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Abstract

A consistent debate is ongoing on genome-wide association studies (GWAs). A key point is the capability to identify low-
penetrance variations across the human genome. Among the phenomena reducing the power of these analyses,
phenocopy level (PE) hampers very seriously the investigation of complex diseases, as well known in neurological disorders,
cancer, and likely of primary importance in human ageing. PE seems to be the norm, rather than the exception, especially
when considering the role of epigenetics and environmental factors towards phenotype. Despite some attempts, no
recognized solution has been proposed, particularly to estimate the effects of phenocopies on the study planning or its
analysis design. We present a simulation, where we attempt to define more precisely how phenocopy impacts on different
analytical methods under different scenarios. With our approach the critical role of phenocopy emerges, and the more the
PE level increases the more the initial difficulty in detecting gene-gene interactions is amplified. In particular, our results
show that strong main effects are not hampered by the presence of an increasing amount of phenocopy in the study
sample, despite progressively reducing the significance of the association, if the study is sufficiently powered. On the
opposite, when purely epistatic effects are simulated, the capability of identifying the association depends on several
parameters, such as the strength of the interaction between the polymorphic variants, the penetrance of the polymorphism
and the alleles (minor or major) which produce the combined effect and their frequency in the population. We conclude
that the neglect of the possible presence of phenocopies in complex traits heavily affects the analysis of their genetic data.
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Introduction

Highthroughput genetic analysis represents the present and the

future in catching the genetic determinants of complex diseas-

es[1,2,3,4,5,6]. A consistent debate is ongoing on the best approaches

to overcome the major issues inherent to genome-wide association

(GWA) study designs[7,8,9,10,11,12,13,14,15,16,17,18].

The most widely used statistical tests are single point statistics

(chi-square, or Cochrane-Armitage test) along the genome; these

tests can be integrated with haplotype (or multi-marker) analysis

once the linkage disequilibrium (LD) structure is drawn and thus

haplotype blocks have been identified.

All these tests can be performed under different assumptions

and with slightly different approaches, and multivariate analyses

are generally performed.

Two main obstacles can be envisaged as:

N the false positive rates, and consequently the efficacy of the

corrections adopted;

N the capability to identify low-penetrance variations across the

human genome.

As for false positives, many different approaches have been

proposed and, provided the sample collection to be large enough,

a multi-stage design has been shown to be very effective in

detecting key leads in the genome, often replicated in other

populations. It’s not the purpose of this paper to address this

area[7,19].

As for the identification of low-penetrance polymorphisms, the

area is of a major consideration when disentangling the picture of

any complex trait. Indeed, it’s quite realistic for complex

phenotypes to be determined by a combination of many different

polymorphic loci each of them accounting for a minor part of the

total variance[20], hence very difficult to be detected when a

genome-wide genotyping is performed and when GWA signifi-

cance rates are applied[20].

Despite this issue being of a key importance, most of the papers

reporting GWA studies applied single point statistics, multi-marker

analysis and haplotypes analyses, performed LD mapping,

adopted different false-positive rate corrections[21,22,23,24,25].

Few of them actually included interaction analysis and other

similar approaches capable to grasp the effect of interactions and

across-genome combinations, rather then the main effect of single

markers or (despite more importantly) the major contribution of a

specific haplotype in a locus[26,27,28].

Among the phenomena reducing the power of these analysis,

phenocopy hampers very seriously the investigation of complex

diseases, a well known issue in neurological disorders [29,30],

cancer [31], and likely of primary importance in the study of

human ageing [32]. However, the concept of phenocopy is quite

1)

