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Abstract

Objectives. Inhibitors to the checkpoint proteins cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4) and programmed cell
death protein 1 (PD-1) are becoming widely used in cancer
treatment. However, a lack of understanding of the patient
response to treatment limits accurate identification of potential
responders to immunotherapy. Methods. In this study, we assessed
the expression of PD-1 and CTLA-4 on 19 leucocyte populations in
the peripheral blood of 74 cancer patients. A reference data set
for PD-1 and CTLA-4 was established for 40 healthy volunteers to
determine the normal expression patterns for these checkpoint
proteins. Results. Unsupervised hierarchical clustering found four
immune profiles shared across the solid tumor types, while chronic
lymphocytic leukaemia patients had an immune profile largely
unique to them. Furthermore, we measured these leucocyte
populations on an additional cohort of 16 cancer patients
receiving the PD-1 inhibitor pembrolizumab in order to identify
differences between responders and non-responders, as well as
compared to healthy volunteers (n = 20). We observed that cancer
patients had pre-treatment PD-1 and CTLA-4 expression on their
leucocyte populations at different levels compared to healthy
volunteers and identified two leucocyte populations positive for
CTLA-4 that had not been previously described. We found
higher levels of PD-1+ CD3+ CD4� CD8� cells in patients with
progressive disease and have identified it as a potential biomarker
of response, as well as identifying other significant differences
in phenotypes between responders and non-responders.
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Conclusion. These results are suggestive that categorisation of
patients based on immune profiles may differentiate responders
from non-responders to immunotherapy for solid tumors.

Keywords: checkpoint inhibitors, CTLA-4, immune monitoring,
immune profile, PD-1, programmed death 1

INTRODUCTION

Over the past decade, checkpoint inhibitors have
been developed to target the immune system for
improved treatment of multiple cancer types. This
trajectory is apt to continue, with the success of
recent clinical trials showing the effectiveness of
checkpoint inhibitors. Inhibitors such as
ipilimumab, nivolumab and pembrolizumab have
been approved for the treatment of late-stage
cancers, including lung cancer, bladder cancer,
lymphoma and melanoma.1 The mechanism by
which checkpoint inhibitors regulate and restore
immune function and modulation is believed to
be through activation and regulation of T cells.2

Clinical trials of these inhibitors have yielded a
wide range of response rates. In a study of
programmed cell death protein 1 (PD-1)
inhibitors in Hodgkin’s lymphoma, the response
rate was 87%,3 while similar studies found the
response rates of 18% in non-small cell lung
cancer, 28% in melanoma and 27% in renal cell
cancer.4 Anti-cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4) drugs such as ipilimumab
target CTLA-4, blocking interaction with
costimulatory molecules such as CD80 and CD86
on the antigen-presenting cell while allowing
upregulation and T-cell activation.5 The anti-PD-1
drugs nivolumab and pembrolizumab inhibit the
PD-1 protein on T cells from binding to its ligand
PD-L1 on tumor or tumor-infiltrating immune
cells, a process that normally results in
deactivation of T cells.6 Mainly, the effects of
checkpoint proteins have been studied on T cells,
but their influence on other immune cell
populations is less well known.

The therapeutic results with these powerful
immunomodulators have been impressive but
have been tempered by the lack of effect for
some patients. Critically, the tumor itself can take
an active role by negatively affecting immune
function through checkpoint proteins by
upregulation of PD-L1 on tumors7 and of
checkpoint proteins on tumor-induced

lymphocytes.2 The understanding of the
mechanism of action in the immune system has
largely been derived from mouse models8 or with
in vitro controlled immune assays.7 The immune
system often has both positive and negative
feedback loops that may counter the antibody
effects. Furthermore, it has been shown that anti-
PD-1 and anti-CTLA-4 drugs specifically target
subsets of CD8+ T cells in tumors, operating
through distinct rather than broad mechanisms.9

Therefore, a complete understanding of all
potential targets of these antibodies in patients
may help illustrate the mechanisms and is a first
step to a more directed use (through
individualised medicine). Likewise, no method is
available for identifying responders and non-
responders to these inhibitors or identifying
patients at risk of immune-related adverse events.
The development of tools to address these issues
would facilitate the optimal timing and dosing of
therapies and prevent unneeded and costly
treatment. Flow cytometry is the most direct
method for measuring the immune system of
cancer patients.

