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Ignoring correlated activity causes a failure
of retinal population codes
Kiersten Ruda 1, Joel Zylberberg2 & Greg D. Field 1✉

From starlight to sunlight, adaptation alters retinal output, changing both the signal and noise

among populations of retinal ganglion cells (RGCs). Here we determine how these light level-

dependent changes impact decoding of retinal output, testing the importance of accounting

for RGC noise correlations to optimally read out retinal activity. We find that at moonlight

conditions, correlated noise is greater and assuming independent noise severely diminishes

decoding performance. In fact, assuming independence among a local population of RGCs

produces worse decoding than using a single RGC, demonstrating a failure of population

codes when correlated noise is substantial and ignored. We generalize these results with a

simple model to determine what conditions dictate this failure of population processing. This

work elucidates the circumstances in which accounting for noise correlations is necessary to

take advantage of population-level codes and shows that sensory adaptation can strongly

impact decoding requirements on downstream brain areas.
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Population activity is the currency of sensory systems
because individual neurons have limited signal capacity and
variable responses to repeated presentations of the same

stimuli. This variability is often shared across neurons (termed
noise correlations), adding a rich complexity to the issue of
information processing in neural populations1. There is a large
body of work showing that these noise correlations can enhance
or degrade signaling of sensory information, depending on the
structure of noise correlations and their relationship to stimulus-
evoked signals2–7. A crucial question is how downstream regions
can best integrate signals given the noise correlations among their
inputs. Perhaps ignoring noise correlations has no adverse effect
on computations. On the other hand, downstream regions may
need to take correlated noise into account to appropriately pro-
cess their inputs. Answering this question is critical for under-
standing how the activity of sensory populations represents
stimuli as well as generating informed hypotheses about how
downstream circuits process these signals.

In the visual system, populations of retinal ganglion cells
(RGCs)—the brain’s sole source of visual information—exhibit
noise correlations. Previous work has shown that failing to
account for these correlations decreases decoded information by
0–20%8–10. However, these studies were performed under day-
light conditions, just part of the retina’s broad operating range
that spans 10–12 log units of light intensity. Importantly, the
structure of correlated noise changes over light intensities: cor-
related activity is generally stronger at lower light levels, exhi-
biting higher peak correlations that extend over longer spatial and
temporal scales11,12. This shift in correlated noise across popu-
lations of RGCs raises the intriguing possibility that light adap-
tation changes the impact of these correlations on decoding
retinal output.

To determine the impact of light adaptation and associated
changes in correlated activity, we recorded from populations of
rat RGCs with a large-scale multielectrode array (MEA) over
conditions spanning rod-mediated (scotopic) to cone-mediated
(photopic) light levels. Using a generalized linear model (GLM) to
decode retinal activity, we show that at photopic light levels,
accounting for correlations among RGCs improves decoding by
~20% compared to assuming independent noise among RGCs,
similar to previous results in other mammals8–10. However, under
scotopic conditions, accounting for correlations showed a sig-
nificantly larger impact on decoding performance with a ~100%
improvement in decoded information. Strikingly, assuming
independent noise across a local population of RGCs produced
poorer decoding performance than decoding with a single RGC.
In this way, we demonstrate a failure in decoding neural popu-
lations when noise correlations are substantial and ignored.
Importantly, these results depended on the RGC type that was
analyzed, with decoding from OFF-brisk transient RGCs exhi-
biting greater sensitivity to correlations than decoding from OFF-
brisk sustained RGCs. To generalize these results, we created a
model of tuned, correlated neurons to identify conditions under
which assuming independence causes decoding from the popu-
lation to perform worse than decoding from a single cell. This
model elucidates the circumstances where accounting for corre-
lations not only improves visual processing, but is necessary to
take advantage of population codes. More generally, this work
demonstrates the large impact of context-dependent correlations
in sensory processing and raises important questions about how
downstream brain areas process retinal signals across light levels.

Results
Noise correlations are stronger at scotopic light levels. To
examine the consequences of pairwise noise correlations on

retinal population codes, we recorded RGC responses across a
range of light intensities from segments of rat retina on a large-
scale MEA13,14. The retina was stimulated with spatiotemporal
checkerboard noise to estimate the receptive fields (RFs), contrast
response functions, and autocorrelation functions of RGCs over
the MEA. RGCs were functionally classified according to their
light response properties and spiking dynamics14,15. The results
of the classification were validated by observing that each func-
tionally defined RGC type exhibited a mosaic-like organization of
RFs that approximately tiled space (Fig. 1a)14,16,17. We initially
focus our analysis of correlated activity onto a single-cell type:
OFF-brisk transient (-bt) RGCs (Fig. 1a). These cells are likely
homologous to OFF parasol cells and other transient alpha-like
RGCs in other mammals: they exhibit center-surround RFs,
short-latency, transient light responses, and high-contrast
sensitivity14,18–20. Focusing first on this RGC type facilitated
comparing our results to previous work in the primate and rodent
retina8–10.

Understanding the role of light adaptation in retinal coding
required tracking the same population of RGCs across rod-
mediated (scotopic) and cone-mediated (photopic) conditions.
This tracking was achieved by utilizing the electrical image (EI) of
each RGC. The EI is computed from the spike-triggered electrical
activity of an identified RGC across the MEA21. EIs serve as
electrical footprints of each cell and are stable, despite changes in
responses across light levels22 (Fig. 1b). This tracking procedure
was further validated by observing a nearly identical mosaic-like
organization of RFs across the scotopic (1.0 Rh* rod−1 s−1) and
photopic (10,000 Rh* rod−1 s−1) light levels examined in these
experiments (see “Methods”).

The pairwise noise correlations among OFF-bt RGCs were
greater under the scotopic condition (Fig. 1e, f). We computed all
cross-correlograms between OFF-bt RGCs responding to the
white noise stimulus and estimated noise correlations by
subtracting stimulus-induced correlations (see “Methods”). The
area under the peak and width of the noise correlations between
primary neighbors increased at the lower light level (Fig. 1e and
Table 1). The spatial scale of correlations over the population of
OFF-bt RGCs was also larger in the scotopic condition (Fig. 1f
and Table 1). To verify that these noise correlations are not
critically influenced by the white noise stimulus, we also
examined noise correlations during spontaneous activity and in
response to a natural movie (Supplementary Fig. 1). Consistent
with previous studies12, those measurements revealed similar
magnitude noise correlations across stimulus conditions, as well
as similar changes in correlation structure across light levels.
Thus, the structure and magnitude of the noise correlations
depended weakly on the choice of stimulus, but depended
strongly on the light level at which the stimulus was presented for
OFF-bt RGCs. Cumulatively, these observations indicate higher
magnitude correlations that have broader temporal and spatial
scales across the population of OFF-bt RGCs at the scotopic light
level, in agreement with the previous work11,12,23. In the
subsequent sections, we utilize a model-based decoding approach
to determine the impact these changes in noise correlation
structure have on decoding visual stimuli from populations of
OFF-bt RGCs.

