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Nanomedicine shows great potential in screening, diagnosing and treating diseases.
However, given the limitations of current technology, detection of some smaller lesions and
drugs’ dynamic monitoring still need to be improved. With the advancement of
nanotechnology, researchers have produced various nanomaterials with imaging
capabilities which have shown great potential in biomedical research. Here, we
summarized the researches based on the characteristics of imageable nanomaterials,
highlighted the advantages and biomedical applications of imageable nanomaterials in the
diagnosis and treatment of diseases, and discussed current challenges and prospects.
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1 INTRODUCTION

The diagnosis and efficacy evaluation of human diseases mainly relies on imaging technology and
laboratory tests. Many diseases are not easily detected early and result in poor prognosis (Cencini
et al., 2021). And for chronic diseases such as cancers, the therapeutic effects and absorption
efficiency of drugs are also limited due to the influence of certain barriers in human body (Patel and
Patel, 2017). Additionally, the special physical and chemical properties of certain drugs directly affect
their absorption and efficacy (Xu et al., 2018). The current detection and prognosis of diseases are still
unsatisfactory, so more effective detection and treatment strategies need to be further explored.

Common imaging detection methods mainly include positron emission tomography (PET),
single-photon emission computed tomography (SPECT), computed tomography (CT), ultrasound,
magnetic resonance imaging (MRI), optical imaging (OI) and photoacoustic (PA) imaging. These
methods have the characteristics of displaying anatomical structures and/or functional imaging, such
as providing blood vessel and tissue information when using contrast agents in CT detection. At
present, imaging technology is mainly used for disease screening, early diagnosis and preliminary
evaluation of curative effects. While every imaging modality has its advantages and disadvantages.
For example, CT can provide anatomical information, but the sensitivity needs to be improved;
ultrasound and optical imaging can provide non-invasive imaging, but are limited in depth; MRI can
provide better soft tissue and brain function information, but the cost of the examination is high and
examination time is long; PET has a higher sensitivity, but is limited to the types of diseases (Hu et al.,
2014). How to realize the complementary advantages of these imaging technologies is the
concentration on current research.

At present, nanomaterials are the focus of medical research. With the discovery of various
characteristics of nanomaterials, the research on the role of nanomaterials in diseases has been
gradually developed. Nanomaterials themselves have small molecular weights, good
biocompatibility, and have the characteristics of ultrasound, optics and electromagnetics (Wong
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et al., 2020). In addition, nanomaterials can also be modified with
fluorescence or special groups. These advantages make
nanomaterials have great potential in drug delivery systems,
medical imaging and diagnostic platforms, implantable
materials, and tissue regeneration (Mabrouk et al., 2021).
Therefore, the use of imageable nanomaterials contributes to
increasing the sensitivity and specificity of diagnostic and
therapeutic strategies.

2 THE CHARACTERISTIC OF IMAGEABLE
NANOMATERIALS

Nanomaterials refer to nanoscale materials. Due to their small
size, nanomaterials have different properties from traditional
materials, such as ultrasound, electromagnetics and
fluorescence. Nanomaterials were classified into organic,
inorganic and hybrid nanomaterials. Inorganic nanomaterials
contains silica, black phosphorus, metallic, metal oxide-based
nanomaterials, transition metal dichalcogenide, metal carbide,
nitride, or carbonitride, calcium, layered double hydroxide,
metal–organic framework/nanoscale coordination polymer,
self-assembled inorganic nanomaterials; and other
biodegradable inorganic nanomaterials (Wang X. et al., 2021).
And the well-known liposomes are typical organic nanoparticles