Clinical flow cytometry can be quantitative,
precise and highly useful in diagnostics and
prognostics. We have previously combined
quantitative flow cytometry with informatics to
identify novel myeloid populations,10 as well as
identify patients grouped by the presence or
absence of correlative phenotypes to identify the
survival of cancer patients11 or survival in the
neurodegenerative disease amyotrophic lateral
sclerosis (ALS).12 We used this established
approach to quantify the diversity and level of
white blood cells expressing PD-1 and CTLA-4. In
addition, we have screened neoplasms of
different origins to determine in an unbiased
manner whether the profile of the antibody
targets in the immune system is tumor-dependent.
Our findings support the use of patients’ specific
immune profiles to improve the selection of
patients who may respond to checkpoint
inhibitors regardless of tumor histology.
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RESULTS

Confirmation of CTLA-4 and PD-1
phenotypes and gating strategies

Our strategy is based on quantitative unbiased
assessment of the immune system. Our approach
used 10-colour multi-tube quantitative flow
cytometry on whole blood.11 We sought to
identify the differences in parent (major) and
child (minor) populations among the cohorts
before specifically looking at PD-1 and CTLA-4.
The seven parent and 12 child populations were
gated (Supplementary figure 1, Table 1). Each
parent population was measured as a percentage
of mononuclear cells and each child population as
a percentage of the parent population, with the
exception of granulocytes, which were measured
as a percentage of CD45-positive cells. We
compared percentages of the populations from
each cancer cohort with the healthy volunteer
(HV) cohort using a two-stage linear step-up
procedure of Benjamini, Krieger and Yekutieli to
identify discoveries for possible biomarkers
(Figure 1). To meet the criteria for a discovery, the
difference between the HV group and cohort
being compared had to reach a minimum P-value
of < 0.05 and a false discovery rate (FDR) with q-
value of < 0.10.12 Our results identified that
percentage of T cells in both the liver tumor
group and the chronic lymphocytic leukaemia
(CLL) group were less compared to the HV group.
Percentages of both natural killer cells (NKs) and
natural killer-like T cells (NKTs) were lower in the
CLL cohort and that of NKT-CD8+ cells were lower
in the liver tumor cohort. The CLL group had a
higher percentage of B cells than the HV group
but had lower lineage-negative cells, monocytes
and granulocytes. Patients with glioblastoma
multiforme (GBM) had fewer B cells; patients with
liver tumor had more lineage-negative cells. These
results are similar to the general observations
found in our previous immune monitoring studies
of GBM, thyroid cancer and CLL.13–15

Identification of white blood cell CTLA-4+

and PD-1+ staining populations in HVs and
cancer patients

We plotted each population by side scatter vs
CD152 or PD-1 to determine the percentage of cells
positive for each marker. To reduce false-positive
results and exclude noise, we evaluated populations

that had 100 events or more in the positive gates.
We found that NKT CD4+CD8+ (double-positive, DP),
NKT CD4+ and NKT CD4�CD8� (double-negative,
DP) DN had too few events to include in this
analysis. We identified CTLA-4+ or PD-1+

populations that were not present in the HVs or
were statistically different compared with HV
populations (Figure 1 and Table 1). We also
identified CTLA-4+ DP T cells, and CTLA-4+ NKT-CD8+

cells, which had previously not been identified.
Uniquely, one thyroid cancer patient was found to
be an outlier with CTLA-4+ cells, while all other
samples showed no indication of CTLA-4 on the
measured populations (Supplementary figure 2).
These results could be indicative of variability of
immunity among patients, which could be
identified via further study.