RGC responses are fit well by the GLM across light levels. The
model-based decoding approach we used involves first fitting an
encoding model to capture the relationship between visual stimuli
and RGC spiking. This model will be inverted to estimate stimuli
given RGC spike trains. Importantly, we are not claiming that this
exact model inversion procedure is used in brain areas down-
stream of the RGCs. Since the exact computations downstream of
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the retina are unknown, we chose an optimal decoding approach.
This procedure yields a way to estimate how well an ideal
downstream system could estimate the stimulus, given the RGC
spike trains using different assumptions about correlations
between cells1,9.

To quantitatively describe RGC spiking in response to a
checkerboard stimulus, we use the GLM, a phenomenological
model for retinal encoding that can also be used for Bayesian
decoding9. The GLM transforms visual stimuli to spike times by

first filtering the stimulus through the spatiotemporal RF and
applying a spike history filter to account for refractoriness and
spike bursts (Fig. 2a). This signal is then passed through a static
nonlinearity to yield a predicted firing rate, and spike times are
generated with a Poisson process. We first fit OFF-bt RGCs with
an independent version of the GLM, in which each cell is fit
individually and the spiking of one RGC is independent of the
other RGCs (except for stimulus-induced correlations). The same
cells were fit at each light condition separately to optimize model
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Fig. 1 Noise correlation structure and receptive fields of retinal ganglion cells (RGCs) depend on the light level. a Receptive field (RF) mosaic of OFF-
brisk-transient (OFF-bt) RGCs. Each ellipse is the 1 s.d. Gaussian fit to an RGC’s spatial RF. Scale bar is 200 μm. b Top row: electrical image (EI) of an
example cell at two light levels, which enables tracking RGCs across light conditions. Middle row: spatial RFs at the two light levels. Bottom row: temporal
RF. Both spatial and temporal integration increase in the scotopic condition. c Spike raster of two neighboring RGCs at photopic (top) and scotopic
(bottom) light levels responding to white noise stimuli. d Peri-stimulus time histograms (PSTHs) in response to the white noise stimulus at each light level
for the three RGCs highlighted in a. e Example noise cross-correlation functions (CCFs) across light levels of two primary neighbor cells i and ii in a (left)
and two secondary neighbor cells i and iii (right). f Strength of noise correlations over pairwise distances for the OFF-bt RGC population. Each point shows
the positive area under the CCF for a given pair of cells. Light adaptation causes expanded correlated noise in time and space for the scotopic condition
(496 RGC pairs from 1 retina; see Supplementary Fig. 1 for correlated spiking from spontaneous firing and a natural movie stimulus).
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performance at each light level. The independent GLM predicted
held-out responses well at both light levels, as measured by the
explained variance in firing rates (photopic: 0.59 ± 0.01, mean ± s.
e.m., 100 cells from four retinas, scotopic: 0.58 ± 0.01, 69 cells
from three retinas; Fig. 2c, d). Furthermore, the GLM captured
changes known to occur in light adaptation, such as larger spatial
RFs and slower temporal integration24,25 (Fig. 1b and Supple-
mentary Fig. 2).

To account for noise correlations between RGCs and
determine their impact on decoding, we separately fit a coupled
version of the GLM. The coupled GLM includes pairwise
coupling filters so that the activity of one RGC can influence
the responses of other RGCs, allowing the coupled GLM to
capture noise correlations in RGC activity9. Because correlations
decrease rapidly with the distance between pairs of cells (Fig. 1f),
we used local groups of RGCs in the coupled GLM, choosing each
group based on a central RGC and all of its recorded neighbors
(Fig. 2b). For single-cell PSTHs, the coupled GLM predictions
and performances were very similar to those of the independent
GLM at both light levels (Supplementary Fig. 2). The coupled
model predicted noise correlations well, while the independent
model did not (Fig. 2e, f), consistent with the previous results9.
This indicates that the independent GLM captures signal
correlations across the population of RGCs, but the coupled
GLM is necessary for capturing the signal and noise correlations.
Having established the GLM as an accurate description of RGC
activity under scotopic and photopic conditions, we next use the
independent and coupled versions of the GLM to probe the
impact of noise correlations on decoding retinal output over light
levels.

Ignoring correlated noise severely impacts scotopic decoding.
We estimated white noise stimuli from recorded responses to
elucidate the impact of noise correlations on decoding OFF-bt
RGC output. To perform model-based decoding of responses, we
inverted the independent and coupled GLMs fit to recorded OFF-
bt RGCs (see Fig. 3). We compared the decoding performance
between these two models to determine the extent to which
ignoring noise correlations between RGCs diminished decoding
performance. We performed Bayesian decoding, which optimally
extracts stimulus information available in the RGC response
structure that is captured by the GLM9. Given a set of spike times
from a local group of RGCs, we decoded the intensity of a single
stimulus pixel over six sequential frames. For this analysis, the
stimulus pixels and RGCs were chosen such that the pixel was

predominantly covered by the center-most RGC of the group of
cells (see “Methods”). We report decoding performance with a
signal-to-noise ratio (SNR), which quantifies the mutual infor-
mation rate in bits s−1 that the decoded estimate provides about
the actual stimulus26.

At the photopic light level, the coupled GLM is a more accurate
decoder, providing 22 ± 3% (mean ± s.e.m.) more information
than the independent GLM over all groups of OFF-bt RGCs
(Fig. 4a, b; 55 groups of RGCs from four retinas). However, at the
scotopic light level, the importance of correlations for accurate
decoding substantially increased for OFF-bt RGCs. Accounting
for noise correlations with the coupled GLM provided 105 ± 18%
more information than the independent GLM (Fig. 4b; 37 groups
of RGCs from three retinas, the difference over light levels P≪
0.001). Furthermore, the improvement in decoding for a given
group of cells correlated positively with the strength of noise
correlations in that group, indicating that accounting for
correlated activity enhances decoding most when correlated
noise is largest (Fig. 4c).

Population failure: single RGCs can outperform populations.
To better understand the significance of the information loss due
to ignoring noise correlations, we compared the decoding per-
formance of the independent GLM to that of the best-performing
single-cell model. The single-cell model was simply the individual
GLM for the RGC centered over the decoded pixel. This com-
parison allowed us to relate the cost of ignoring noise correlations
among a local population of RGCs to the benefit of decoding
using responses of more than one RGC. Note that here the
independent GLM eliminates noise correlations across the
population of RGCs, but signal correlations are preserved. Sur-
prisingly, in many of the tested groups, the single-cell GLM
outperformed the independent population GLM (Fig. 4a). We call
this effect population failure because the GLM fit to a population
of RGCs decodes less information than from a single RGC when
the population is assumed to be noise independent.