2)
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old in genetics, and assumed different meanings according to

many different authors: for the purpose of this paper, we mainly

refer a definition adopted in linkage studies, where ‘‘phenocopy’’

indicates affected individuals who had acquired the disease by

different means than the ones segregating in rest of the

family[33]. Moreover, the term here needs to be even more

focused, due to the characteristics of the simulating algorithm

adopted in this study to generate the disease model and

subsequently the datasets: globally we consider here a ‘‘pheno-

copy’’ an individual marked as affected, but where the underlying

genetic markers associated with the disease are different from the

other cases in the dataset. We also aknowledge that the classical

definition of phenocopy assumes a smooth and wider perspective

when we consider the most important complex traits: in this

scenario its importance appears to be even higher, due to its

intrinsic presence when the interplay of multiple genetic loci

determines a disease. Phenocopy (indicated as PE, ‘‘phenocopy

error’’, from the terminology of the genomeSIMLA software)

seems to be the norm, rather than the exception, especially when

considering the role that epigenetics and environmental factors

exert on the phenotype [34].

Considering the scenario we are dealing with, additional

terminology needs to be clarified. As previously mentioned, one

of the hot topics geneticists are currently debating is whether the so

called ‘‘missing heritability’’ issue would find an answer in very

rare and highly penetrant mutations (detectable with exome

sequencing or whole genome next generation sequencing only

[35]), or in a multitude of polymorphisms with no effect when

considered alone (main effect) but with a more significant effect

when their statistical interaction is considered [36,37].

As far as this latter point is concerned, several models have been

proposed since many years [38] which define ‘‘epistasis’’ (again

another term used with different meanings in genetics) as the

interaction between different loci, and call ‘‘purely epistatic’’ those

interactions between loci that do not display any single locus main

effect [37,38,39]. This model has been proposed and largely

debated [34,40,41]: some authors consider the additive model

widely used as sufficient to incorporate these effects[42], or argue

about the scarce impact of such a scenario, but few papers address

specifically this topic[43,44].

Despite some attempt [45,46,47], no widely recognized solution

has been therefore proposed, particularly to estimate the effects

that phenocopies could exert either on the study planning or its

analysis design. At present, the most of the analysis strategies do

not take into account the intrinsic presence of phenocopy in

complex traits.

We present a simulation [48,49,50,51], where we attempt to

define more precisely how phenocopy impacts on different

analytical methods under different scenarios.

Results

Simulation of the datasets
Two disease models have been simulated.

In the first model, i.e ‘‘model ME’’, standing for ‘‘Main Effect’’,

the marker RL0-855 was simulated, having a main effect and an

OR = 2.225. Three additional SNPs (Table 1) have been simulated

with a very small marginal effect, and an interaction associated

with the disease, according to the mixed model offered by the

logistic function of genomeSIMLA.

In the second model, i.e. ‘‘model EPI’’, standing for ‘‘purely

epistatic’’, the second disease model (model EPI), three markers

(RL0-75 RL0-153 and RL0-272, Table 2) have been simulated in

order not to display any main effect and associate with the disease

with a purely epistatic penetrance table, with target OR = 4.

For each disease model, the following datasets have been

extracted from the population: a) 6 different case-control datasets

with increasing phenocopy level generated with the method

implemented within the software (PM1); b) 6 different case-control

datasets with increasing phenocopy level generated with an

alternative method (PM2) develop in our lab, as described in

materials and methods; c) 6 pedigree datasets with increasing

phenocopy level generated as implemented in genomeSIMLA.

Main effect model
As far as the model ME is concerned, the results show that

strong main effects are not hampered by higher levels of PE,

despite an inflation of the significance (figure 1).

In the case-control dataset with PM1 method, RL0-855 was

highly significant at each phenocopy level until 45%, displayed a

Table 1. The table summarizes the characteristics of the genetic model implemented in the ME model, where one SNP with main
effect has been simulated.

Main effect SNP

dataset target b target OR

main dataset RL0-855 0,80 2,225540928

additional 01 RL0-179 0,80 2,225540928

additional 02 RL0-111 0,80 2,225540928

additional 03 RL0-210 0,80 2,225540928

additional 04 RL0-503 0,80 2,225540928

additional 05 RL0-995 0,80 2,225540928

Interacting SNPs

main effect b target OR

RL0-75 0,000000001 1,000000001

RL0-245 0,000000001 1,000000001

RL0-457 0,000000001 1,000000001

The additional datasets used to pick-up the phenocopies, as implemented in the PM2 method are indicated.
doi:10.1371/journal.pone.0011876.t001
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2log10(p) = 62.54 at 0%PE and a 2log10(p) = 25.84 at 45%. The

analysis of the datasets obtained with the PM2 phenocopy

algorithm produced similar results (see Supplementary Figure

S1): the RL0-855 was significant in the 0% phenocopy dataset

with a 2log10(p) = 67.5, and a 2log10(p) = 31.2 in the 45%

dataset.