Hierarchical clustering of PD-1

We have successfully used unsupervised
hierarchical clustering to group patients into
immune profiles that have correlated with survival
in patients diagnosed with cancer11 and ALS.12

The immune profiles – compositions of all
characteristics of the leucocyte populations in
their entirety – are influenced but not determined
by the cancer type. Thus, immune phenotypes, as
opposed to disease phenotypes, may be used to
guide immune-based therapies across diseases.
Immune profiles of patients may be quite
heterogeneous within a specific disease entity but
may also be similar and/or shared with patients of
a different disease. By clustering these values, we
identified five distinct PD-1 profiles (Figure 2);
clustering was not performed on CTLA-4 because
of low values of expression in circulating blood
cells. Profiles with fewer than five patients were
not used for further analysis. Profile 1 consistently
had the least amount of cells positive for PD-1 in
all 19 populations. Profile 5 was composed of five
CLL patients with high levels of PD-1 across all
populations, making it uniquely characteristic of
CLL. Profiles 2 and 3 differed in PD-1+ cells on the
basis of populations, whereas in profile 4, the
number of PD-1+ cells was consistently increased.
One of the advantages of this approach is that it
can determine whether cancer source (tumor
type) determines the evolution of immunity of a
patient. We note that solid tumors were spread
among the immune profiles. The unique nature of
profile 5 (the only leukemic profile; CLL) is likely
because of the influence of the changes in other
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leucocytes in circulation (i.e. reduction in
monocytes, T cells and granulocytes). Importantly,
these data strongly suggest that there may be a
finite number of immune profiles that describe
PD-1 expression across solid tumors and that
methods (if verified) could be applicable across
tumor types without having to repeat studies for
each tumor. To verify that these observations did

not depend on the leucocyte counts but rather on
PD-1, the same analysis was performed using the
results of our TBNK10 assay (T cells, B cells and NK
cells), which provided the ability to look at the
same populations independent of PD-1 levels. This
analytical approach failed to cluster the patients
into the same profiles as those based on PD-1
(Supplementary figure 3).