(Chin et al., 2017). And nanomaterials of every character can be
further classified according to their imaging properties. For
example, magnetic nanomaterials can be further classified into
magnetic resonance, magnetic particle, magneto-motive and
electrical impedance imageable nanomaterials (Alsharif et al.,
2020). And the main research branch of PAI includes
photoacoustic tomography (PAT), photoacoustic microscopy
(PAM) and intravascular photoacoustic imaging (IVPAI)
(Attia et al., 2019). Nanomaterials can be composed of many
different materials, such as manganese dioxide, calcium
carbonate, iron oxide and so on. The clearance of
nanomaterials in the body is mainly dependent on
hepatobiliary, gastrointestinal, mucociliary, urinary and
reticuloendothelial system excretion (Figure 1). Whereas the
specific removal method depends on the diameter of the
nanomaterial and its ability to aggregate (Wang X. et al.,
2021). Traditional imaging technology provides more
anatomical information rather than molecular and cellular
level information. Recently, with the deepening of research
and the understanding of diseases, researchers have made
specific modifications on nanomaterials to adapt to the
microenvironmental physical and chemical properties of the
lesional areas and provide imaging information via imaging
technology. To distinguish the imaging signal between the
normal and lesional area, the imaging properties of

FIGURE 1 | Schematic diagram of the Q12 main metabolic pathways of inorganic nanomaterials in the body.
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nanomaterials have been specifically improved, that is, only the
lesion area has imaging properties. The lesion area has different
physical and chemical properties from physiological conditions,
such as pH, redox and enzyme products. These abnormal
properties are used to simulate the imaging signal switch of
nanomaterials (Table 1). At present, the nanomaterials are
mostly degraded or cleavage when they were activated by pH,
redox and enzyme products, and at the same time they were
imageable. All inorganic, organic, and hybrid nanomaterials were
applied in this strategy (Rosenkrans et al., 2021). Redox products
generally include reactive oxygen species (ROS) and glutathione
(GSH). High levels of ROS can be detected in most cancers and
macrophages, therefore, nanomaterials loading with ROS probe
can be imageable in cancers and macrophages-related diseases
(Zhang L. et al., 2019). At the same time, some external stimuli
can also activate the imaging properties of nanomaterials, such as
giving infrared radiation, X-ray and electromagnetic fields
outside the body (Tsai and Hamblin, 2017; Pfeiffer et al., 2020;
Huang et al., 2021).

To further improve the imaging performance, researchers
successfully combined two or more imaging modes, called
multimodal imaging. For example, the use of multimodal
imaging could not only feel the high acid and high ROS levels
in the tumor microenvironment but also synergistically enhance
the T1-weighted MR contrast of Mn2+ (Liang et al., 2018). And
Fe3O4/Gd2O3 nanocubes had been demonstrated to possess both
T1-and T2-weighted imaging properties (Qin et al., 2020). Both
Gd2O3 and NaHoF4 had the dual imaging properties of T1-
weighted MRI and CT (Ni et al., 2016; Kuang et al., 2020). While
there are limited natural nanomaterials that can be used for
multimodal imaging. After exploration, nanomaterials are
modified or mixed to have the characteristics of multimodal
imaging. In the studies, the MnO2 core was wrapped with Gd3+

coated nanomaterials, or the MnO2 core was conjugated with
functional groups to increase the Mn2+ concentration, which
enhanced the T1 imaging (Sun et al., 2018). Nanomaterials
coupling with 64Cu and Gd3+ realized the dual imaging of
PET and MRI (Neumann et al., 2020). And microbubbles with
low-frequency ultrasound response had been demonstrated to
have dual imaging properties of fluorescence and PAI upon
triggering in tumor-bearing mice (Huynh et al., 2015).
Multimodal imaging not only provided better anatomical
information but also real-time molecular and cellular level
information. However, it also requires optimization of the
combination and modification of nanomaterials to meet the
needs of multimodal imaging.

3 THE ADVANTAGE OF THE IMAGEABLE
NANOMATERIALS

Nanomaterials with imaging functions were detected by imaging
technology. The combination of nanomaterials and imaging
technology breaks the limited information provided by
traditional nanomaterials or imaging technology, so that the
biological processes can be monitored in real-time while
providing more information about diagnosis and treatment of

diseases. We will clarify the advantages of the combination of
nanomaterials and imaging technology from the following two
aspects.

