ML-based classification. (2) Some lesions
were too small. (3) Lesions are not typical on T2WI or DWI,
and the corresponding texture data may not be adequate to
be correctly classified by ML models. Our findings proved
that ROI delineation is not the main cause of ML models
misjudgment, since we repeated the experiment on 5 cases
of misjudgment by ML models in the temporal verification
group and the results remained unchanged. Small foci of the
diseasemay be occult onmpMRI due to the limitations of the
technology to resolve small nests of prostate cancer<0.5 cc

in volume, or due to a sparsely distributed tumor interspersed
between the normal prostatic stroma [22, 23]. The study of
Rozenberg et al. showed that the quantitative ADCmeasure-
ments and individual ADC texture features had a limited
performance in predicting GS upgrading of 3 + 4 � 7 can-
cers and identifyingmedium-risk tumors. Logistic regression
models with several texture features can improve the predic-
tion accuracy [24]. Further studies are needed to evaluate
the ability of ADC texture analysis to identify moderate-risk
tumors. Considering the active surveillance, the proportion
of GS 3 + 4 � 7 tumors may be one of the important fac-
tors. Since the long-term prognosis of GS 3 + 4 � 7 tumors
is significantly different from that of GS 4 + 3 � 7 prostate
cancer, it is increasingly important to distinguish between the
two types of tumors with different GS [25].

TheRFmodel is a classifier that containsmultiple decision
trees. RF has shown an excellent classification performance
for processing balanced sample sets, with few adjustment
parameters and good noise tolerance. Besides, it is not prone
to overfitting and can efficiently process a large number of
features [26]. Nathan Lay et al. established an RF model and
an SVM model based on MRI signals and texture features.
Their results showed that the RF model with an AUC of 0.93
was superior to the SVM model with an AUC of 0.86 [27],
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Table 3 Comparison of the predictive features of the temporary validation

Sensitivity/sensitivity * Specificity/specificity * PPV/PPV* NPV/NPV* Accuracy/Accuracy * AUC/AUC* YI/YI *

Doctor A

LR 0.61/0.89 0.93/0.93 0.79/0.73 0.85/0.98 0.84/0.92 0.81/0.97 0.54/0.82

SR 0.61/0.89 0.93/0.93 0.79/0.73 0.85/0.98 0.84/0.92 0.80/0.97 0.54/0.82

cDT 0.44/0.56 0.98/0.98 0.89/0.83 0.81/0.91 0.82/0.90 0.83/0.92 0.42/0.54

CIT 0.50/0.67 0.98/0.98 0.90/0.86 0.82/0.93 0.84/0.92 0.72/0.82 0.48/0.65

RF 0.56/0.78 0.95/0.95 0.83/0.78 0.84/0.95 0.84/0.92 0.82/0.96 0.51/0.73

SVM 0.50/0.67 0.93/0.93 0.75/0.67 0.82/0.93 0.8/0.88 0.72/0.80 0.43/0.6

Doctor B

LR 0.67/1 0.91/0.91 0.75/0.69 0.87/1 0.84/0.92 0.85/0.97 0.58/0.91

SR 0.67/1 0.88/0.88 0.71/0.64 0.86/1 0.82/0.9 0.86/0.97 0.55/0.88

cDT 0.44/0.56 0.98/0.98 0.89/0.83 0.81/0.91 0.82/0.9 0.78/0.92 0.42/0.54

CIT 0.56/0.78 0.93/0.93 0.77/0.7 0.83/0.95 0.82/0.9 0.83/0.92 0.49/0.71

RF 0.61/0.89 0.95/0.95 0.85/0.8 0.85/0.98 0.85/0.94 0.84/0.97 0.56/0.84

SVM 0.56/0.78 0.95/0.95 0.83/0.78 0.84/0.95 0.84/0.82 0.76/0.87 0.51/0.73
*Gleason score 7 cases were removed