Table 1. CTLA-4 and PD-1 % values by cohort

Cohorta

Populationb HV GBM Liver cancer CLL Thyroid cancer Referencec,d

Mean % CTLA-4-Pos cells

T cells, % MNCs 1.82 1.26 1.14 6.76e 3.95 Fife and Bluestone6

CD4-pos T cells, % CD3 2.19 1.04 1.34 8.75e 4.48 Kaufmann et al.28

CD4 na€ıve, % CD4 0.32 0.28 0.95 0.51e 0.52 Jago et al.29

CD4 memory, % CD4 3.09 1.28 1.5 11.46e 5.24 Jago et al.29

CD8-pos T cells, % CD3 1.23 1 0.94 4.86e 2.87 Long et al.30

Memory CD8, % CD8 2.09 1.33 1.15 8.67e 3.87 Long et al.30

Na€ıve CD8, % CD8 0.33 0.43 0.15 0.55e 1.43 Long et al.30

CD3DN, % CD3 0.71 0.46 0.76 6.59e 1.37 Anand et al.31

CD8CD4-pos T cells, % CD3 17.96 18.31 22.37 26.54e 25.94 –

NK cells, % MNC 2.87 2.98 2.85 16.03e 2.22 Beldi-Ferchiou Caillat-Zucman32

NKT cells, % MNC 10.52 21.86 14.32 19.06e 11.67 Yamagiwa et al.33

NKT-CD8, % NK T cells 1.72 3.94 2.39 7.35e 3.48 –

B cells, % MNC 1.16 0.71 0.58 0.89 3.69 Steiner et al.34

LIN neg, % MNC 0.54 0.3 0.11 . . . 1.2 Liu et al.35

Monocytes, % MNC 2.42 1.49 2.58 8.02e 2.48 Wang et al.36

Granulocytes, % CD45-pos 6.56 4.96 3.71 11.44e 6.56 Fujiwara et al.37

Mean % PD-1-Pos cells

T cells, % MNC 29.51 33.05 30.23 36.50e 28 Fife and Bluestone6

CD4-pos T cells, % CD3 27.8 27.29 30.49 33.37e 26.84 Yang et al.38

CD4 na€ıve, % CD4 2.5 2.65 5.01b 6.05e 2.15 Pardoll2

CD4 memory, % CD4 39.95 38.39 39.13 43.22e 36.12 Foldi et al.39

CD8-pos T cells, % CD3 33.92 45.46e 30.54 43.83e 31.72 Shi et al.40

Na€ıve CD8, % CD8 14.61 25.53e 16.38 29.19e 13.97 Waki et al.41

Memory CD8, % CD8 55.19 61.58 40.54e 55.48 47.61e Waki et al.41

CD8CD4-pos T cells, % CD3 49.26 49.86 44.25 53.49 48.55 Chauhan et al.42

CD3DN, % CD3 27.27 27.59 37.04 48.82e 28.67 Shi et al.40

NK cells, % MNC 8.8 13.43 12.81 22.65e 5.60e Beldi-Ferchiou and Caillat-Zucman32

NKT cells, % MNC 37.68 41.91 37.1 45.89e 34.78 Chen et al.43

NKT-CD8, % NKT cells 34.08 37.29 30.1 40.49 29.38 Chen et al.43

B cells, % MNC 1.16 2.58e 1.1 22.87e 1.38 Fife and Bluestone6

LIN neg, % MNC 0.21 0.35 0.2 . . . 0.2 Liu et al.35

Monocytes, % MNC 0.19 0.07e 0.21 4.27e 0.13 Chen44

Granulocytes, % CD45-pos 0.87 0.92 1 3.94e 0.57e Orozco-Uribe et al.45

CLL, chronic lymphocytic leukaemia; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; GBM, glioblastoma multiforme; HV, healthy volunteer;

LIN neg, lineage-negative; MNC, mononuclear cell; NK, natural killer; NKT, natural killer T cell; PD-1, programmed death 1; pos, positive.
a

Bold indicates populations determined positive (5% or greater) for PD-1 or CTLA-4.
b

NKT-DP, NKT-CD4 and NKT-DN populations in all cohorts and LIN neg for the CLL cohort were not included in the analysis because they did not

reach the minimum criteria for event counts.
c

Contains examples of phenotypes previously observed.
d

A dash indicates that examples were not found.
e

Value significantly (P < 0.05) higher or lower than HVs.
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Figure 1. Distribution of general populations, CTLA-4-pos cells and PD-1-pos cells. Each of the seven parent populations was measured as

percentage of MNCs except granulocytes, which were measured as a total of CD45-pos cells. Child populations were measured as a percentage

of the parent population. CTLA-4-pos and PD-1-pos cells were plotted as a percentage of the specific parent or child population indicated.

Box and whiskers plots of each set of values are shown. An asterisk indicates statistical differences compared with the HV cohort. False discovery

rate with a set q-value of 10% was used for multiple t-test comparisons. A dotted line indicates even counts too low to analyse. CLL, chronic

lymphocytic leukaemia; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; GBM, glioblastoma multiforme; HV, healthy volunteer; LINneg,

lineage-negative; MNC, mononuclear cell; NK, natural killer; NKT, natural killer T cell; PD-1, programmed death 1; pos, positive.
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Figure 2. Hierarchical clustering and profiling of PD-1. (a) Hierarchical clustering of PD-1-positive cells was performed on patients with GBM,

liver tumor, CLL and thyroid cancer. B cells were removed from the analysis because of high levels in the CLL cohort. NKT-DP, NKT-CD4 and

NKT-DN did not reach minimum event criteria and were not included. Five major profiles clustered, and samples that did not fall into a cluster

were removed for clarity. (b) Five clusters were identified as 1 (orange), 2 (blue), 3 (green), 4 (purple) and 5 (red). (c) PD-1-positive cells of

patients in each profile were plotted, and a one-way analysis of variance was performed to determine statistical significance between profiles.

Profile 5 patients were not shown because of extremely high values that did not fit well with graph parameters. CLL indicates chronic

lymphocytic leukaemia; GBM, glioblastoma multiforme; grans, granulocytes; LINneg, lineage-negative; mem, memory; monos, monocytes; nai,

na€ıve; NK, natural killer; NKT, natural killer T cell; PD-1, programmed death 1.
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Comparison of patients receiving
pembrolizumab