3.1 Imaging Technology Tracks
Nanomaterials in vivo and in Real-Time
At present, the research on imageable nanomaterials is mostly
concentrated in cancers. Imageable nanomaterials carrying drugs
can trace not only the location and size of the cancer but the half-
life of the drug and the targeting properties of nanomaterials. For
example, nanoparticles carrying Fe3O4 and doxorubicin under
the external alternatingmagnetic fieldmade the local temperature
reach above 42°C and doxorubicin was released at the same time,
which significantly inhibited tumor growth and enhanced the T2
contrast for imaging-guided delivery (Thirunavukkarasu et al.,
2018). At the same time, nanomaterials with the magnetic, optical
and thermal response and imaging characteristics activated the
magnetic, optical and thermal properties of the material itself
after receiving stimuli to provide the imaging information of
cancer sites and achieve the treatment of cancers. Nanoparticles
activated by near-infrared laser irradiation could not only have
the effect of chemotherapy/photothermal synergistic anti-tumor
efficacy but also have the dual-mode imaging characteristics of
PA and ultrasound imaging (Liu F. et al., 2018). In addition,
radiolabeling nanomaterials such as 18F were subjected to PET
imaging for monitoring the metabolism of cancer tissues
(Norregaard et al., 2017). Nanomaterials with dual imaging
and diagnostic properties achieved the intraoperative diagnosis
and precise imaging-guided surgery (IGS). Superparamagnetic
iron oxide nanoparticles enabled the precise localization of
sentinel lymph nodes guided by MR (Rubio et al., 2015). The
CH1055-PEG carrying the NIR-II fluorophore showed great
potential in intraoperative lymph node localization with a
higher signal-to-background ratio (Antaris et al., 2017).
Further, tumor boundary and minimal residual disease could
be visualized by imaging techniques to perform the precise IGS
(Wang C. et al., 2019). Another application of imaging
technology to trace nanomaterials is stem cell tracing. As we
all know, stem cells play an important role in the fields of gene
therapy and drug research. At present, most of the reported
techniques for tracing stem cells with nanomaterials are MRI and
PAI (Liu et al., 2011; Duan et al., 2017; Hsu et al., 2018; Quang
et al., 2018; Ali et al., 2020). Mesoporous silica nanoparticles
loaded with cobalt protoporphyrin IX (CoPP) and 125I can track
mesenchymal stem cells (MSC) of cerebral ischemia models at
multiple time points through SPECT and PAI (Yao et al., 2020).
Studies have shown the gold-coated multifunctional
nanoparticles tracked the homing degree of bone marrow-
derived human MSC in a mouse model of glioma under MRI
and PAI (Qiao et al., 2018). Further, Tseng et al. (2010) found the
gadolinium hexanedione nanoparticles (GdH-NPs) functioned as
a contrast MRI agent for stem cell tracking. Bioluminescence
imaging tracking MSC was used to optimize the dose and route of
MSCs in mice with acute liver injury (Li et al., 2015).

In addition, imaging technology could guide nanomaterials to
import into the target area. One application example is that
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TABLE 1 | Internally responsive nanomaterials for imaging (some examples listed).

Stimulator Activation Nanomaterials composition Imaging performance Application

PH Degradation Octapod-shaped hollow porous MnO (HPMO) NPs loaded
with various cargo (Cargo@HPMO), such as camptothecin
(CPT) or Rhodamine 123 (Rh123) Wei et al. (2019)

MR and FL imaging tumor

MnO@AuNCs: porous gold nanocluster decorated MnO
nanocomposites Liu Y et al. (2018)

CT and PA imaging

Ce6(Mn)@CaCO3-PEG NPs: The CaCO3 NPs were prepared
using a gas diffusion reaction under vacuum where ammonia
bicarbonate (NH4HCO3) was used to precipitate Ca2+ ions in
an ethanol solution, resulting in CaCO3 formation. Chlorine e6
(Ce6) and MnCl2 were loaded into the NPs by dissolving them
in the ethanol solution and then PEGylated under sonication
Dong et al. (2018)

high T1 signal in MR imaging tumor

Amine Protonation PEG-GMF-PPy NPs: PEGylated-gadolinium metallofullerene-
polypyrrole Wang et al. (2018)