Population failure occurred at both light levels, but more
frequently in the scotopic condition (Fig. 4d). At that light level,
the majority of groups of RGCs exhibit this population failure
mode (83 ± 6%, the mean frequency of population failure ± s.e.m.,
37 groups of RGCs, three retinas), and among those groups the
single-cell GLM provided 75 ± 23% more information than the
independent GLM (mean ± s.e.m, Fig. 4e). However, in the
photopic condition, about half of the groups (50 ± 6%, mean
frequency of population failure ± s.e.m., 55 groups of RGCs)

Table 1 Measurements of correlation structure across light levels for the OFF-bt and OFF-bs RGCs.

CCF area CCF width Correlation spatial scale (µm)

OFF-bt photopic 0.0005 ± 0.00002 0.04 ± 0.0006 217 ± 6
OFF-bt scotopic 0.0012 ± 0.00005 0.047 ± 0.001 290 ± 6
OFF-bt change over light levels 0.0008 ± 0.00005 0.008 ± 0.001 76 ± 16
OFF-bs photopic 0.0001 ± 0.00001 0.033 ± 0.001 170 ± 12
OFF-bs scotopic 0.0003 ± 0.00001 0.035 ± 0.001 195 ± 8
OFF-bs change over light levels 0.0001 ± 0.00001 0.001 ± 0.002 39 ± 25

P values P values Fraction of retinas
OFF-bt: photopic vs. scotopic P≪ 0.001 P≪ 0.001 3/3
OFF-bs photopic vs. scotopic P≪ 0.001 P= 0.59 2/3
Photopic: OFF-bt vs. OFF-bs P≪ 0.001 P≪ 0.001 3/4
Scotopic: OFF-bt vs. OFF-bs P≪ 0.001 P≪ 0.001 3/3
Light-level change: OFF-bt vs. OFF-bs P≪ 0.001 P < 0.005 1/3

Values are mean ± s.e.m. All data comes from four retinas for the photopic condition and three retinas for the scotopic condition (three retinas in common between conditions). Sample sizes, in the
number of primary pairs, are OFF-bt photopic, 171, OFF-bt scotopic, 121, OFF-bt change over light levels, 121, OFF-bs photopic, 124, OFF-bs scotopic, 92, OFF-bs change over light levels, 92. Correlation
spatial scales were found by fitting an exponential to a cell type and light level separately for each retina. The fraction of retinas column reports in how many retinas the spatial scales being compared did
not overlap at the 95% confidence intervals of their respective fits.
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showed moderate population failure (19 ± 4% more information
than the independent GLM, mean ± s.e.m). Notably, the single-
cell GLM uses the exact same parameters as its corresponding cell
in the independent GLM, so our findings are not a consequence
of model fitting issues. Rather, this result demonstrates that
decoding under the assumption that a population of RGCs is
independent can be so suboptimal that it extracts less information
than a single cell. This population failure under the assumption of
independence is a striking example of the importance of
accurately accounting for correlations in processing population
activity, particularly in scotopic conditions.

We next performed a series of controls to assess how particular
details of our decoding analysis might influence these results. In
the analyses above, we chose local groups of cells based on a
central RGC with its nearest neighbors. Thus, the RFs over the
population of RGCs had some overlap with the decoded stimulus
pixel so that each cell provided nonzero decoding information
about that pixel intensity (e.g., Figure 4a; note RF outlines are

plotted at a 1 s.d. contour of a Gaussian fit, so the RFs extend well
beyond the RF outline). To determine how this choice of
population impacts decoding, we also decoded using larger
groups of cell clusters, including secondary and tertiary
neighbors. Including RGCs with RFs far away from the decoded
stimulus pixel did not significantly alter the performances of the
coupled or independent GLMs because those cells contribute
minimal information to decoding and do not exhibit strong
correlations with RGCs close to the decoded stimulus pixel, as
expected (Supplementary Fig. 3). Thus, our selection of local
groups of RGCs is not a crucial factor in the role of correlations
for decoding.

We further sought to ascertain whether population failure
generalizes beyond temporal decoding by instead decoding spatial
patterns of stimulus pixels for one movie frame. Under this
decoding task, the coupled GLM continues to perform substan-
tially better than the independent GLM at the scotopic light level
(52 ± 16%, mean ± s.d. over bootstraps; Supplementary Fig. 4). In
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addition, the independent GLM decodes less information than
smaller groups of coupled RGCs, exhibiting a form of population
failure because 18 cells in the independent GLM perform worse
than 7 cells in a coupled GLM (Supplementary Fig. 4G, H). These
results demonstrate that the cost of ignoring correlations is a
general feature of spatial and temporal decoding from OFF-
bt RGCs.

Finally, to verify that changes in correlation structure causally
affect the difference in decoding performance between coupled
and independent GLMs, we simulated RGC-population
responses with the GLM and then used the GLM to decode
these simulated responses. As we observed when decoding
measured responses at the scotopic light level, we hypothesized
that stronger coupling among neurons would lead to a higher
percent improvement in decoding SNR when accounting for
noise correlations versus assuming independence. Indeed, a
larger correlation strength between RGCs causes the coupled
decoder to perform much better than the independent decoder
(Supplementary Fig. 5). This simulation emphasizes how the
amount of correlated noise impacts decoding performance under
the independence assumption.

The cost of ignoring correlations depends on RGC type. We
next investigated the extent to which the population failure
phenomenon occurs in a distinct RGC type, the OFF-brisk sus-
tained (-bs) RGCs. These cells likely correspond to RGCs called
OFF delta or OFF sustained alpha cells in other studies14,19,20.
The correlation structure across the OFF-bs RGC population
shows that the magnitude, timescale, and spatial scale of corre-
lations is smaller than in OFF-bt RGCs (Fig. 5a and Table 1). In
addition, the correlations among OFF-bs RGCs do not change
with light adaptation as much as in OFF-bt RGCs (Table 1). To
determine the role of accounting for correlations in decoding
OFF-bs RGC activity, we next compared independent and cou-
pled GLM decoders fit to groups of OFF-bs RGCs (Fig. 5).
Accounting for correlations only improved decoded SNR by 2.9
± 0.7% (mean ± s.e.m.) in the photopic condition and 4.4 ± 0.8%
in the scotopic condition (Fig. 5c; photopic: 37 groups of RGCs
from four retinas, scotopic: 20 groups of RGCS from three retinas,
the difference over light levels P= 0.19). While some single-cell
GLMs decode better than the independent GLM, the frequency
and amount of this population failure under the independence

assumption were much smaller than in OFF-bt RGCs (Fig. 5e, f;
photopic: frequency of population failure= 19 ± 5%, mean ± s.e.m.,
% improvement when there is population failure= 1.9 ± 1%, sco-
topic: frequency of population failure= 28 ± 8%, % improvement
when there is population failure= 0.7 ± 0.2%). These results
demonstrate that the role of noise correlations in decoding RGC
activity depends on both adaptation state and cell type.

