
Descriptor
DIMPLE: An R package to
 quantify, visualize, and
model spatial cellular interactions from multiplex
imaging with distance matrices
Graphical abstract
Highlights
d DIMPLE is an R package to analyze and visualize multiplex

imaging data

d DIMPLE provides a scalable framework to quantify cellular

interactions

d Statistical modeling links tumor microenvironment to patient-

level outcomes
Masotti et al., 2023, Patterns 4, 100879
December 8, 2023 ª 2023 The Author(s).
https://doi.org/10.1016/j.patter.2023.100879
Authors

Maria Masotti, Nathaniel Osher,

Joel Eliason, Arvind Rao,

Veerabhadran Baladandayuthapani

Correspondence
mmasotti@umich.edu

In brief

The tumor microenvironment consists of

multiple cell types that can interact in

complex ways. Multiplex imaging

technologies such as Vectra Polaris or

PhenoCycler can be used to identify the

precise spatial locations and phenotypes

of cells in tissue samples of the tumor

microenvironment. Masotti et al. present

a software package, DIMPLE, that

provides an end-to-end pipeline to

quantify, visualize, and model spatial

cellular interactions in multiplex

imaging data.
ll

mailto:mmasotti@umich.�edu
https://doi.org/10.1016/j.patter.2023.100879
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2023.100879&domain=pdf


OPEN ACCESS

ll
Descriptor

DIMPLE: An R package to quantify, visualize,
and model spatial cellular interactions
from multiplex imaging with distance matrices
Maria Masotti,1,3,* Nathaniel Osher,1 Joel Eliason,2 Arvind Rao,1,2 and Veerabhadran Baladandayuthapani1,2
1University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
2University of Michigan, Department of Computational Medicine and Bioinformatics, Ann Arbor, MI 48109, USA
3Lead contact

*Correspondence: mmasotti@umich.edu
https://doi.org/10.1016/j.patter.2023.100879
THE BIGGER PICTURE The tumor microenvironment (TME), the ecosystem of immune cells, extracellular
matrix, blood vessels, and other cells that surrounds a tumor, is emerging as the next frontier in cancer
research. It is firmly established that the presence and prevalence of specific immune cells within and
around the tumor can predict patient outcomes, including their response to treatment and the progression
of cancer. Multiplex imaging (MI) technologies such as PhenoImager, PhenoCycler, MIBI, and others pro-
vide a detailed view of the TME. These rapidly evolving technologies enable the discrimination of numerous
cell types while preserving their spatial context. This allows for quantification of spatial cellular interactions
or the tendency of cell types to co-locate. Evidence is mounting that these cellular interactions, beyond
mere presence and prevalence, are associated with patient outcomes.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
A major challenge in the spatial analysis of multiplex imaging (MI) data is choosing how to measure cellular
spatial interactions and how to relate them to patient outcomes. Existing methods to quantify cell-cell inter-
actions do not scale to the rapidly evolving technical landscape, where both the number of unique cell types
and the number of images in a dataset may be large.We propose a scalable analytical framework and accom-
panying R package, DIMPLE, to quantify, visualize, and model cell-cell interactions in the TME. By applying
DIMPLE to publicly available MI data, we uncover statistically significant associations between image-level
measures of cell-cell interactions and patient-level covariates.
INTRODUCTION

The tumormicroenvironment (TME) refers to the complex network

of cells and other structures surrounding a tumor. This microenvi-

ronment is essential for the growth, survival, and metastasis of

cancer cells.1 Understanding the mechanisms underlying the

TME is crucial for developing new and more effective cancer

therapies.2,3 Recent breakthroughs inmultiplex imaging (MI) of tis-

sues have allowed researchers to simultaneously visualize and

quantifymultiplebiomarkers inasingle tissuesamplewhilepreser-

ving their spatial information.4 Specific MI technologies include

PhenoImager, formerly known as Vectra; PhenoCycler, formerly

known as codetection by indexing (CODEX); multiplexed ion
This is an open access article under the CC BY-N
beam imaging by time-of-flight (MIBI); imaging mass cytometry