MR and PA imaging tumor

pH-responsive piperazine ring and perylenediimide (PPDI) NPs
Li et al. (2020)

PA and FL imaging tumor

Gd-chelated Ce6 conjugated to the ultra-pH-responsive
diblock copolymer poly (ethylene glycol)-block-poly
(diisopropanol amino ethylmethacrylate cohydroxyl
methacrylate (PDPA) complex Wang et al. (2016)

MR and FL imaging

Small-sized iron oxide nanoparticles (ESIONs) self-assembled
with two ligands containing Ce6 and imidazole Ling et al.
(2014)

MR and FL imaging tumor

Incorporating an Acid
Liable Group

DATAT-NPs: TAT peptide polymeric NPs loaded with Ce6 and
Gd3+, where 2,3-dimethylmaleic anhydride (DA) was
conjugated to the TAT via lysine residues Gao M et al. (2017)

MR and FL imaging

AuNPs-CKL-FA: gold nanoparticles (AuNPs) conjugated via a
ketal linker to a NIR fluorophore (Cy5.5) and decorated with FA
to enable active targeting of the folate receptor Tang et al.
(2019)

CT and FL imaging subcutaneous HeLa tumors

D-Au@Gd&RGD: cyclic arginineglycine-aspartic acid peptide
(cRGD), rhodamine (Rh-S) and fluorescein (Flu-S) derivatives
were decorated in gold nanoparticles Yu et al. (2020)

MR and FL imaging U87 tumor-bearing mice

UCNP@GA-FeIII: upconversion luminescence nanoparticles
(UCNPs) as the core and an iron (Fe3+)/gallic acid (GA) complex
as the shell Zhang P et al. (2019)

sustained T1-contrast
enhancement in MR imaging

tumor

Redox
Potential

GSH Dihydrolipoic acid-modified superparamagnetic iron oxide
nanoparticles (IONPs) were used as the core and conjugated
with FA and STAT3 inhibitor-functionalized CdS:Mn/ZnS
quantum dots (QDs) (MMCNP) Mitra et al. (2012)

MR and FL imaging

HSA-Ce6-Mn2+ NAs: human serum albumin nanoassemblies
cross-linked with GSH and then loaded with Ce6 via
hydrophobic interactions and later chelated with Mn2+ Hu et al.
(2016)

MR and PA imaging tumors in murine models

A probe containing a Gd3+ chelate, 19F moiety, and a disulfide-
capped amino-oxyluciferin fluorophore Zheng et al. (2016)

MR and FL imaging

Reactive Oxygen Species PBMn-52: biodegradable Prussian blue (PB)/MnO2 hybrid
nanocrystals Peng et al. (2017)

MR and PA imaging

Gold nanoparticles (AuNPs) were loaded into hybrid
polyphosphazene derived polymer nanogels formed through
ionic interactions (PPB NPs) Bouche et al. (2019)

CT and PA imaging

Enzymes Matrix Metalloproteinases IONP core–silica shell NPs that were decorated with the same
MMP substrate (GPLGVRG) (PCM-CS) Cha et al. (2011)

MR and FL imaging tumor

Tumor-targeted and MMP-2 activatable nanoprobe (TMAN):
Gd/CuS nanodisks encapsulated into micelles using DSPE-
PEG2000, and then functionalized with an αvβ3 tumor-
targeting group (cRGDSH) and a Cy5.5- and QSY21-labeled
MMP-2 cleavable peptide substrate ((QSY21)-
GGPLGVRGK(Cy5.5)-SH Shi et al. (2019)

MR and FL imaging mice bearing subcutaneous
gastric cancer tumors

ACPP dendrimer (ACPPD): gelatinase-activatable cell-
penetrating peptides (ACPP) conjugated with multiple Cy5
and/or gadolinium moieties Chen et al. (2017)

MR and FL imaging ischemic stroke

Serine Proteases ICG/DOX@Gel-CuS NMs: core–satellite NPs were made of
gelatin (Gel) NPs loaded with indocyanine green (ICG) and