A simple geometric model reproduces population failure.
Assuming noise independence among OFF-bt RGCs frequently
caused population failure, particularly under the scotopic condi-
tion (Fig. 4d, right). To better understand this potentially coun-
terintuitive result, we utilized a previously developed geometric
visualization of noise correlations and decoding performance1

(Fig. 6). The goal of this analysis is to determine if population
failure is possible in a simple, toy model, and to develop some
intuition for when and why it happens. We analyze a larger and
more realistic model of our retinal population below (see Fig. 7).
For this first analysis, we created a simplified model of two
neurons responding to two different stimuli. The neurons
respond to those stimuli with different mean firing rates, and
their responses on any given trial are given by those mean
responses plus Gaussian noise with variance equal to mean (i.e.,
Poisson variability). This noise was correlated between the two
cells, and we varied the degree of correlation in our analysis.
Given these neuronal responses, we used the d-prime2 metric to
quantify how well the two neurons’ responses could discriminate
between the two stimuli27.

We first considered the case where both signal and noise
correlations are positive, which is the most common occurrence
when considering nearby RGCs of the same type. In Fig. 6a, the two
model cells exhibit strong noise correlations, causing their joint
response distributions to have an elliptical shape (Fig. 6a left, green
and blue solid ellipses). The optimal decoder (red line) accurately
discriminates the two stimuli (Fig. 6a right, red bar). However, if
the noise is assumed to be independent between the two cells
(Fig. 6a left, green and blue dashed circles), the resulting decoder is
nearly orthogonal to the optimal decoder (compare black and red
lines). In this case, the independent noise assumption causes a large
decrease in decoding performance (Fig. 6a right, gray bar). For
comparison, we discriminated the two stimuli using just the
responses of cell 1 (shown in Fig. 6e). In this example with strong
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noise correlations, the single cell outperforms the two-cell decoder
that assumes independence among the cells (Fig. 6a right, blue bar).
Thus, the phenomenon of population failure can be recapitulated in
a simple example consisting of two cells and linear discrimination
of two stimuli.

In Fig. 6b, we examine this two-cell model with weaker noise
correlations. In that case, the decoder under the independence
assumption was very similar to the optimal decoder (Fig. 6b, left,
black and red lines). Consequently, assuming independence

causes a very small decrease in decoding performance, and the
independent decoder outperforms the single-cell decoder (Fig. 6b,
right, gray and blue bars).

Next, we repeated our analysis over a wide range of possible
signal and noise correlation values, revealing a number of states
in this simple model that exhibit population failure (Fig. 6c, d,
f–h). Specifically, the system produces population failure when
signal and noise correlations have the same sign (termed the sign
rule, popularized by Averbeck et al.1), and the noise correlations

a

b c

d e

S
N

R
 (

bi
ts

/s
) 18

%
 im

pr
ov

em
en

t i
n 

de
co

de
d 

S
N

R

0

100

200

300

400

500

600

Sum noise correlation peaks 

Coupled vs. independent GLM

Single cell vs. independent GLM

N
or

m
al

iz
ed

 n
um

be
r 

of
 g

ro
up

s
w

ith
 p

op
ul

at
io

n 
fa

ilu
re

0 50 100

0

12

0
2

10

0

16

0

8

S
N

R
 (

bi
ts

/s
)

S
N

R
 (

bi
ts

/s
)

S
N

R
 (

bi
ts

/s
)

Single cell

Independent

Coupled

0

200

400

600

800

%
 im

pr
ov

em
en

t i
n 

de
co

de
d 

S
N

R
0 0.4 0.6 0.8

1

0.8

0.6

0.4

0.2

0

Frequency of population failure (%)
0 50 100

Sum noise correlation peaks 

600

400

200

0

%
 im

pr
ov

em
en

t i
n 

de
co

de
d 

S
N

R

8

4

8

6

4
6

4

12

0.2

Population
failure

0 0.4 0.6 0.80.2

# 
of

 b
oo

ts
tr

ap
s

ΔSNR
0-3 3 6

Single cell - independent

1 Group: 76%

ΔSNR

1 Group: 100%

0-3 3 6

Single cell

Independent

Coupled

Fig. 4 Assuming noise independence yields poor decoding performance under scotopic light levels and can perform worse than decoding individual
retinal ganglion cells (RGC) responses. a Decoding examples for two groups of OFF-bt RGCs. In these examples, the coupled and single-cell GLMs
decode better than the independent GLM at scotopic light levels: see dashed lines in bar plots. Error bars (s.d.) are from bootstrapping decoded signal-to-
noise ratio (SNR). b Average percent improvement in decoded SNR at each light level when using the coupled GLM relative to the independent GLM. Error
bars are s.e.m. c Percent improvement in decoding relates positively to the amount of noise correlation in the groups of RGCs (R2= 0.6 for a single-term
exponential). Noise correlation for each group of RGCs is quantified by accumulating the peaks of cross-correlation functions (CCFs) between the centered
RGC and its neighboring cells. Error bars are s.d. from bootstrapping. d Insets: for one of the groups of RGCs in a, the difference in decoded SNR between
the single-cell and independent GLMs was computed over 500 bootstraps. The distribution of these SNR differences is plotted at each light level (left and
right). The percentage of samples where this SNR difference is positive yields the population failure frequency for each group of cells. Main panel:
distribution of population failure frequencies over all groups of RGCs at the cone (left) and rod (right) light levels. e Population failure relates positively to
the number of pairwise noise correlations across RGCs in each decoded group. Error bars are s.d. from bootstrapping. For panels b–e: photopic: 55 groups
of RGCs from four retinas, scotopic: 37 groups of RGCs from three retinas (three retinas in common between conditions).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18436-2 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4605 | https://doi.org/10.1038/s41467-020-18436-2 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


are strong (Fig. 6g, purple zones). While we have only considered
correlations among two OFF types in our retinal recordings, it is
important to note that negative signal correlations and negative
noise correlations are expected when decoding responses from
ON and OFF RGCs with overlapping RFs11,12. Thus, real RGC
pairs tend to have noise and signal correlations of the same sign,
predicting population failure when noise correlations are strong.