(IMC);matrix-assisted laser desorption ionizationmass spectrom-

etry imaging (MALDI-MSI); and digital spatial analysis (GeoMx/

DSP/CosMx). These technologies produce high-resolution maps

of multiple functional and phenotypic markers on a single tissue

section. Each single cell in the tissue can be phenotyped based

on the marker intensities. One of the key analytical goals for

high-resolution images from these technologies is to understand

the interactions between different cells in the TME and how they

contribute to tumor growth, metastasis, and drug resistance.

Spatial analysis of MI-derived data may offer insight into how

cellular crosstalk and heterogeneity affect cancer prognoses

and responses to treatment. Several recent studies discovered
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novel cellular interactions in the TME. An MI study on the lung

adenocarcinoma TME in 153 patients with resected tumors

found that expression of major histocompatibility complex

(MHC) class II associates with tumor and immune interaction

within the TME.5 This suggests that cancer-cell-specific expres-

sion of MHC class II may represent a biomarker for the immune

system’s recognition and activation against the tumor. An

MI study of ovarian cancer found that the proximity between

tumor-associated macrophages and B cells or CD4 T cells

significantly correlated with overall survival.6 An MI study of tis-

sue samples from the colorectal cancer (CRC) invasive front

found that co-localization of PD-1+ CD-4+ T cells with granulo-

cytes was positively correlated with survival in a high-risk patient

subset.7

Despite structurally similar data, each of these studies at-

tempts to quantify cellular interaction with profoundly different

techniques. In the study of the lung cancer TME,5 Euclidean dis-

tances between individual tumor cells and the nearest immune

cell phenotypes were calculated. In the study of ovarian cancer,6

an interaction variable based on the number of one cell type

within a certain r of another was calculated. This measure was

binned and used downstream in survival outcome modeling. In

the study of CRC,7 a complex clustering procedure was used

to partition each image into a neighborhood. The neighborhoods

were roughly defined by the prevalence of certain cells. Then,

summary statistics were computed in each neighborhood and

compared between neighborhoods and images. These studies

demonstrate a lack of consensus on an approach for measuring

cellular interaction in the TME.

A handful of software tools exist to compute cell-level mea-

sures of interaction. One of the most widely used tools, the R

package ‘‘spatstat,’’8 is a comprehensive set of functions for

spatial point patterns. The R packages ‘‘spatialTIME’’9 and ‘‘spi-

cyR’’10 also compute cell-level interaction measures and were

designed specifically to store and analyze data from MI. These

measures of interaction based at the cell level, such as Ripley’s

K,11 Besag’s L,12 Marcon’s M,13 and nearest-neighbor dis-

tance,14 may not readily scale with increasing numbers of cell

types or images. Specifically, pairwise interactions grow

quadratically with the number of cell types, so discovery-driven

approaches can quickly become computationally infeasible.

These cell-level measures are functions of a radius (r), which

must be pre-specified in order to calculate a univariate measure

of interaction for downstream analysis. Alternatively, more com-

plex modeling procedures are required to study the heterogene-

ity of cell-cell interactions using these functions over a range of r

as functional data inputs.15 The values of thesemeasures are not

interpretable alone and require comparisonwith the function esti-

mated under complete spatial randomness (CSR). The value of

the function under CSR is highly sensitive to spatial inhomogene-

ity, uneven distribution of cells across the image, and ‘‘holes’’ or

areas of missing data.16 Unfortunately, these features are com-

mon in MI data, so calculation of the CSR must be performed

by permutation for each individual image, which can, again, be

quite computationally expensive.