A very similar behaviour appears to happen on the pedigrees

dataset, with TDT analysis, even if the overall significance level is

a bit lower (2log10(p) = 40 at 0%PE and 2log10(p) = 8.63, see

Supplementary Figure S2).

Among the other markers where only an interaction was

simulated, only the marker RL0-245 appeared among the top ten

significant at 0%PE (2log10(p) = 11.47) but it was no more on the

top 10 when the phenocopy level reached 10%. The same

happened on the TDT analysis.

Purely epistatic model
When we analyzed the EPI model on the case control dataset,

none of the three markers ranked among the top list of significant

markers. Moreover if we had to correct for multiple testing, none

of the markers would reach a 0.05 level of significance neither at

0% PE level, nor at 45%.

Despite some fluctuations on the data, mainly due to sampling

and data extraction, a positive but no significant trend in the

number of falsely significant markers could be observed according

to the increase of phenocopy error percentage (figure 2). The same

pattern was observable when analyzing the case-control dataset

generated with the PM2 phenocopy method (see Supplementary

Figure S3).

When applying PM2 we observed the appearence of a single

progressively significant marker (RL0-255), which was borderline

for the Hardy-Weinberg equilibrium in the main dataset and

therefore was unbalanced when affected individuals from different

dataset suffering the same simulation phenomenon were added.

This SNP can be considered a false positive, as it was not

simulated in association of the disease in none of the additional

datasets.

A similar behaviour of the markers with a purely epistatic effect

was observable in the pedigree dataset with a TDT analysis: again

none of them ranked as significant (Supplementary Figure S4).

In order to check for the correctness of the model we generated,

we performed a logistic regression on the interaction term between

the three markers we simulated to be associated with a purely

epistatic effect. The p value of the logistic regression was highly

significant both at a 0% PE (p = 7.8*10221) and at a 45% PE

(p = 4.17*1026).

Therefore we decided to analyze the data by using a logic

regression approach. Logic Regression is an adaptive regression

methodology mainly developed to explore high-order interactions

in genomic data and its goal is to find predictors that are Boolean

(logical) combinations of the original predictors. By applying this

methodology the analysis was capable to identify in most cases two

of the three interacting SNPs among the top ranking interactions

(figure 3).

The more the phenocopy error was increasing and the more

these interactions ranked lower, even if in any case at least one of

the three markers (RL0-153) was always present among the top

five.

As a purely epistatic model is a challenge for the analysis in

itself, we adopted a further analysis method, i.e. the multifactor

dimensionality reduction (MDR)[44,52]. MDR analysis was

performed on the EPI model with PM2 phenocopy levels.

Comparably with the logic regression analysis, the MDR

method perfomed with random non exhaustive explorations, was

unable to catch efficiently all the interactions, and this became

more evident with increasing PE levels (Supplementary Table S1).

When testing directly the interacting SNPs, the efficiency and the

OR of the MDR outcome was very close to the modelled one, but

these values progressively decreased the more the PE level

increased: at a 0% PE the predicted OR was 3.80 (compared to

a target OR of the model = 4.0) and at 45% PE the predicted OR

decreased to 2.39 (table 3, and Supplementary Figure S5 and

Supplementary References S1).

Discussion

Investigating the genetic determinants of complex traits

challenges researchers with obstacles yet unresolved completely.