In summary, this model demonstrates how population failure
can occur in a very simple system—where decoding from a single
neuron performs better than decoding from two neurons that
both convey nonzero stimulus information. We emphasize that

we view this simple model as a tool for helping to build intuition
and not as a quantitative replication of our experimental results.
In the next section, we examine decoding performance in a
population model that more closely resembles the conditions in
our experiments.

Signal and noise conditions dictating population failure. To
investigate the conditions under which a single RGC can out-
perform a population that is assumed to be independent, we
modeled our experimental findings by simulating the responses of
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a two-dimensional grid of RGCs (Fig. 7a). Each RGC response
was given by applying its RF to the stimulus as a linear filter, plus
additive noise. This noise was Gaussian-distributed with variance
equal to the mean (i.e., Poisson noise), and we varied the degree
to which this noise was correlated between neurons. To match
our experiments, we simulated the responses of these neurons to
binary white noise stimuli. We arranged the RFs in a hexagonal
grid to approximate the mosaic of one RGC type, with the rela-
tionship between RF and stimulus pixel sizes set similarly to those
in our experiments. Within this model, we used discriminability
(d-prime2) to quantify how well intensity values in the central
stimulus pixel could be discriminated given the neural respon-
ses27. As with our GLM-based approach, we compared the per-
formance of a decoder that accounts for correlations among cells
(coupled decoder), one that assumes independent noise among
cells (independent decoder), and one that just uses the responses
of one RGC (single-cell decoder). We systematically varied three
parameters that determine signal and noise correlation structure
across this population: peak noise correlation strength, the spatial
scale of noise correlations, and RF overlap (Fig. 7a). This process
enabled us to map out the conditions under which population
failure arises for neural populations similar to those in our
experiments.

We found that, when there is little overlap between RFs and
noise correlations are present, the independent decoder often

discriminates the stimulus worse than the single-cell model
(Fig. 7d, top several rows, purple areas). The cost of assuming
independence in the population becomes more severe as the noise
correlations are made stronger and/or broader. As RF overlap
increases, the independent decoder performs better than the
single-cell decoder when noise correlations have a small spatial
scale and magnitude (Fig. 7d, left columns). This improved
performance results from neighboring cells providing more
signals about the intensity of the decoded pixel (signal
correlations across the population increase), which overcomes
the errors due to ignoring small noise correlations. However,
ignoring larger and broader noise correlations eventually out-
weighs this advantage, resulting in more extreme population
failure (up to 50% less discriminability than the single-cell
decoder for the parameters we explored; Fig. 7d, right columns).
Note that the coupled decoder discriminates much better than the
independent decoder in the presence of strong and broad noise
correlations (Fig. 7e).

We also examined the performance of this model when the
stimulus consisted of binarized natural scenes (Fig. 7f–k). This
stimulus set contains more power at lower spatial frequencies
than the checkerboard noise (Fig. 7h). The frequency and
conditions under which population failure occurred in this
model were nearly identical between checkerboard and natural
stimuli, suggesting that our population decoding results
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generalize well between these stimulus types (Fig. 7c–e
compared with Fig. 7i–k).

The simplified model we present here highlights that account-
ing for correlated noise is most important for decoding the
stimulus when correlations are large, in agreement with our
experimental findings. By considering the transition into popula-
tion failure modes based on noise correlation parameters, this
model demonstrates how changing the correlation structure in
OFF-bt RGCs across light levels can alter the frequency and
magnitude of population failure. The correlations in OFF-bs
RGCs, however, are generally too small at both light levels for
population failure to occur.

These modeling results also reproduce a point about the limits
that noise correlations can place on a neural system. Focusing

only on the coupled decoder, there are several conditions where
high noise correlations limit the discriminability of the neural
population compared to weak noise correlations (Fig. 7c, bottom
rows). This phenomenon has been previously described, and
since we are primarily focused on the consequences of assuming
independence given the presence of noise correlations, we do not
consider it further3.

Discussion
A major question in early vision is how circuits downstream of
the retina process the visual information conveyed by populations
of RGCs. Central to this question is the impact of correlated
activity among RGCs, which can be a significant factor in neural
computations depending on the context. Here, we examine how
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light adaptation alters the role of correlations in decoding visual
stimuli from RGC populations in the rat retina. We find that
under moonlight conditions, decoders assuming independent
noise among OFF-bt RGCs recover much less visual information
than decoders that account for pairwise noise correlations. This
reduction in performance can be so large that decoders assuming
independence perform worse than decoding from a single RGC
(Figs. 4, 6, and 7). We call this state population failure because
decoding the population fails to reach the performance of a single
cell. Accounting for correlations, however, avoids this state and
enables decoders to benefit from population codes. We use a
simple model to demonstrate how the structure of activity cor-
relations determines the cost of assuming responses with inde-
pendent noise, accounting for why our results depend both on
light level and RGC type. These findings raise several questions
about the role of correlations in adaptation and visual processing
that we discuss below.

Comparison to previous studies, interpretation, and caveats.
The importance of correlated activity is a much-debated topic in
vision research4,8–10,28–34. Previous studies have examined the
role of correlated spiking in both visual encoding and decoding,
yielding a range of conclusions. For decoding, ignoring signal
correlations in large populations of RGCs is particularly detri-
mental to decoding performance, especially when decoders have
access to the fine temporal structure in spike trains34. Here,
however, we focus on the role of noise correlations. Other studies
examining correlated noise have concluded that between 0 and
40%, more information is available when decoders account for
noise correlations4,8–10. Our results are most comparable to the
Pillow et al.9 and Meytlis et al.10 studies because they analyzed
similar population sizes and employed the same GLM-based
decoding strategy, although the cell types and species used in all
three studies were distinct. The decoding improvement we find at
the photopic light level agrees relatively well with their 20% and
13% results, respectively. Our study departs from this previous
work by determining how this decoding improvement depends
on adaptation state and cell types that encode distinct visual
features (OFF-bt vs. OFF-bs RGCs). The effect of light level on
OFF-bt RGCs is particularly striking: decoded information can be
doubled by accounting for correlations. This improvement is a
substantially larger effect than previous results at photopic light
levels, illustrating the potent impact of light adaptation on retinal
output.

We focused on two OFF RGC types because they exhibited
well-isolated spikes and relatively complete RF mosaics, two
features necessary for this analysis. Functionally similar ON
RGCs (ON-bt and ON-bs) were also present in our data: These
ON types exhibited correlated activity magnitudes that were in
between the two OFF types, and diminished decoding perfor-
mance when correlations were ignored for the ON types
were similarly bounded by the results of the two OFF types.