To address these challenges, we present DIMPLE (distance

matrices for multiplex imaging) along with an R package17 and

an accompanying R Shiny app, filling the gap for a scalable

and statistically savvy data science toolkit for researchers con-
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ductingMI experiments (see Figure 1). Briefly, DIMPLE first com-

putes a spatially smooth non-parametric kernel density estimate

(KDE) of each cell type for each image, the parameters of which

are user defined. Then, a distance or similarity metric is applied

to each unique pairwise combination of the KDEs for each im-

age. These univariate distance metrics are organized in matrix

form and can be visualized using heatmaps or networks. Users

have the option to attach patient-level metadata, allowing users

to test associations between distance metrics and patient

covariates or outcomes. DIMPLE is designed to accommodate

data from a variety of sources, requiring only image IDs, spatial

coordinates, and a cell type or marker status for each cell.

The plotting functions and accompanying Shiny app generate

publication-quality figures to visualize heterogeneity in the cell-

cell interactions across patient-level covariates. Our framework

is computationally efficient and requires no permutations to

interpret measures of cellular interaction. The image-level and

optional patient-level data along with computed intensities and

distance matrices are organized with all relevant information in

an R S3 object. DIMPLE is designed to appeal to novice R users.

All core analyses including organizing and storing data,

computing intensity smoothed point patterns, calculating dis-

tances, conducting statistical inference via regression modeling,

and visualization can be done within the DIMPLE package. See

Figure S4 for a flowchart of the core functions. For more savvy

R users, outputs from the package can be easily used down-

stream inmore complex statistical analysis such as survival anal-

ysis, mixed-effects modeling, clustering, and variable selection.

The accompanying RShiny app allows users to visually explore a

MltplxExperiment object in a point-and-click fashion. The

accompanying R package is free and open source and was

designed to adhere to the FAIR principles; see section S4 of

the supplemental information for details.

To illustrate the functionality of the DIMPLE software, wewill uti-

lize publicly available MI data of the lung adenocarcinoma TME in

153 patients with resected tumors from Johnson et al.5 In the re-

sults, we describe each of the analysis steps (columns of Figure 1)

using these data as examples. Results from our application of

DIMPLE to these data reveal statistically significant associations

between different types of immune cells and CK+ (pan-cytokera-

tin positive) tumor cells. These findings agree with findings from

Johnson et al.,5 who found that expression of MHC class II asso-

ciates with tumor and immune interaction within the TME. We

conclude the discussionwith a tutorial for generating DIMPLE dis-

tance matrices at quantile-specific partitions of the MI data in

generating and visualizing quantile-specific distance matrices,

an overview of our R Shiny app in using the DIMPLE Shiny app,

and a note on simulating MI data in simulation of MI data.

RESULTS

In this section, we describe how to use the DIMPLE package

and provide complete coding examples. The data can be

downloaded using the VectraPolarisData package.18 See

section S1 of the supplemental information for the R code

used to download and process the data for use in DIMPLE.

The overall analyses pipeline is organized into 4 main steps.

Step 1 entails reading the data and storing them as a

MltplxExperiment. Step 2 comprises the generation of



Figure 1. Overview of DIMPLE pipeline, from raw data to clinical analysis

First, data are supplied to DIMPLE in a simple format. Second, a point pattern representation of the data is generated for each image. Third, cell-type intensity

surfaces are estimated. Fourth, distances are computed from the intensities for each pair of cell types. Finally, pairwise distancesmay be easily used downstream

in statistical analyses in combination with patient metadata.

library(DIMPLE)

lung_EXPERIMENT = DIMPLE::NEW_MLTPLXEXPERIMENT(

X = CELL_X_COORDS,

Y = CELL_Y_COORDS,

MARKS = CELL_MARKS,

SLIDE_ID = SLIDE_IDS)

plot(lung_experiment[[1]])

plot(lung_experiment[[2]])
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intensity surface estimates for each cell type and image in the

dataset. Next, step 3 entails generating distance matrix repre-

sentations of cellular interaction for each image. Lastly, step 4 in-

volves using the pairwise distances in downstream analysis. This

section concludes with a tutorial of generating quantile-specific

distancematrices to investigate patterns of cellular interaction at

various partitions of the image.