We can argue that the genetic scenario of the most important

complex traits is not explainable in black and white, i.e. only by

the presence of very rare variants yet to be discovered with

sequencing or by the presence of purely epistatic effects. Complex

traits are likely determined by a different contribution of both

causes, with proportions that can differ from a phenotype to

another. In this paper we chose to address this second aspect

which deserves specific attention.

The characterization of the phenotypes is of extreme impor-

tance to this regard, and in our work we focused simulations of

genetic data on the analysis of the effect that phenocopy levels

could have in the capability to understand the genetic determinant

of a disease with different methodologies.

We would like to stress that the concept of ‘‘phenocopy’’ can be

interpreted in several ways, as we pointed out in the introduction,

and that the classical definitions of phenocopies should be largely

revisited in the context of complex traits, where multilocus

genotypes could play a decisive role. Yet this aspect plays a major

role in the discovery of genetic determinants: if to a certain extent

complex traits could be considered by definition phenocopies, and

if purely epistatic interactions play an important role in the missing

heritability (perhaps along undiscovered rare variants), then future

analysis methods have to take into account this scenario and model

not only interactions, but also phenocopy within their statistical

model.

In our simulation we decided to verify the impact of phenocopy

level by testing two methods for the generation of phenocopies: the

PM2 method we developed, specifically produces phenocopies by

introducing affected individuals in which different genetic

Table 2. The table summarizes the SNPs modelled in the
purely epistatic model generation, whose penetrance
function target odds ratio was set to 4.

Epistatic only alternative datasets

dataset interacting SNPs target OR

main dataset RL0-75 RL0-153 RL0-272 4

additional 01 RL0-66 RL0-155 RL0-268 4

additional 02 RL0-123 RL0-79 RL0-337 4

additional 03 RL0-63 RL0-125 RL0-332 4

additional 04 RL0-66 RL0-116 RL0-292 4

additional 05 RL0-63 RL0-120 RL0-329 4

The additional rows indicate the SNPs modelled in the additional datasets used
to pick-up phenocopies according to the PM2 method for phenocopy
generation.
doi:10.1371/journal.pone.0011876.t002

Phenocopy and Complex Traits

PLoS ONE | www.plosone.org 3 July 2010 | Volume 5 | Issue 7 | e11876



determinants have been simulated. The PM2 method thus allowed

us to test a scenario where different combinations of loci could

produce the same phenotype.

Our results show that strong main effects are not hampered by

the presence of an increasing amount of phenocopy in the study

sample, despite progressively reducing the significance of the

association, if the study is sufficiently powered.

On the opposite, when purely epistatic effects are simulated, the

capability of identifying the association depends on several

parameters, such as the strength of the interaction between the

polymorphic variants, the penetrance of the polymorphism, the

alleles (minor or major) which produce the combined effect and

their frequency in the population. The influence of these

parameters has been partially discussed in 0% PE datasets in the

literature. In our simulation the critical role of phenocopy

emerges, and the more the PE level increases the more the initial

difficulty in detecting these gene-gene interactions is amplified,

even with methodologies more suitable to the discovery of epistatic

models.

Classical analytical methodologies are very sensible to this error,

and new statistical methods have to be developed, addressing in a

less computing-intensive way SNP-SNP interactions as well as

accounting or adjusting their results on estimates of the phenocopy

error.

Figure 1. Case/control dataset - main effect model. Single point association analysis of the chromosome where a mixed model of marginal
effects and interactions were simulated. The picture shows the impact of the different levels of phenocopy error (PE) on the significance levels. The
point surrounded with a red circle indicates the bin where the SNP with a main effect is located, showing its significance level in the single point
association analysis. In order to simplify the plot, groups of SNPs with similar p values have been grouped into ‘‘bins’’, as performed by the hexbin
package in R. The number of markers in each bin is represented by different shades of blue, as indicated in the legend.
doi:10.1371/journal.pone.0011876.g001
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Since the presence of phenocopy can be a characteristic intrinsic

to the phenotyping of complex traits, we conclude that the neglect

of the possible presence of phenocopies in these scenarios heavily

affects the analysis of their genetic data.