To test whether phenotypic differences could be
identified among responders and non-responders
to checkpoint inhibitors, pre-treatment blood
samples were collected from 16 patients on
pembrolizumab. Samples were analysed using
both a multiparameter flow assay to measure PD-
1 levels on 19 leucocyte populations and our
standard TBNK assay. Absolute counts of
granulocytes, classical monocytes, neutrophils and

intermediate monocytes were increased (P ≤ 0.05)
in patients with benefit/complete response (CR)
than in HVs. Similarly, absolute counts of
intermediate and classical monocytes showed the
same pattern (P ≤ 0.01) in patients with
progressive disease (PD) to HVs (Figure 3a). CD3
(% MNCs) was lower (P ≤ 0.01) in benefit/CR and
PD groups than in HVs, while both granulocytes
(% CD45-positive) and monocytes (% CD45-
positive) were increased (P ≤ 0.01; Figure 3b).
Patients with benefit/CR expressed more PD-1-
positive T cells (PD-1+CD3+, PD-1+ na€ıve CD4+,
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Figure 3. (a) Absolute cell counts of patients on pembrolizumab. (b) Percentage of cells of parent population for patients on pembrolizumab.

Denotation for disease groups is as follows: ‘CR’, clear and complete response; ‘benefit’, patients who achieved a clear partial response; and ‘PD’,

those who had disease progression at their first disease reassessment. Patients with ‘questionable benefit’ who either achieved a mixed response

(progression at some sites with regression or stable disease at other sites) or had clinical benefit that was not clearly related to immunotherapy

were not included in the analysis.
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PD-1+CD8+, PD-1+ na€ıve CD8+) compared to HVs.
PD-1+CD3+ DN and PD-1+ na€ıve CD4+ T cells were
significantly higher (P ≤ 0.05) in patients with PD
than in those who received benefit/CR or HVs
(Figure 4). CD3+ DN cells, independent of PD-1,
have been identified and associated with systemic
inflammation,16 but PD-1+ CD3+ DN cells have not
been studied in cancer research or identified as a
biomarker for progression of disease. However,
we speculate that many of the CD3+ DN cells
could be cd T cells, which have been studied and
are known to increase in PD-1 because of
antigenic stimulation.17,18 Here, we note that
patients receiving pembrolizumab whose disease
has progressed also have greater surface
expression of PD-1+CD3+ DN than CR or HV
groups. The analysis of single immune phenotypes
as predictive biomarkers is fundamentally limited
as rarely do a single population of leucocytes
predict immune response. To that end, we
hypothesised that, using hierarchical clustering to
identify patients with similar immune profiles,
changes pre-treatment and post-treatment should
be visible that represent global changes in
immunity.

We clustered patient samples pre-treatment
(n = 16) with their correlating post-
pembrolizumab treatment follow-up sample
(n = 16), as well as 20 HVs. When all three groups
were combined and clustered, two profiles were
created. Profile 1 consisted of all baseline samples,
HVs and one follow-up, while profile 2 consisted
purely of follow-up samples (Figure 5). Thus, this
approach captured the immunological changes
caused by the treatment of pembrolizumab.
Reduction in PD-1 by pembrolizumab is
responsible for clustering of post-treatment
samples. By expanding the size of our PD-1-
treated cohort, we would have the power to
perform immune profiling based on patient
outcomes, which we seek to do in future studies.

DISCUSSION

Currently, immunohistochemistry of tumors is
considered the standard method for measuring
checkpoint inhibitors in cancer patients, but its
limitations are being recognised. Tumor biopsy
provides a glimpse of the tumor and disease
rather than the complete clinical picture; in

Figure 4. Percentage of cells of the parent population for patients on pembrolizumab.
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addition, if tissue is limited, limited assays can be
performed. This method also is not ideal for
longitudinal studies because of its invasive
nature.19 These challenges show the value of
immune monitoring of peripheral blood.
Furthermore, cancers without solid tumors, such
as leukaemia, or with difficult biopsies are more
suited to be monitored using peripheral blood.20

Aware of the need for blood-based immune
checkpoint testing, we have developed a
multiparameter flow cytometry assay that allows
us to measure proteins CTLA-4 and PD-1 in an
unbiased manner. The use of this approach
provides data on 19 different populations in
peripheral blood, thereby enabling a broad look
at basic immunity through leucocyte populations,
as well as discovery of specific new checkpoint-
related phenotypes. In the present study, we
applied this methodology to a HV population and
four cancer cohorts.