Step 1: Input data and construct MltplxExperiment
To generate measures of cellular interaction using the DIMPLE

package, the minimal amount of information needed is four vec-

tors with length equal to the total number of cells in the MI

dataset.

(1)x, the x coordinates of each cell

(2)y, the y coordinates of each cell

(3)marks, the cell type of each cell

(4)slide_id, the ID of the image that each cell is from

The new_MltplxExperiment function takes at least those

four inputs: x, y, marks, and slide_id. It returns an S3 object

of class MltplxExperiment. This object is a list of all of the

slides in the dataset, each with its corresponding cell types and

locations stored for easy access, alongwith additional metadata.

It can be indexed the way a standard list is indexed, using single-

and double-bracket expressions as demonstrated below.
We will store the example data in a MltplxExperiment

called lung_experiment.
Each slide in the dataset is stored as a MltplxObject within

the MltplxExperiment object. A MltplxObject represents

a labeled collection of cell types and locations for each slide

in the dataset. The S3 method plot is implemented for

MltplxObject, which allows for quick inspection for a given

slide. The following code demonstrates how to plot

a MltplxObject, with the resulting plot output shown in

Figure 2.
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Figure 2. A point pattern plot of the first two images contained in lung_experiment generated with the plot() function

Combinations of color and shape represent the cell phenotype. These images come from the same patient, revealing heterogeneity within patient and over

space—both hallmarks of MI data.

bw = 30)

plot(lung_experiment[[1]]$mltplx_intensity)

plot(lung_experiment[[2]]$mltplx_intensity)
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Step 2: Generating and visualizing cell-type intensities
The intensity of a point process can be thought of as an

average, or first moment. The intensity function can be esti-

mated non-parametrically by kernel estimation. The DIMPLE

package uses an isotropic Gaussian kernel and Diggle’s

correction19,20 to reduce the bias from edge effects. There

are two arguments necessary to generate cell intensities: ps

and bw. ps controls the size of the grid at which the intensity

estimates will be generated. ps is short for ‘‘pixel size,’’ since

the resulting intensities can often resemble highly pixelated im-

ages. bw controls the smoothing of the resulting pixels, i.e., the

degree to which the values of certain pixels should resemble

their neighbors. Larger values of bw will result in ‘‘smoother’’ in-

tensity surfaces. The smoothing bandwidth can be tuned by the

user and should be chosen with some prior biological knowl-

edge about the ‘‘radius of influence’’ that a given cell type

has within a tissue. The calculated distance between cell types

is sensitive to the choice of bandwidth, which can be seen in

the simulation study (section S3 of the supplemental informa-

tion). We note that in application to MI, the r at which users

often look for cell-cell interaction is between 30 and 60 mm,

as most cells in the TME have an r of between 5 and 20 mm.

Thus, a smoothing bandwidth between 20 and 60 would indeed

be appropriate for analysis of MI data.

DIMPLEmakes it trivial to generate intensity grids for points of

all types for entire MltplxExperiment objects as well as indi-

vidual MltplxObject objects. To expedite computations,

usersmay optionally implement intensity smoothing and calcula-

tion of distances in parallel in the manner shown below. This

code also demonstrates how to plot the resulting intensity sur-

faces; see Figure 3 for the resulting plot output.
# uncomment below to use multiple cores to calcu-

late intensity

# plan(multisession(workers=2L))

lung_experiment=update_intensity(lung_experiment,

ps = 10,
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Step 3: Generating and visualizing pairwise distance
matrices
Having generated appropriate intensity functions, a reason-

able question to ask is how similar or different are the distribu-

tions of cells of different types within a given slide? For

example, the intensity surfaces in the previous example

seem to suggest that, for this specific patient, while there is

considerable overlap between the positions of CD4+ and

CD19+ cells, there is very little overlap between either of these

types and CK+ cells.