FL and PA imaging real-time monitoring of drug
release

(Continued on following page)
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nanomaterials with dual characteristics of imaging and treatment
reach specific areas under the guidance of imaging technology.
Under the guidance of imaging technology, MSCs were
implanted not only to monitor bone defect and injury therapy
(Ryu et al., 2020) but also to improve the therapeutic effect of
heart stem cells (Jokerst et al., 2013). Under the guidance of
ultrasound or MRI, mesoporous silica nanoparticles carrying
drugs that promote cell survival are accurately implanted into
the area around the infarct and avoid the most severely necrotic
tissue (Kempen et al., 2015). Nanomaterials carrying miRNAs or
drugs were accurately delivered to cancer sites under the guidance
of imaging technologies such as ultrasound to achieve precisely
targeted therapy of cancers (Wang et al., 2015; Zhao et al., 2018).
Nanomaterials carrying radionuclides under the guidance of
PET/SPECT could not only show the morphological or
metabolic abnormalities in bone tissue but monitor the
response to bone metastases (Farzin et al., 2019).

3.2 The Imageable Nanomaterials Improve
the Specificity and Sensitivity of Diseases’
Diagnosis and Treatment
Nanomaterials have the characteristics such as ultrasound, optics
and magnetism, which can be used to diagnose and treat diseases.
The long blood circulation time and tissue specificity of
nanomaterials improved the specificity and sensitivity of
imaging, which in turn contributed to the early diagnosis of
diseases (Truffi et al., 2016; Xiong et al., 2019; Jin et al., 2020). And
multiple imaging techniques have been demonstrated to improve
the accuracy of tumor metastasis rate in sentinel lymph node
biopsy, such as PAI (Stoffels et al., 2015). Imageable
nanomaterials loading with drugs or generating oxygen may
enhanced the anti-cancer efficacy (Yang et al., 2019). For

example, the presence of nanomaterials reduced the
ultrasound intensity of the therapeutic effect and specifically
enhanced the imaging ability of the lesion area (Sviridov et al.,
2019). Magnetic nanomaterials with MR imaging capabilities
could enhance the efficacy of liver chemoembolization
(Pouponneau et al., 2014). Studies have shown that magnetic
nanomaterials were used for hyperthermia under the stimulation
of an external magnetic field (Kazantseva et al., 2021). At the same
time, the specific modification of nanomaterials not only
improved the specificity and effect of treatment but also
reduced the damage to surrounding tissues (Patra et al., 2018).
In addition, magnetic nanomaterials also effectively passed
through the barriers in the brain and eyes, which provided an
application basis for the diagnosis and treatment of brain and
ophthalmic diseases (Kumar and Mohammad, 2011; Qiao et al.,
2018; Yao et al., 2020; Gao et al., 2021; Liu et al., 2021) (Figure 2).
Nanosized drug-eluting beads combined with transcatheter
arterial chemoembolization could improve the therapeutic
effect of liver cancer, which was evaluated by ultrasound
(Zhao et al., 2020). The nanoparticle-coupled microbubble
complex had targeting and ultrasound imaging functions. It
could target liver cancer lesions under ultrasound guidance
and simultaneously released chemotherapeutic drugs, which
effectively killed tumor cells (Kim et al., 2021).

In addition, the application of multimodal imaging also enables
dynamic monitoring of diseases’ diagnosis and treatment.
Nanomaterials carrying radionuclides not only had the
characteristics of SPECT/PET imaging, diagnosis and treatment,
but the other groups such as chemotherapy drugs carried by the
imageable nanomaterials also had the dual characteristics of CT/
MR/PA/OI/ultrasound imaging and treatment (Ge et al., 2020). The
application of multimodal imaging combined the advantages of a
single imagingmethod andmade up for the shortcomings of a single

TABLE 1 | (Continued) Internally responsive nanomaterials for imaging (some examples listed).