How could accounting for correlations improve retinal
decoding? One possibility is that correlated activity conveys
visual features that are unavailable from individual responses,
such as fine spatial features at the intersection between two
RFs4,35,36. To check for this possibility, we analyzed synchronous
spike-triggered averages from pairs of RGCs. We did not find
evidence that synchronous spikes provide a higher acuity
representation of visual space (Supplementary Fig. 6). An
alternative possibility is that accurate decoding requires an
accurate model of the noise in RGC populations1. When
correlated noise is large and spatially extensive, such as for
OFF-bt RGCs at scotopic light levels, assuming independence is
the wrong noise model, and this assumption diminishes decoding

so much that performance can fall below that of decoding from a
single cell.

A simple intuition for the population failure effect can be
achieved by considering the following situation. If a single OFF-bt
RGC generates a brief volley of spikes, a decoder will interpret
this response as resulting from a transient decrease in light
intensity. If all the OFF-bt RGCs around that cell also generated
spikes, the decoder will estimate a large decrease in light intensity
because many cells were driven to spike together. However, this
interpretation may only be correct if the OFF-bt RGCs are acting
independently. If the decoder knows the cells exhibit strong noise
correlations, then it should discount this conclusion in favor of a
smaller decrease in light intensity.

Many of the findings presented here are based on GLM fits
to the responses of RGC populations, raising the possibility that
at least some of these conclusions are model-dependent. The
GLM captures a majority of the response variance to white noise
stimuli (up to 80%), but remains an imperfect model of RGC
encoding37,38. This mismatch between model and data is likely to
impact the quantitative estimates that we and others have made
on the cost of assuming RGCs are independent9,10. Of particular
concern is whether assuming independence in a population of
RGCs can actually yield worse performance than decoding a
single RGC. To address this issue, we also utilized a more general
examination of how correlations can impact decoding. Figure 6
demonstrates that population failure is certainly possible, even
with simple linear decoders. Figure 7 shows that this effect
depends on the amount of RF overlap and strength of noise
correlations, both of which change with light level. This simplified
model has many differences from our data, with uniform, circular
RFs, uniform RF overlap, firing rates that depend linearly on the
stimulus, and decoding using discriminability (d-prime2) rather
than GLM-based Bayes-optimal stimulus estimation. Never-
theless, the simplified model in Fig. 7 reproduced the trends in
our data. Furthermore, we show that population failure can occur
when decoding spatial stimulus patterns from RGC responses
(Supplementary Fig. 4), indicating that these results are not
specific to temporal decoding. Together, these analyses show that
ignoring strong correlations can degrade decoding and reproduce
population failure in a manner that does not depend strongly on
the details of the decoding task or the precise nature of the RGC
output.

Generalization to more natural stimulus and decoding condi-
tions. We have primarily focused on decoding the temporal
sequence of one pixel in a checkerboard noise stimulus, raising
the question of the extent to which these results generalize to
more natural stimulus and decoding conditions. Given our
findings that the strength of noise correlations dictates the impact
on different types of decoders (Figs. 6, 7, and Supplementary
Fig. 5), one important check is that the magnitude of the noise
correlations remains similar between white noise and natural
movies. We compared noise correlations between checkerboard
white noise and a naturalistic movie (camera mounted on a cat’s
head roaming through the forest; Supplementary Fig. 1); the
correlations depended weakly on the stimulus and when they
differed, noise correlations were higher for the natural movie. In
combination with our modeling findings in Fig. 7f–k, this result
suggests that accounting for noise correlations is no less impor-
tant when decoding RGC responses to natural stimuli.

Note that one previous study examined the decoding of natural
scenes and concluded that ignoring noise correlations had
minimal impact on decoding performance10. Importantly, the
RGC types analyzed in that study were not characterized or
clearly defined. We show here that the importance of noise
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correlations for decoding RGC responses depends strongly on the
cell type that is used in the decoding task, as well as the
adaptation state of the retina.

Finally, we have benchmarked the cost of ignoring noise
correlations among a population of neurons against the
performance of decoding the responses of a single neuron.
However, the phenomenon of population failure can be framed
somewhat more generally: We illustrate one such case in
Supplementary Fig. 4F–H, where the task is to decode a spatial
(rather than temporal) white noise pattern. In that example, a
decoder of 7 RGCs with knowledge of noise correlations
outperforms a decoder of 18 RGCs that assume no noise
correlations. The seven RGCs were all included in the 18-cell
decoder, and all RGCs had some RF overlap with the decoded
pixels. Thus, in its most general formulation, population failure
can be considered as a state in which the decoding benefit of
using increasingly large populations of neurons is outweighed by
the cost of ignoring their noise correlations.

Light adaptation. Light adaptation crucially influences how
retinal circuits encode visual scenes. Between scotopic and
photopic light levels, input to RGCs switches from rod- to cone-
mediated pathways. This circuit switch alters both single RGC
response properties and correlated activity. For individual
RGCs, spatial and temporal integration increases under scotopic
conditions24,25. Other aspects of RGC activity also depend on
light level, including the polarity of stimuli that drive responses,
firing rates, and the extent to which spatial integration is lin-
ear39–41. The switch from rod- to cone-mediated circuits
also results in altered common input to RGCs, one of the
underlying causes of RGC correlations11,12,42. In general, weaker
RF surrounds in scotopic conditions result in greater overlap
between RF centers and thus more common input between
neighboring RGCs. Furthermore, at the low light level used here
(1 R* rod−1 s−1), AII amacrine cells are expected to be exten-
sively coupled by gap junctions43, which would also tend to
increase the amount of common input between nearby RGCs.
Finally, a subset of RGC types are electrically coupled44, and the
strength of this coupling can be altered by light level45. Thus,
there are several mechanisms by which light adaptation can
change both signal and noise correlations among RGCs.

These changes in signal and noise across light levels raise the
question of how light adaptation influences information across
populations of RGCs. Efficient coding theory—the idea that
sensory systems are optimized to encode natural stimuli—has
been successful at explaining why RF structure changes across
light levels46–49. With some notable exceptions50,51, many
applications of this theory assume that RGCs do not exhibit
correlated noise, much less that this correlated noise changes with
light level. Therefore, a useful direction for future examinations of
efficient coding theory is to determine how light-level-dependent
changes in correlated activity impact predictions about the
optimality of adaptation in RGC responses.

Implications for downstream processing. Our results highlight
several implications for how downstream circuits may process
retinal output. Although the impact of ignoring RGC correlations
may depend on particular post-retinal computations, assuming
independence among correlated RGCs likely reduces the infor-
mation that can be extracted from retinal activity. Even in the
context of a simple linear readout of RGC responses, ignoring
strong noise correlations among RGCs can result in the sub-
optimal weighting of RGC inputs compared to a weighting
determined by an accurate model of correlated noise52. In addi-
tion, light-level-dependent changes in RGC signals and correlated

noise may place important constraints on post-retinal computa-
tions across light levels. For example, downstream circuits that
receive input from OFF-bt RGCs may fail to effectively process
this input unless they too adapt their processing across light
levels. Meanwhile, circuits that receive input from OFF-bs RGCs
may be afforded a more static processing strategy. Thus, our
results suggest that post-retinal areas may need to differentially
process cell-type inputs. Recent work elucidating LGN processing
of RGC output confirms that some LGN neurons receive pre-
dominant input from a single type of RGC53–55. These studies
also find LGN neurons with input from diverse types of RGCs,
posing further questions of how correlations between RGCs of
different types may affect early visual processing.