Differences were identified in the percentage of
leucocyte populations for HVs compared with

cancer patients. Such results have been observed
previously, considering the altered and
immunosuppressed state of cancer patients.
However, these increases or decreases in basic
general leucocyte populations are not necessarily
mimicked when measuring CTLA-4 or PD-1 on
these cells. For example, GBM patients showed no
difference from HVs in their na€ıve CD8+ T cells,
yet PD-1 was expressed on a greater number of
na€ıve CD8+ T cells in GBM patients compared to
HVs. Similarly, thyroid cancer patients had no
difference in the percentage of NK cells compared
to the HVs but did express less PD-1 on them.
These observed changes are a reflection of the
reaction of the immune system and cell activation
to different cancer types.

We identified two CTLA-4+ cell populations
that, to our knowledge, have not been described
previously: CTLA-4+CD3+ DP T cells in HVs and four
cancer cohorts, and CTLA-4+ NKT-CD8+ cells in CLL
patients. It has been postulated that DP T cells
and NKT cells are involved in tumor response and

Figure 5. Hierarchical clustering and profiling of healthy volunteers (n = 20) patients on pembrolizumab pre-treatment (n = 16) and their post-

treatment follow-up visit. Two profiles were created, profile 1 consisting of all healthy volunteers, all pre-treatment samples and one follow-up

sample. Profile 2 consisted of all follow-up samples.
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cytokine secretion21; hence, CTLA-4 expression is
reflective of the immune system’s activated status.
In our analysis of CTLA-4 on thyroid patients, we
noticed highly unusual results for 1 patient. CTLA-
4 expression was found on all measured
phenotypes of this person except na€ıve CD4+ T
cells. We could not pinpoint an exact reason for
this observation.

CTLA-4 and PD-1 differences were observed not
only between HVs and cancer patients but also
among the cancer cohorts themselves. The CLL
cohort had the most striking outcomes. Of the 15
populations measured, 11 had positivity for CTLA-
4, whereas thyroid cancer patients expressed
CTLA-4 on only memory CD4+ cells and all cohorts
expressed it on only DP T cells and NKT cells.
These differences in the CLL cohort are most
likely because of the nature of CLL as a cancer of
the blood, bone marrow and lymphatic system,
with the tumor microenvironment directly in the
peripheral blood of the patient. Our results
showed that a disease-specific approach to
studying these markers has value.

Unlike in the traditional method of analysis, we
approached our data in a disease-independent
manner to cluster patients on the basis of their PD-
1 status alone rather than cancer type. Using
hierarchical clustering of the PD-1 cells µL�1 of
each population, we identified five distinct groups.
CLL patients grouped together, yet the distribution
of the other cancer patients was independent of
disease. These results indicate immunologic
similarity among patients with haematologic
tumors but not necessarily among those with solid
tumors. This discord among patients with solid
tumors could suggest that grouping them on the
basis of immunity is a better approach when
considering immune-based therapies.

Patients in this study came from various cancer
backgrounds, and either had no prior treatment
or, as in the case of GBM patients, had previously
received temozolomide. The patients, as a
collective, were heterogeneous in age and sex, as
well as degree of progression. We recognise that
these differences can be viewed as a weakness of
the study. At the same time, we note that even
with this variation, our assay was able to detect
and classify patients on the basis of PD-1 and
CTLA-4 alone.

The methodology of identification and
categorisation of patients based on phenotypic
immune profiles rather than cancer type and the
methodology’s multiple uses have been described

previously.11 Emerging evidence now shows that
systemic immunity is a vital component of an
effective antitumor response.22 Immune profiles
affect survival in both cancer and noncancer
clinical settings, as seen in our previous study of
ALS patients with high levels of PD-1-positive T
cells, which were associated with increased
survival.11,12 This approach is likely to allow for
biomarker discovery applications, immune
monitoring of clinical trials, optimisation of
patient selection criteria and customisation of
immunotherapies to the appropriate patients. In
addition, our protocol allows an understanding of
checkpoint protein biology in different human
contexts. For example, this methodology has been
used to understand the relationship of PD-1 with
other cell phenotypes. In a study of diffuse large
B-cell lymphoma, this assay was used in
combination with our TBNK assay and showed
that PD-1-positive cell counts were inversely
associated with T-cell counts.10 With similar
methods and when evaluating the influence of
exercise on the immune system, CD45RO memory
cells were observed to express PD-1 at higher
levels than na€ıve cells.23