To formalize this intuition in a way that can allow comparison

across different slides, one can employ measures of distance

between the intensities of different cell types within a given

slide. Although any user-defined distance metric can be used,

we prefer the Jensen-Shannon distance (JSD), which is a

method of measuring similarity between two probability distri-

butions.21 It is a symmetrized and smoothed version of the

Kullback-Leibler divergence (KLD). The JSD takes the square

root of the Jensen-Shannon divergence so that it fulfills the ax-

ioms of a metric. The JSD is our preferred metric for this task

because it is bounded by 0 (perfect overlap) and 1 (complete

separation) and symmetric and does not suffer from inflation

due to the presence of zeros (holes in the image). The JSD is

defined by

JSDðPjjQÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
KLDðPjjMÞ+1

2
KLDðQjjMÞ

r

KLDðPjjQÞ =
X
x˛X

PðxÞlog2

�
PðxÞ
QðxÞ

�
;

where P and Q are probability distributions defined on the same

sample space X and M = 1
2 ðP +QÞ.



Figure 3. Estimated intensity surfaces for each cell phenotype from the two point patterns generated using the code above

Color represents intensity, with brighter color indicating greater intensity values.

dist_metric = jsd)

plot_dist_matrix(lung_experiment[[1]])

plot_dist_matrix(lung_experiment[[2]])
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In our case, P and Q are 2-dimensional spatial densities, or in-

tensities, of two cell types on the same image. As the intensity

functions are unknown, we will use their Gaussian KDEs, blðtÞ
and blðt0Þ, where t and t0 are two different cell types. To normalize

the intensities, we will divide each by their sum. So, our equation

for the JSD between the intensity of cell type t and cell type t0 for
one image is
dJSDðt;t0 Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

X
u

blðtÞðuÞlog2

 
2blðtÞðuÞblðtÞðuÞ+blðt0 ÞðuÞ

!
+
1

2

X
u

blðt0 ÞðuÞlog2

 
2blðt0 ÞðuÞblðtÞðuÞ+blðt0 ÞðuÞ

!
:

vuut

euclidean <- function(a, b) {

sqrt(sum((a - b)^2))

}

# The following code, if run, would compute the

distance using

# the previously defined function:

# lung_experiment = update_dist(lung_experiment,

# dist_metric = euclidean)
where the us are the points at which the KDEs are estimated and

are determined by the ps argument.

In addition to its favorable theoretical properties, the JSD is

robust to varying radii of cell-cell interaction and the presence

of holes in the image. We show through a simulation study that

the JSD can capture cell-cell distance when two cell types are

interacting at a close r versus a large r. Further, when a hole of

data is deleted from the image, the JSD is minimally affected.

See section S3 of the supplemental information for details on

the simulation study.

Having computed intensities for each cell type in a

MltplxExperiment object, pairwise distances can be added

easily by specifying a distance metric. For a single image, we

can construct an upper triangular or symmetric distance matrix

by calculating dJSDðt;t0Þ for all

�
T
2

�
sets of pairs where there

are T unique cell types. Here, we use jsd to add distance

matrices to the MltplxExperiment:
# uncomment below to use multiple cores to calcu-

late distance

# plan(multisession(workers=2L))

lung_experiment = update_dist(lung_experiment,
The dist_metric can be user defined. Any function that

takes in two vectors of the same length as an argument and pro-
duces a single scalar can be used in place of jsd. For example, a

simple Euclidean distance measure could be used.
The resulting distance matrices in Figure 4 formalize our

previous intuition. Since higher values of JSD indicate

more different distributions (and vice versa for smaller values),

it does indeed seem that there is quite a bit of overlap be-

tween the CD19+ and CD4+ cells, while the distributions of

these cells are quite far from those of the CK+ cells in the

two images within this patient. Note that we only plot the up-

per diagonal of the matrix. This is because a symmetric dis-

tance metric is employed. We also omit the diagonal because

the distance from one cell type to itself will be zero regard-

less of the distance metric used. Boxplots of image-level
Patterns 4, 100879, December 8, 2023 5



Figure 4. Estimated pairwise distances for the two point patterns generated using the code above
Color represents JSD, with brighter color indicating greater distance.
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tumor-to-CD8 distances reveal significant within- and be-

tween-patient heterogeneity, as in Figure 5.