Materials and Methods

Simulations
We performed simulations by using the software genome-

SIMLA[50] which performs the simulation of large-scale genomic

data both in population based case-control samples and in

families. It is a forward-time population simulation algorithm that

allows the user to specify many evolutionary parameters and

control evolutionary processes and allows the user to specify

varying levels of both linkage and LD among and between

markers and disease loci. [48,49,53]. Particular SNPs may be

chosen to represent disease loci according to desired location,

correlation with nearby SNPs, and allele frequency. Up to six loci

may be selected for main effects and all possible 2 and 3-way

interactions. Disease-susceptibility effects of multiple genetic

variables can be modeled using either the SIMLA logistic function

[49,53] or a purely epistatic multi-locus penetrance function [41]

Figure 2. Case/control dataset - purely epistatic model. Single point association analysis of the chromosome where only purely epistatic
effects were simulated. The picture shows the impact of the different levels of phenocopy error (PE) on the significance levels. The points surrounded
with a red circle indicates the bin where the three interacting SNPs are located, showing their significance level in this single point association
analysis. In order to simplify the plot, groups of SNPs with similar p values have been grouped into ‘‘bins’’, as performed by the hexbin package in R.
The number of markers in each bin is represented by different shades of blue, as indicated in the legend.
doi:10.1371/journal.pone.0011876.g002
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found using a genetic algorithm to assign affected status (for

program configuration files see Supplementary Model S1).

Disease models
We generated two different disease models.

In the first one (referred to as ‘‘model ME’’, standing for ‘‘Main

Effect’’) a single SNP (RL0-855, figure 4) was simulated to have a

main effect on disease, with an OR = 2.225; at the same time the

disease model included also three other SNPs (RL0-75, RL0-245,

RL0-457) with no main effect and an interaction associated to the

Figure 3. Logic regression on a purely epistatic model. This plot is generated for each dataset of case-control simulations by using a ‘‘logic
regression’’ approaches, and shows the rank of importance of the interactions identified. By applying this methodology the analysis was capable to
identify in most cases two of the three interacting SNPs among the top ranking interactions. The captured associates SNPs are highlighted by arrows.
doi:10.1371/journal.pone.0011876.g003

Table 3. MDR test on purely epistatic model interactions.

Phenocopy level

0% 5% 10% 20% 30% 45%

Testing Accuracy 0.6597 0.6539 0.6492 0.6303 0.6271 0.6098

Testing Sensitivity 0.7061 0.7473 0.7009 0.682 0.5963 0.5655

Testing Specificity 0.6132 0.5621 0.5993 0.5824 0.6547 0.6474

Testing Odds Ratio (CI) 3.8087
(3.1613,4.5887)

3.7956
(3.1397,4.5885)

3.5049
(2.9117,4.2188)

2.9913
(2.4901,3.5934)

2.8012
(2.3359,3.3591)

2.3893
(1.9947,2.862)

This table summarizes the test performed with the multifactor dimensionality reduction method on the RL0-75/RL0-153/RL0-272 interactions at different phenocopy
levels generated with the PM2 method. The target odds ratio for the purely epistatic model of the original dataset was 4: it is evident how at increasing level of
phenocopy, the odds ratio captured by the test for the interacting SNPs progressively decreases.
doi:10.1371/journal.pone.0011876.t003
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affection status. We simulated this model on a single chromosome

with 1.362 markers.

In the second model (referred to as ‘‘model EPI’’, standing for

‘‘purely epistatic’’), we performed a simulation on a smaller

chromosome (401 markers), where no main effect was present and

three SNPs (RL0-75, RL0-153, RL0-272) were affecting disease with

only a purely epistatic disease model, generated by using SIMPEN

[49]. The penetrance table was generated with a target OR = 4.

In both simulations the SNP chosen to be associated with the

disease had a MAF.0.30, in order to allow us to simulate the

condition so called ‘‘common variant common disease’’[54,55,56].

Table 1 and Table 2 provide information on the associated

markers and their target OR. Supplementary Figure S6 gives

additional details on the disease model generation.