Table 4 Models with statistically significant difference in AUC

Validations Comparison of models P

1. Internal validation

RF VS. cDT 0.000

CIT VS. cDT 0.04

SVM VS. cDT 0.001

SR VS. cDT 0.002

LR VS. cDT 0.001

RF VS. CIT 0.005

2. temporary validation

2.1 Doctor A

cDT VS. SVM 0.027

2.2 Doctor A(GS 7 cases
removed)

RF VS. SVM 0.016

SR VS. SVM 0.018

LR VS. SVM 0.018

2.3 Doctor B

CIT VS. SVM 0.041

SR VS. SVM 0.018

LR VS. SVM 0.031

SR VS. DT 0.046

2.4 Doctor B(GS 7 cases
removed)

RF VS. CIT 0.048

which is basically consistent with the corresponding results
of our study. SVM has shown a high performance in pro-
cessing data that are nonlinear or have a small number of
samples or high dimensions [28]. SVM classifiers developed
in combination with the PI-RADS scores and MR radiomics
features have made significant advances in the diagnosis of

prostate cancer in several recent studies [29]. In this study,
SVM classifiers performed well in the internal validation,
but had a slightly lower performance in the temporal valida-
tion. LR is one of the most commonly usedML algorithms in
dichotomous tasks. It is a supervised learning ML algorithm
that is widely used due to its ease of use and interpretability
[30]. Some predictive variables based on LR that do not pass
the significance test are removed, and then, the SR model is
obtained. In our study, since the database was selected for
dimensionality reduction and feature selection in advance,
only a few variables with a high prediction accuracy were
retained. The results of our study showed that there was no
significant difference in the diagnostic efficiency between
the LR and SR models. The cDT model is a common model
for data mining, which is based on binary output variables
and a set of predictive variables. CIT is a variant of cDT,
but the variable selection and ROI delineations are based on
significance tests rather than intra-group homogeneity. The
cDTwas built using the rpart software package, and CIT was
built using the Party package and does not require pruning.
The threshold determines the complexity of the model. Deci-
sion tree models are prone to overfitting [31], but RF models
basically avoid this problem.

In this study, the RF model ranked the parame-
ters according to their importance, and the top five
items in the charts of MeanDecreaseAccuracy and Mean-
DecreaseGini were ADC.Quantile95, ADC.MinIntensity,
ADC.uniformity, PSAD and T2.RelativeDeviation. The first
three parameters are all related to the ADC texture analy-
sis. PSAD is a derived parameter of PSA that represents the
PSA content of the prostate per unit volume. It has already
been shown that the diagnostic accuracy can be increased by
adding the PSA density levels to the diagnostic process [3,
32]. Adding the parameters of age and PSA density to the PI-

123



International Journal of Computer Assisted Radiology and Surgery (2021) 16:2235–2249 2247

RADS scores improves the diagnostic accuracy for csPCa.
A combination of these variables with PI-RADS v2 can help
to avoid unnecessary in-bore biopsies while still detecting
the majority of csPC lesions [33]. The T2WI relative tex-
ture parameter T2.RelativeDeviation was ranked 5th in the
importance ranking, while Vp0.1, a parameter derived from
the DCE-MRI quantitative analysis, was ranked 6th. Vp rep-
resents the percentage of the intravascular contrast medium
volume, reflecting the characteristics of the increased aver-
age vascular density, increased perfusion vessels and high
vascular permeability.

This study has some limitations as follows. First, since
the sample size was relatively small, the convolutional neural
network model was not selected for evaluation. Second, part
of the pathological results came from the ultrasound-guided
puncture biopsy, which could not avoid the possibility of
missed puncture diagnosis. Third, no specific study has been
specifically performed for a large number of cases with a GS
of 7,whichwill be covered in the next study. Fourthly,manual
segmentation was adopted in this study, and 3D automatic
segmentation with higher efficiency based on deep learning
of csPC will be performed in the following study [34].

Conclusions

Machine learning models have a good classification ability
for csPC. Compared with internal validation, the sensitivity
of each model in temporal validation was reduced, but the
specificity, accuracy and area under the ROC curve remained
stable at a good level. The RF, LR and SR models have a
better classification performance in imaging-based diagnosis
of csPC, and ADC texture-related parameters are among the
parameters with the highest importance.
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