We conclude this section by noting that the changes made to

the lung_experiment object can be discerned at a glance by

simply invoking the print function on the object, implicitly or

explicitly.
# equivalent to ‘‘print(lung_experiment)’’

lung_experiment

##MltplxExperiment with 761 slides

##Intensities generated with pixel size 10 and

bandwidth 30

##Distance matrices generated with jsd

##No attached metadata

slide_level_tibble = as_tibble(lung_experiment)

lung_lm = lm_dist(lung_experiment, group_fac-

tor = "mhcII_status")

plot_dist_regression_heatmap(lung_lm)
Step 4: Adding patient metadata and visualizing and
modeling associations
Patient-level data can also be stored in the MltplxExperi-

ment for the purpose of visualizing andmodeling cellular interac-

tions with patient outcomes. Patient metadata can be attached

to the lung_experiment object using the update_metadata

function. The patient metadata must contain 2 columns, and

each row corresponds to a slide_id in the Mltplx

Experiment.

(1)slide_id contains the same set of IDs as the MltplxEx-

periment.

(2)patient_id links the slide_id to the patient identifier.

The metadata can be added to lung_experiment via
lung_experiment = update_metadata(lung_experi-

ment, full_lung_metadata)

lung_experiment

##MltplxExperiment with 761 slides

##Intensities generated with pixel size 10 and

bandwidth 30

##Distance matrices generated with jsd

##Metadata has 14 columns
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The generic function as_tibble facilitates downstream

modeling and analysis by generating a tibble containing all of

the columns that were already present in themetadata and a col-

umn for each pair of cell types. Users may easily include the pair-

wise distances as covariates in survival or regression modeling

of patient outcomes, model them as outcomes in a mixed-ef-

fects model, or uncover natural groupings of the images through

unsupervised clustering.
Basic linear regression can be performed using the lm_dist

function, which fits separate models for each pairwise distance

to test for association with a variable from the patient metadata.

In this example, ‘‘mhcII_status’’ is a column of the patient meta-

data and indicates whether a patient’s tumor cells expressed a

high or low amount of MHC class II. The user can specify vari-

ables to adjust for and aggregating functions to use. The default

settings adjust for cell-type counts and aggregates images

within patient via the median. The tested coefficient for each

model can be displayed graphically using plot_dist_re-

gression_heatmap, as shown in the following code sample.

The resulting plot output is shown in Figure 6.
In this example data, low expression of MHC class II is asso-

ciatedwith decreased infiltration of immune cells with CK+ tumor

cells. This finding is in agreement with Johnson et al.5

As an alternative to aggregating distances within patient, dis-

tances may be modeled as outcomes in mixed-effect models

with patient-specific random effects to account for within-pa-

tient correlations.

Generating and visualizing quantile-specific distance
matrices
Patient outcomes or covariates may not be associated with pair-

wise cellular interactions on the scale of the entire image. Rather,



Figure 5. Distribution of biopsy distances between tumor cells and CD8 T cells within and between of first 40 patients in the dataset, sorted

by median distance
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cellular interaction at different regions of the imagemay be asso-

ciated with outcomes. The distance matrices may be computed

at various partitions of the image. We have implemented func-

tionality to compute distance matrices in partitions of the image

defined by user-defined quantiles of one cell-type intensity. The

update_qdist function takes the following arguments.

(1)dist_metric determines the distance metric.

(2)mask_type determines by which cell-type intensity to

partition.

(3)q_probs dataframe representing a range of quantiles by

which to partition the intensity.