Studies of light adaptation that span rod-to-cone signaling are
relatively common in the retina, but remain sparse in the visual
cortex. The few studies that have been performed suggest that V1
RFs are relatively invariant to changes in light level56. The insight
that RGC responses to the same stimulus change across light
levels39, combined with the fact that correlated noise depends on
light adaptation, motivate more research to understand the extent
to which V1 and other regions can preserve an invariant
representation of visual scenes across light levels.

The importance of accounting for correlated activity is not
restricted to retinal processing: in general, ignoring strong noise
correlations among any population of neurons will degrade
decoding performance, potentially leading to a form of popula-
tion failure, although the exact effect will depend on the specific
downstream computation. While cortical noise correlations may
be smaller than those in the retina57, previous work has
demonstrated that ignoring this correlated activity can worsen
decoding by 30%31. Furthermore, throughout the cortex, brain
states has been shown to alter the strength of correlations, such as
attentional modulation of correlated noise in V458,59. These
findings open the possibility that accounting for correlated noise
under certain contexts may be even more important for cortical
computations than previously thought. Finally, these principles
are likely to be particularly relevant to brain–machine interface
applications, where the accuracy of decoding recorded population
activity may depend critically on accounting for noise correlations
that can change with different brain states and contexts.

Methods
MEA recordings. All experiments were performed in accordance with the
guidelines of Duke University’s Institutional Animal Care and Use Committee.
Long-Evans rats (ages 51–215 days) were dark-adapted overnight and euthanized
with an intraperitoneal injection of ketamine/xylazine followed by decapitation.
Euthanasia and retinal dissections were performed in darkness with the assistance
of infrared converters. We dissected dorsal pieces of the retina that were ~3 × 2 mm
large and placed them RGC-side down on an electrode array. The tissue was
perfused with oxygenated Ames solution at a rate of 6–8 mLmin−1. Recordings
were performed at 34 °C. The MEA consisted of 512 electrodes with 60-μm spa-
cing, covering an area of 0.9 × 1.8 mm or 519 electrodes with 30-µm spacing,
covering a hexagonal area 0.48 µm across14,60. The voltage on each electrode was
sampled at 20 kHz and filtered between 80 and 2000 Hz.

Visual stimuli. Visual stimuli were created with custom Matlab code. Stimuli were
presented with a gamma-corrected OLED display (SVGA+ XL Rev3, Emagin,
Santa Clara, CA). The image from the display was focused onto the photoreceptors
using an inverted microscope (Ti-E, Nikon Instruments) with a ×4 objective (CFI
Super Fluor ×4, Nikon Instruments). The optimal focus was confirmed by pre-
senting a high spatial resolution checkerboard noise stimulus (20 × 20 µm,
refreshing at 15 Hz) and adjusting the focus to maximize the spike rate of RGCs
over the MEA. The intensity of the stimulus was set using neutral density filters in
the light path. In each recording, stimuli were first presented at the scotopic light
level (1 Rh* rod−1 s−1), while the retina was in a dark-adapted state. The tissue was
adapted to the photopic light level (10,000 Rh* rod−1 s−1) for 30 min before
continuing recordings at that light level. The refresh rate of the stimulus was 60 Hz
and 30 Hz at the photopic and scotopic light levels, respectively. The change in
stimulus refresh offset effective contrast changes due to an approximately twofold
increase in temporal integration of RGCs from the photopic to scotopic conditions.
For GLM fitting and decoding, stimuli consisted of non-repeated, binary white

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18436-2

12 NATURE COMMUNICATIONS |         (2020) 11:4605 | https://doi.org/10.1038/s41467-020-18436-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


noise interleaved with repeated, binary white noise segments (5 or 10 s) to control
for non-stationarities in recordings. Stimulus pixels in the checkerboard noise were
squares with 252 µm sides. These larger stimulus pixels were used because their
area was similar to the area of a single RF of the RGC types examined in this study.
This size is expected to be near the peak spatial resolution for these RGCs, and they
were only ~4× larger than the spatial resolution of the rat visual system (given one
cycle/degree resolution and one degree of visual angle spanning 60 µm on the
retina)61. For cell-type classification, we presented drifting gratings and finer pixel
checkerboard noise (63-µm squares, refreshing at 60 Hz)14.

In a subset of experiments (two retinas), noise correlations were also measured
from spontaneous activity and using a natural movie. For the spontaneous activity,
spikes were recorded for 30 min with a full-screen gray stimulus. The natural movie
was generated by mounting a video camera to the head of a cat walking through a
forest62. A 10-s segment of this movie was presented 100 times and used to
estimate the noise correlations present during naturalistic visual stimulation.

Spike sorting and neuron identification. Spikes on each electrode were identified
by thresholding the voltage traces at 4 s.d. of a robust-estimate of the voltage s.d.
Spike sorting was performed by an automated PCA algorithm and verified by hand
with a custom software63,64. Spike waveform clusters were identified as neurons
only if they exhibited a refractory period (1.5 ms) with <10% estimated con-
tamination. To track identified RGCs across light conditions, cell clusters were
sorted in the same PCA subspace at each light level. Neuron identity was verified
by checking that EIs and RF locations were stable across conditions21,22. RGC types
were classified at the photopic light level by first removing direction-selective
RGCs, and then clustering using RF properties and autocorrelation shapes14.

Measuring noise correlations. Correlated noise was estimated by subtracting
stimulus-driven correlations from the combined signal and noise correlations. Cor-
relations were computed with Matlab’s xcov function with normalization to the
autocorrelation for each cell in the pair. Response to 100 (or 200) repeats of 10 s (or 5
s) white noise segments, binned at 5ms, were used to compute CCFs. First, the raw
CCF was estimated by averaging the CCFs between two RGCs over all trials. Next, the
shuffled CCF (shift predictor65) was estimated by using spikes from one repeat for the
first cell with spikes from a different repeat for the second cell. The shuffled CCF was
averaged over all possible repeat combinations. Subtracting the shuffled CCF from the
raw CCF yields the noise CCF. Correlation was quantified with the positive area under
each correlogram, the full width of the peak, or the peak height at 0-time lag (negative
lobes of the CCFs were not quantified). The spatial scale of correlations for a popu-
lation was found by fitting the data (e.g., Fig. 1f) to a single-term exponential function.
The coefficient of the exponential was the length scale of the correlations.