For each of the two models case-control data and pedigree data

were generated. On each case six different large pooled datasets were

extracted, with an increasing level of phenocopy error (i.e. 0%, 5%,

10%, 20%, 30% and 45%). In order to avoid biases due to data

extraction and fluctuation, each dataset has been obtained by

sampling and then pooling 50 different datasets on each PE level.

The case/control simulation included datasets of 200 cases and

200 controls each, i.e. finally 20.000 individuals each PE level dataset.

Each family simulation included 25 families with 1 affected sib

and 2 unaffected, 25 families with 3 affected and 1 unaffected, 25

families with 2 affected, 2 unaffected sibs and 3 random extra sibs:

the total number of individuals for each dataset of different PE

level was 25.000 samples. Supplementary Figure S7 gives

additional details on the datasets generation.

Generation of the phenocopies
The genomeSIMLA software version used (1.0.7w32), currently

implements a method for generating the phenocopy designed as

follows.

The software generates cases and controls using the penetrance

function and the marker specified by the user. Then, in case-

control datasets, it removes a percentage (user specified) of cases

and replace them with individuals sampled from the control

individuals in the full population and assign them the affected

status. In family datasets, the software determines the total number

of affected to modify as phenocopies, identifies the pedigrees to be

modified and redraw the family according to the new require-

ments. Pedigrees with the required number of affected and

unaffected are selected and then the unaffected phenocopies are

marked as affected, according to the initial design specified by the

user (personal communication).

This method has been referred as ‘‘phenocopy method one’’

(PM1).

In order to verify the correspondence of such phenocopy

generation method with what we defined as ‘‘phenocopy’’ (see

introduction), we also developed another methodology to be

applied on the case-control datasets only. According to this second

algorithm (referred into the article as ‘‘phenocopy method two’’,

PM2), five additional datasets have been generated, with different

markers associated to the affected status. In order to generate the

phenocopy level required, a uniform random sampling of affected

individuals from the five additional datasets have been performed,

and these individuals have been substituted with affected

individuals randomly picked up from the original dataset. This

method generates five datasets with the same phenocopy

percentage as the PM1. Supplementary Figure S8 provides a

more detailed explanation and supplementary Box S1 reports the

R code used to generate these datasets. Table 2 provides

information about the markers associated to the affection status

in the additional datasets and the target OR used.

Statistical analysis
The analysis were conducted using the R software (www.

r-project.org) and PLINK. In particular whole-chromosome case-

control analysis and TDT analysis were performed with PLINK

and visualized with R. The calculation of genetic contrasts and the

logistic regression on single markers, markers’ interaction analysis

with logistic regression where performed according to Clayton as

developed in the ‘‘DGCgenetics’’ package. Interaction analysis by

using a logic regression approach was performed by using the R

package ‘‘logicFS’’ by Schwender, according to the developer’s

specifications.[27]

Figure 4. LD plot from main effect model dataset. Linkage disequilibrium plot of a small portion of the simulated chromosome in the dataset
with main effects. The LD block where the associated SNP (RL0-855) is simulated is visible in the picture. The existence of a block encompassing seven
markers also explains the signal associated with other few SNPs in strong LD with RL0-855.
doi:10.1371/journal.pone.0011876.g004

Phenocopy and Complex Traits

PLoS ONE | www.plosone.org 7 July 2010 | Volume 5 | Issue 7 | e11876



The MDR analysis has been conducted by using the MDR

java package (www.epistasis.org)[57] and performing 5.000

random explorations in the model discovery of attributes

ranging from 2 to 4-way interactions, as implemented in the

software.

Supporting Information

Model S1 Model Configuration files.

Found at: doi:10.1371/journal.pone.0011876.s001 (0.01 MB ZIP)

Box S1 R code used to generate the alternative phenocopy

method datasets.

Found at: doi:10.1371/journal.pone.0011876.s002 (0.03 MB

DOC)

References S1 References cited in the Supplementary Infor-

mation.