The following code partitions each image in lung_experi-

ment into distinct areas based on quartiles of the intensity of

CK+ cells.
# uncomment below to use multiple cores to calcu-

late quantile

# distance matrices

# plan(multisession(workers=2L))

lung_experiment = update_qdist(lung_experiment,

dist_metric = jsd,

mask_type = "CK",

q_probs = tibble(

from = c(0, 25, 50, 75),

to = c(25, 50, 75, 100)

))
The quantile-specific distance matrices can be visualized us-

ing the plot_qdist function, as shown below. The resulting

plot output is shown in Figure 7.
plot_qdist_matrix(lung_experiment[[1]])
Across the different quartiles, the patterns of spatial interactions

betweendifferent cell typescanvaryconsiderably. In thisparticular

image, as the intensity of ‘‘CK’’-phenotyped cells increases, the

distance between the distributions of many of the various im-
mune-phenotyped cells also increases. Interestingly, though, the

distance between CD14-phenotyped cells and CK-phenotyped

cells decreases. Varying levels of immune cell co-localization

across regions of the tumor may indicate increasing concentra-

tionsof cytokinesor other signalingmolecules in the core tumor re-

gions.22Quantile-specificdistancematricesgeneratedbyDIMPLE

allowone toprobeandexplore thenatural heterogeneity thatarises

from such multifactorial and complex interactions in the TME.

Using the DIMPLE Shiny app
The R Shiny app is an additional tool to help researchers

generate publication-ready plots using the outputted distance

matrices and intensities from the R package (Figure 8). Plots

included in this descriptor may be generatedwith this app. It pro-

duces color-blind-friendly visualizations of individual intensities

and distance matrices, aggregated data, and model outputs.

The Shiny app accepts a MltplxExperiment saved as

an.RDS data file. The computation of intensities and distance

matrices ismeant to be completed before loading theMltplxEx-

periment in the R Shiny app. This minimizes the computations

being done within the Shiny app, allowing the user to iterate be-

tween visualizations relatively quickly. One can also explore the

lungcancerdata referenced in this tutorialwith theclickofabutton.

The Shiny app is organized into the following 3 pages.

(1)Visualize multiplex object: visually explore individual

MltplxObjects by selecting a slide ID.

(2)Analyze multiplex experiment: basic inference and visuali-

zation of model outputs in combination with patient-level

metadata.

(3)Quantile-specific distances: explore, visualize, and make

inferences on quantile-specific distance matrices.

Each plot may be downloaded as a PDF file. The app is freely

available at https://bayesrx.shinyapps.io/dimple_shiny/.

Simulation of MI data
Finally, we have developed several functions to simulate MI data

from intensity surfaces. These functions generate simulated MI

data that may be used to test out parameters of the intensity
Patterns 4, 100879, December 8, 2023 7
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Figure 6. Estimated effect of MHC class II status low on pairwise

cellular distances

Each square displays the regression coefficient in a linear regression model

where the dependent variable is the median pairwise distance for each patient

and the independent variable is a binary indicator of MHC class II status low

(MHC class II status high is reference) for each patient. Each regression model

is adjusted for overall prevalence of the cell types. Blue indicates a positive

effect on distance, and red indicates a negative effect on distance. Stars

indicate false discovery rate (FDR)-adjusted p values less than 0.05.
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estimation or various distance metrics. We provide a tutorial of

those functions in section S2 of the supplemental information.

DISCUSSION

We introduce DIMPLE, a statistical software package designed to

probe the relationships between cell types obtained from MI ex-

periments. DIMPLE converts spatial and phenotypic information

captured in MI assays to continuously varying non-parametric

KDEs of the point process intensity function with a user-defined

smoothing bandwidth. Then, a user-defined distance metric is

applied to the pairwise combinations of the KDEs for each cell

type. The resulting distance matrix can be further explored and,

when combined with patient-level metadata, can be used to iden-

tify potential biomarkers within the TME. All of this functionality is

built around a single simple, flexible, and easily extendable data

structure: the MltplxExperiment object.