Stimulator Activation Nanomaterials composition Imaging performance Application

doxorubicin (DOX) that were then coated with PEGylated
copper sulfide (CuS) NPs Li X et al. (2019)
Polydopamine-coated gold nanostars (GNS@PDA)
conjugated with Cy7-labeled FAPcleavable peptide (Cy7-
KTSGPNQC) and chelated with Fe3+ Han et al. (2019)

MR, CT and PA imaging tumor

TAP-SiO2@AuNPs: thrombin-activatable fluorescent peptide
(TAP) incorporated silica-coated gold nanoparticles Kwon
et al. (2018)

FL and CT imaging discriminating the thrombotic
lesion

Caspase 1-RGD: caspase-3 responsive probe Wang Y et al. (2019) PA and FL imaging mice with U87MG
subcutaneous tumors

Caspase probe (CP1) combined a Gd3+-chelate, a
tetraphenylethylene unit for aggregation-induced emission
luminogen (AIEgen), and a caspase-3/7 cleavable substrate
(DEVD peptide) Li H et al. (2019)

FL and MR imaging

Other Enzymes Probe was constructed by a prequenched fluorophore
(merocyanine) capped with an alkaline phosphatase (ALP)
cleavable phosphate group with a Gd-DOTA chelate and a
hydrophobic dipeptide Phe-Phe linker for selfassembly (P-
CyFF-Gd) Han et al. (2019)

FL and MR imaging Surgical resection of tumors

PFOB@IR825-HA-Cy5.5: Cy5.5, IR825 and
perfluorooctylbromide (PFOB) were conjugated with
Hyaluronic acid (HA) Liang et al. (2017)

PA and CT imaging HT-29 (CD 44 positive) tumor
xenograft model
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imaging method, such as the off-target effect (Hasan et al., 2018).
These nanomaterials not only provided the anatomical structure
information and pathophysiological features of the disease areas but
also improved the sensitivity and resolution of imaging (Wu and
Shu, 2018). The 99mTc-labeled ferroferric oxide nanoparticles had

dual imaging characteristics of PET/SPECT and MRI (Felber and
Alberto, 2015). In addition, the peptides that specifically recognized
and targeted tumors carried by the nanoparticles could not only
prevent them from being taken up in the blood circulation but also
the disulfide bond triggered by GSH breaking after arriving at the

FIGURE 2 | Nanomaterials could effectively pass through barriers in vivo and achieve the targeting of lesional cells, which were visualized by the imaging
techniques.

FIGURE 3 | Biomedical applications of imageable nanomaterials in cancers. Imageable nanomaterials were applied in imaging-guided surgery (IGS) (A) and
theranostics (B) of cancers.
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tumor site, which in turn exposed the peptides that could bind to the
tumor cell-specific receptor αvβ3 (Trajkovic-Arsic et al., 2014).
Further, the nanoparticles have the characteristic of aggregation
in the tumor microenvironment (Gao Z. et al., 2017). Since optical
imaging could directly monitor the molecular level to track the
dynamic process of metabolism in vivo, it has been widely used in
various biological studies. Therefore, giving nanomaterials to optical
and other imaging properties realized the dynamic monitoring of
molecules and overcame the shortcomings of optical imaging that
are limited by the depth of the tissue (Wang Z. a. et al., 2021; Ding
et al., 2021; Luo et al., 2021; Xu et al., 2021). Coating or mounting
near-infrared fluorescent pigments, targeting markers, and
radioactive elements on nanomaterials could achieve PET/near-
infrared dual-modal imaging of tumor-associated macrophages in
mouse (Kwon et al., 2021). Zhang et al. achieved targeting and
sustained drug release in vivo using mesoporous silicon
nanoparticles with ultrasound and optical imaging (Qi et al., 2019).

4 THE BIOMEDICAL APPLICATIONS OF
IMAGEABLE NANOMATERIALS

With the advancement of nanotechnology, nanomaterials have
been more andmore modified and improved, such as multimodal
imaging, targeted drug delivery, etc., and have been applied to
basic research and preclinical research of human diseases.
Currently, research on imageable nanomaterials has focused
on cancers and/or MSC. Nanomaterials are modified with
targeted molecules to enhance the efficacy of targeted drugs
and to track changes in biological activities such as
metabolism at the target site; drugs are encapsulated in
nanomaterials to reduce the uptake or clearance at non-target
sites; the sustained release properties of nanomaterials can
maintain the blood concentration of the target site and
enhance the efficacy of short half-life drugs. The
characteristics of multimodal imaging allowed the off-target
effects of nanomaterials to be monitored, and overcame the
shortcomings of a single imaging method, making the
experimental results more realistic and credible. We
summarized the applications of the imageable nanomaterials
in cancers and non-cancer diseases in the following.