Found at: doi:10.1371/journal.pone.0011876.s003 (0.03 MB

DOC)

Table S1 The table summarizes the 10 best models for each

phenocopy level identified during the MDR analysis. It has to be

stressed that the MDR analysis has been conducted by performing

5.000 evaluations of possible interactions. An exhaustive analysis

as implemented in the software would be computationally very

intensive, as pointed out by the authors in a recent paper (see

Pattin K. A. et al. [4]). In bold the correct SNPs as modelled in the

purely epistatic penetrance function.

Found at: doi:10.1371/journal.pone.0011876.s004 (0.08 MB

DOC)

Figure S1 For the case-control dataset generated with the main

effect disease model (see SF6), an alternative method of

producing phenocopies has been applied (see SF8). The method

displays the same performance of the internally implemented one,

with the only exception of few markers which progressely fall

outside the equilibrium of Hardy-Weinberg, thus resulting in a

false-positive association (indicated by the arrow). The red circle

indicates the marker associated with the disease in the main

dataset.

Found at: doi:10.1371/journal.pone.0011876.s005 (1.29 MB EPS)

Figure S2 The figure summarizes the significance level for

each marker in the pedigree datasets simulated with a main

effect disease model at each phenocopy level. The red circle

indicates the marker associated with a main effect to the disease

in the model. The PM1 phenocopy generation method was

applied.

Found at: doi:10.1371/journal.pone.0011876.s006 (1.31 MB EPS)

Figure S3 For the case-control dataset generated with the purely

epistatic disease model (see SF6), an alternative method of

producing phenocopies has been applied (see SF8). The method

displays the same performance of the internally implemented one,

with the only exception of one marker which progressively falls

outside the equilibrium of Hardy-Weinberg, thus resulting in a

false-positive association (indicated by the arrow).

Found at: doi:10.1371/journal.pone.0011876.s007 (1.22 MB EPS)

Figure S4 The figure summarizes the significance level of the

markers in pedigree datasets, at each phenocopy level. The red

circles indicate the position of the markers associated in the model,

which is the same in the other plots.

Found at: doi:10.1371/journal.pone.0011876.s008 (1.54 MB EPS)

Figure S5 MDR attribute construction. The figures illustrates

the distribution of cases (left bars) and controls (right bars) when

the three associated SNPs are considered jointly.

Found at: doi:10.1371/journal.pone.0011876.s009 (2.07 MB EPS)

Figure S6 Two disease models have been applied. In the first

model a single SNP displays a main effect (target OR = 2.225) and

three additional SNPs do not have a main effect and interact with

each other with a modest effect; this model is implemented as part

of the SIMLA logistic function[1]. In the second model instead,

three SNPs have been simulated as having no main effect, and a

purely espistatic effect on the disease (with a target OR = 4); this

model has been implemented in genomeSIMLA and it has been

proposed by Culverhouse [2] and discussed by Moore [2,3].

Found at: doi:10.1371/journal.pone.0011876.s010 (1.07 MB EPS)

Figure S7 For each disease model, two groups of datasets have

been generated: a case-control dataset and a family based dataset. In

order to reduce the fluctuations due to the sampling, in each case 50

different smaller datasets have been independently sampled from the

population and then merged together in order to obtain a large

pooled dataset. The figure explains the process step by step.

Found at: doi:10.1371/journal.pone.0011876.s011 (1.37 MB EPS)

Figure S8 The method has been developed by using the R

software (code provided) in order to perform a random sampling

from five additional datasets where different SNPs have been

associated in the disease model with the affected individuals. A

uniform and random sampling, followed by a random substitution

of the individuals in the original dataset produced different levels

of phenocopies in the sample, thus generating six dataset with

increasing phenocopy percentage. This method ensures the

effective substitution of individuals generated as affected but with

completely different causative markers. The method has been

developed as a further analysis of possible effect generated by the

‘‘phenocopying’’ method implemented in the genomeSIMLA

software.

Found at: doi:10.1371/journal.pone.0011876.s012 (1.67 MB EPS)
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