Themethod proposed here takes cell types as input and treats

them as a priori ‘‘known.’’ We note that any conclusions drawn

from our pipeline rely on the accuracy of the mechanism used

for typing the cells. In principle, raw pixel-level protein markers

may be used directly in place of cell-type intensity maps. Howev-

er, in practice, it depends on the resolution of the pixel-level data.

For example, the Vectra Polaris platform provides outputs of

aggregated measures of pixel intensities at the nucleus, cyto-

plasm, and membrane of each detected cell. Furthermore, an

analysis directly on the pixel-level intensity maps would answer

a different scientific question than those we have focused on in

our current work. It would investigate the relationships between

different types of proteinmarkers expressed in the biopsy. Often,

this is not the primary analysis of interest. We are specifically

interested in the relationships of distinct cell types (which may

be defined by expression of combinations of protein markers).

While the MltplxExperiment object has some similarities

with the SpatialExperiment class,23 we would like to clarify
8 Patterns 4, 100879, December 8, 2023
how and why they are different. MltplxExperiment is

designed specifically for MI technologies in which discrete cell

types have already been annotated. On the other hand,

SpatialExperiment is designed for a much broader class of

spatial technologies, in which a potentially large number of

markers or genes are imagedor sequenced (typical of spatial tran-

scriptomics experiments), and this information is stored in a large

‘‘counts’’ matrix, analogous to that in single-cell RNA sequencing

experiments. Since MltplxExperiment deals typically with a

much smaller data size (at minimum, just the spatial coordinates

and discrete type of each cell), rather than the full roster of

markers/genes observed at each spot, we deemed that the over-

head of all of the extra parts in SpatialExperimentwas extra-

neous for our purposes. Furthermore, the SpatialExperiment

object is primarily a data structure object, while the MltplxEx-

periment data structure integrates smoothly with the various

analysis options available inDIMPLE. A MltplxExperiment ob-

ject holdsnotonly the rawdata (spatial coordinates, cell types, and

image metadata) but also the results of analyses such as

smoothed intensity plots and distance matrices.

Weacknowledge a couple important limitations of our proposed

method.First, thesmoothingbandwidthbwmustbechosenapriori

and can have a non-trivial influence on downstream results. We

urge users to choose a biologically plausible ‘‘sphere of influence’’

for thesmoothingbandwidth.Second, thismethodcannotquantify

the tendency of cells to cluster spatially with their own type. Due to

how we have defined intracellular distance, the distance resulting

from a comparison of one cell type to itself would always be zero.

The expression level of functional markers may be an important

confounder in the association between pairwise cellular distance

and patient outcomes. The quantification of this typeof interaction

is currently very limited. If the functional marker can be repre-

sented by a binary variable for each cell (expressed/not ex-

pressed), it can be easily incorporated into the cell type and be

readily used in the pipeline. For example, users could divide tumor

cells into PD-L1+ tumor cells and PD-L1� tumor cells. In the

future, we hope to develop additional methods to incorporate

the functional markers and add support for other spatially varying

covariates. These improvements will enhance the capabilities of

DIMPLE and enable researchers to gain further insight into the re-

lationships between different cell types in MI experiments.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Maria Masotti (mmasotti@umich.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The DIMPLE R package is open source and freely available on Github (https://

github.com/nateosher/dimple). The Shiny app is available at https://bayesrx.

shinyapps.io/dimple_shiny/. All original code has been deposited at Zenodo

under DOI: https://doi.org/10.5281/zenodo.8327331. Any additional informa-

tion required to reanalyze the data reported in this paper is available from

the lead contact upon request.

The data used as illustration of our package were sourced from the

VectraPolarisData package. This package can be installed from Bio-

conductor (https://bioconductor.org/packages/release/data/experiment/html/

vectrapolarisdata.html).
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Figure 7. Quantile-specific distance matrices generated by the code above for the first point pattern faceted by the intensity of CK+ cells

The color represents JSD, with brighter color indicating greater distance.
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SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2023.100879.
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descriptor with the click of a button.
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