4.1 Cancers
Currently, the applications of imageable nanomaterials are
mainly focused on the diagnosis and treatment of cancers
(Wang et al., 2019a; Phuong et al., 2020) (Figure 3).
Nanomaterials with imaging properties tend to have high
sensitivity, which has important potential in detecting the
minimal lesions of early-stage cancer. Radiolabeled
nanomaterials showed great advantages in the early
diagnosis of cancers due to their deep penetration and high
sensitivity (Ge et al., 2020). Nanomaterials with fluorescent
imaging properties were widely used in molecular labeling,
which displayed molecular dynamics and tracked specific
biomarkers, indicating a great potential in the early
diagnosis of cancers (Jin et al., 2020). In addition, the
surface modification properties such as high-temperature,

acid and alkali resistance of nanomaterials made an early
diagnosis of cancers in some special parts such as the
stomach possible (Truffi et al., 2016). The zwitterion-
modified nanomaterials could form water layers on their
surfaces to protect the nanomaterials from contamination
by other non-specific proteins and prolong the blood
circulation time of the nanomaterials (Li G. et al., 2021).
The modification of specific tumor-related ligands could not
only improve the target of tumors but also enhance its ability
to aggregate and image in tumor sites, which contributed to the
early diagnosis of tumors (Xiong et al., 2019). Nanomaterials-
labeled MSCs with imaging properties aided in the diagnosis of
lung metastases (Loebinger et al., 2009), osteosarcoma (Duchi
et al., 2013) and brain cancers (Kim et al., 2016). The
development and application of multimodal imaging
nanomaterials had further increased the sensitivity and
specificity of early diagnosis of cancer (Malik et al., 2020).

The advantage of imageable nanomaterials is that imaging
can not only provide more accurate information on tumor sites
but also provide information on drugs and their efficacy. Using
the photothermal conversion properties of nanomaterials,
photothermal ablation of tumor cells could be performed to
enhance the therapeutic effect of tumors. Nanomaterials with
photothermal conversion properties such as Au could monitor
the curative effect in real-time with the help of imaging
technology (Chen et al., 2014; Xiao et al., 2014).
Nanomaterials with photosensitizer and imaging properties
generated ROS under the action of optical to kill tumor cells.
This therapy was called photodynamic therapy, and the
efficacy was monitored in real-time. At the same time, the
nanomaterials were specially modified to trigger the
production of endogenous oxygen, which enhanced the
effect of photodynamic therapy (Zhu et al., 2018; Liang
et al., 2019). Drug-loaded nanomaterials with imaging
capabilities could not only monitor the therapeutic effect of
tumors, but also the provide targeting, pharmacokinetics, and
sustained-release properties of drug-loaded nanomaterials
(Truffi et al., 2016; Zhang et al., 2020; Wang and Niu,
2021). Zwitterion-modified nanomaterials promoted drug
aggregation and targeting in tumor sites (Li G. et al., 2021).
Radiolabeling nanomaterials were imaged with the help of
SPECT/PET, which provided information on the treatment of
tumors (Ge et al., 2020). The application of multimodal
imaging nanomaterials greatly reduced off-target effects,
combined the advantages of multiple imaging modalities
and reduced the limitations of a single imaging modality
(Liao et al., 2014; Gulzar et al., 2021). The current focus is
on how to successfully translate the results of basic research
into clinical applications. And it may take a long time to
explore.