GLM fitting. Open source code was used for GLM fitting (https://github.com/
pillowlab/GLMspiketools). GLMs were fit separately at each light level. In total, 50min
of non-repeated white noise was used to fit GLM parameters, with 100 (or 200) 10 s
(or 5 s) segments of repeated white noise used for cross-validation. GLM RFs were
approximated as rank one14: they were composed of the outer product of a spatial filter
and temporal filter (which approximated the spatial and temporal RFs, respectively).
The temporal filter, spike history filter, and coupling filters were parameterized with a
basis of 8 cosine functions. The nonlinearity used was the logexp2 function (available
in the GLMspiketools repository); no significant improvement was found using a
spline nonlinearity. Only RGCs that had stable responses over the course of the
recording were used in the GLM analysis (as judged by a consistent mean firing rate
and uniform raster structure to repeated white noise sequences measured early and late
in the experiment). For the coupled GLM fits, local populations of RGCs were chosen
based on a central RGC that has at least four recorded neighbors. Several RGCs were
used in multiple coupled GLMs. Only RGCs with an average firing rate above a
threshold were included in the GLM; the threshold was given by the mean minus 1 s.d.
of the firing rate of all recorded cells of a certain type. Across light levels, the same
groups of RGCs were used to fit GLMs.

Decoding. Following the previous work9, GLM-based decoding was performed by
computing the likelihood pj that a stimulus xj caused a recorded population
response, where xj is one stimulus option of all possible binary white noise
sequences. The decoded estimate comes from Bayes’ least squares estimate:
x̂ ¼ ðPpjxjÞ=ð

P
pjÞ. We decoded the intensity of one stimulus pixel over six

frames in time, or six stimulus pixels in one frame for spatial decoding controls
(Supplementary Fig. 4). For the case of decoding one stimulus pixel over time, the
decoded pixels were chosen as those that had the greatest weight in the STA of an
RGC. Over four retinas, 72 unique pixels were decoded in this study using 169
RGCs. The decoder was provided with the spike times of the RGCs used in the
decoding task as well as the intensities of the non-decoded pixels (e.g., see Fig. 3a).
This decoding was repeated for 5000 trials on 16 min of non-repeated white noise
data (held out from the fitting data). Decoding performance is reported with log
SNR calculated from the mutual information between the decoded estimates and
presented stimuli9,26. Bootstrapped SNRs for error bars were computed for each
GLM using 500 subsamples of 3000 trials.

Simple RF model. The RF grid model consisted of 25–169 neurons with circular
RFs arranged in a hexagonal grid. RF diameters were 250 μm, the same as the
stimulus pixel size. Cells’ responses to the stimulus had two components: signal
plus additive noise. The signals came from filtering the stimulus linearly through
the cell’s receptive field. When all black pixels cover the receptive field, the signal is
zero, and when all white pixels cover it, the signal is 30 Hz. The noise was additive
Gaussian noise, with variance equal to the signal (i.e., Poisson variability); this
noise was correlated between cells. We varied the magnitude and spatial scale of
these correlations in our analyses. The noise correlation strength was set to
decrease exponentially with the distance between two cells, where the coefficient of
the exponential was the length scale of the correlations.

We discriminated the center pixel’s intensity based on the neural responses and
the intensities of the non-decoded pixels. This process mimics the GLM decoding,
in which we performed the decoding conditioned on the (known) intensities of the
non-decoded pixels. To quantify the discriminability, we calculated the quantity
d2 ¼ ΔμTQ�1Δμ27. Here, where Δμ is the vector of differences in mean neural
firing rates between the conditions where the decoded pixel value was black or
white, and differences in the mean intensities of the outer, non-decoded pixels. Q is
the mean covariance matrix (averaged over the two conditions: central pixel white
or black) of the observables that are used by the decoder (neurons and pixels). This
matrix thus consists of four main blocks: one block showing the neuron–neuron
covariance, one showing the pixel–pixel covariance, and two showing the neuron-
pixel and pixel–neuron covariances, respectively. To quantify the discriminability
under the independence assumption, we calculated the quantity

d2d ¼ ΔμTQ�1
d Δμð Þ2

ΔμTQ�1
d QQ�1

d Δμ
27. Here, Qd is the covariance matrix under the assumption that

the (Poisson) noise is uncorrelated between neurons.
Given a specified set of stimuli (in practice, defined by the mean outer pixel

values when the central pixel is white or black, and the pixel–pixel covariance
matrices conditioned on the central pixel being white or black), the linear RF
model, and the parameters of the neuronal noise correlations, we computed Δμ, Qd,
and Q. We then used those quantities to compute the discriminability when the
decoder accounts for correlations (d2) and when it ignores them (d2d).

For the white noise stimulus (Fig. 7a–e), the mean non-decoded pixel values do
not change as the central pixel value changes (so the entries in Δμ corresponding to
outer pixel value changes are zero), and the pixel–pixel covariance is a diagonal
matrix, reflecting the lack of pixel–pixel correlation. For the natural image stimulus
(Fig. 7f–k), we used the ten 512 × 512 pixel grayscale images from Olshausen and
Field66. We first binarized each image about its median pixel value. Next, 10,000
randomly chosen 5 × 5 pixel patches were used to compute the pixel–pixel
covariances and mean outer pixel values, conditioned on the state of the decoded
central pixel (white or black). We then averaged these over the ten images and used
them in the discriminability calculations.

Statistics. Statistical results are found in Table 1 and the text. Because the
data generally did not follow a normal distribution, significance tests were
performed using the Wilcoxon signed-rank test (for comparisons of one cell
type across light levels) and the Wilcoxon rank-sum test (for comparisons
across cell types).

Study design. The sample size was not predetermined by a statistical method, but
our sample sizes (number of recorded cells and number of retinas) are similar to
those generally used in the field. Experiments were replicated on multiple retinas,
as indicated in figure legends. Data from one retina were excluded because the
visual stimulus was not properly focused on the photoreceptors. Randomization
and experimenter blinding were not relevant to this study.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data from an example recording generated and analyzed in this study are available at
https://doi.org/10.12751/g-node.cnqoty. The full dataset that supports the findings of this
study is available from the corresponding author upon reasonable request. Source data
are provided with this paper.

Code availability
The code used to acquire and analyze these data are largely available on public
repositories. Stimulus presentation code is available at http://gru.stanford.edu/doku.php/
mgl/overview. GLM fitting and decoding code are available at https://github.com/
pillowlab/GLMspiketools. Modeling code for Figs. 6 and 7 is available at https://github.
com/kmruda/RGC-population-failure.
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