4.2 Other Diseases
Most diseases in the body except cancers involve the changes
of ROS and its related pathways. Therefore, ROS-activated
nanomaterials show great potential in the diagnosis and
treatment of these diseases, such as chronic diseases, acute
injuries and infectious diseases. Researches showed that
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nanomaterials labeled MSC with imaging properties showed
great potential in repairing complete spinal cord injury (Guo
et al., 2019), joint defects (Kaggie et al., 2020) and acute liver
injury (Li et al., 2015), enhancing the phagocytic activity of
macrophages in the acute respiratory distress syndrome
(Jackson et al., 2016) and skin regeneration (Xiao et al.,
2020), improving the cardiac function after myocardial
infarction (Gong et al., 2021) and contributing to the
diagnosis and/or treatment of neurodegenerative diseases
including Alzheimer’s disease, Parkinson’s disease, and
Huntington’s disease (Perets et al., 2019), neuropsychiatric
disorders (Betzer et al., 2014), cerebrovascular disease
(Kempen et al., 2015; Yao et al., 2020)， silica-induced
pulmonary fibrosis (Huang et al., 2020), osteoporosis (Li
M. et al., 2021), acute liver failure (Cai et al., 2020), liver
fibrosis (Lai et al., 2016), traumatic brain injury (Mishra et al.,
2020). In addition, current research has confirmed the use of
iron oxide or gold nanoparticles, polymeric nanoparticles,
liposomes, and micelles for atherosclerosis imaging (Chen
J. et al., 2021). Furthermore, macrophage-specific molecularly
upconverted nanoparticles can image atherosclerotic plaques
under dual optics/MRI (Qiao et al., 2017). Nanomaterials
with MR imaging properties have demonstrated promising
diagnostic performance in neurodegenerative diseases (Cui
et al., 2021). Nanomaterials based on the polydopamine and
imaging properties showed great therapeutic potential in
inflammation, diabetes, rheumatoid arthritis and
neurodegenerative diseases (Li H. et al., 2021;
Hosseinikhah et al., 2021). And there also had research on
imageable nanomaterials in inflammatory and infectious
diseases. For example, gold nanomaterials have shown
great application potential in macrophage-mediated
inflammation imaging and therapy (Chen W. et al., 2021).
And MRI-guided sonodynamic therapy has important
implications for drug-resistant deep bacterial infections
(Wang D. et al., 2021). More evidence will follow on the
potential of imageable nanomaterials in non-tumor diseases.

5 CONCLUSION AND OUTLOOK

The progress of nanotechnology has made nanomaterials
experience the progress from simple inorganic nanomaterials
to the current organic and hybrid nanomaterials and the progress
from single modification to the coexistence of multiple
modifications. These advances have made significant

contributions to the diagnosis, individualized treatment of
diseases and the enhancement of efficacy, while reducing the
harm caused by interventional methods, enabling real-time
monitoring of diseases’ diagnosis and treatment in vitro.
However, some challenges remain for the further development
of imageable nanomaterials. The first is the stability of the
modified group. The imaging groups that target and sensory
stimuli are covalently or non-covalently linked to nanomaterials,
theymay break due to physical stress or the physical and chemical
environment at non-target sites, resulting in false positives, the
imaging at this time does not provide information about the
lesion site. The second is the stability of nanomaterials to sense
stimuli. Nanomaterials are often imaged as they are degraded.
However, the degradation of nanomaterials is usually completed
in an instant, which requires high capture conditions for imaging.
Therefore, we need to design more accurate stimulation
sensitivity or use porous surface coatings to increase the stable
imaging performance of nanomaterials. The third is that the
imageable nanomaterials mostly contain heavy metals. When the
nanomaterials are degraded, the heavy metals are taken up in the
body and not smoothly removed from the body, which is a
problem that needs to be solved at present. Although not all
degradation products are harmful. For example, iron ions
generated by the degradation of iron oxide can be used to
replenish intracellular iron, which is very beneficial for iron
deficiency diseases. The last is that most of the research on
imageable nanomaterials remains in preclinical research, and
there is still a long way to go before its clinical translation.
Therefore, the application of imageable nanomaterials in
diseases needs further exploration. With the advancement of
nanotechnology and biotechnology, we believe that the clinical
application of imageable nanomaterials will become more and
more extensive.
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