Substantial effort has been put in identifying
biomarkers predicting survival in patients treated
with various checkpoint inhibitors and therapeutic
combinations. Research looking at protein
expression, mutations, neoantigens, gene and
epigenetic signatures has found markers for
responders on specific cancer types. Similarly,
peripheral blood immune cells have been used as
indicators of outcome.24 For example, higher
absolute lymphocyte, specifically eosinophil
counts, and low absolute monocyte counts have
been associated with survival in patients with
melanoma who are being treated with
ipilimumab. Similarly, we found higher absolute
counts in monocytes and eosinophils in patients
receiving benefit from anti-PD-1 therapy. Other
studies show immune phenotyping of melanoma
patients receiving anti-CTLA-4 therapy indicates
response to treatment when CD4+ and CD8+

memory T cells were higher at baseline; the same
was not seen in patients receiving anti-PD-1
therapy.25 Comparatively, our results also showed
no difference in CD4+ or CD8+ memory T cells in
patients who responded to anti-PD-1 therapy.
Among the immune phenotypes of patients
receiving pembrolizumab, PD-1 positivity in T cells
was similar to patients with autoimmunity.14

Continuation of such studies through the use of
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immune monitoring may help us to better
understand immune-related adverse events and
aid in the prediction of patients who are
susceptible.

The path to predicting responders and non-
responders to checkpoint inhibitors is not well
understood. We believe the best approach will
use a multiparameter blood-based immune

monitoring assay either alone or in combination
with tumor-specific assessments. The assay
sensitivity allows for the measurement of the
distribution of major leucocyte populations and
for the expression of checkpoint proteins CTLA-4
and PD-1 on the cell surface. Monitoring the
circulating immune system has the potential to
significantly impact patient care by rapidly and
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Figure 6. Characterisation of T-cell signalling markers, CD152 PE and PD-1 PC7 antibody validation. (a) A whole blood sample from a healthy

volunteer was stained with the T-cell signalling panel. Histograms were generated from each of 10 antibodies (except CD45) and used to

delineate mononuclear populations (defined by CD45+SSClo/med). In most cases, two regions (R1 and R2) were created for each peak of

expression, including peaks with no expression (i.e. N). Forward scatter (FS) and side scatter density plots were created for each histogram peak.

Together, the specific peaks are used to identify unique phenotype combinations. (b) Validation of CD152 was done with isolated PBMCs. A

fraction of the cells were stained directly after isolation (day 0). The remaining cells were cultured for 24 h (day 1) with and without CD3CD28

Dynabeads. Stimulated cells show increased CD152 levels. Histograms were generated to show stimulation-induced CD152, as seen by R1, which

was not seen among healthy volunteers. The three samples were overlaid. (c) PD-1 antibody was validated by blocking. PBMCs with anti-PD-1

antibody before the addition of T-cell signalling mix. An FMO for PD-1 was performed on PBMCs. Both anti-PD-1 antibody and FMO showed no

R1 region. Three samples were overlaid to show reduction in PD-1. FMO indicates Fluorescence Minus One; N, no expression; PD-1, programmed

death 1; PBMC, peripheral blood mononuclear cell.
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carefully selecting patients who will benefit from
immune checkpoint inhibitor therapies. For the
non-responders, importantly, alternative
treatment strategies that may be of greater
benefit than checkpoints may be pursued.

METHODS

Patients and HVs

Peripheral blood was collected from 60 HVs and 20 patients
with GBM, 10 with liver tumors (six primary liver tumors
and four liver metastases), nine with CLL and 35 with
thyroid cancer. The Mayo Clinic Institutional Review Board
approved all study protocols. GBM patients were actively
participating in a dendritic cell vaccine trial (NCT 01957956)
and had temozolomide, surgery and radiation treatment
before sample collection. CLL patients were newly
diagnosed and had no treatment. Liver tumor patients’
samples were collected at baseline, prior to the start of
SBRT treatment.14,26 The thyroid cancer group consisted of
patients without active disease, with advanced but stable
disease and with advanced disease soon to start its
treatment. Peripheral blood was also collected from a
separate group of 26 cancer patients (21 lung, four
melanoma and one genitourinary) prior to being treated
with pembrolizumab or atezolizumab or other checkpoint
inhibitor treatment combinations and several time points
following (Supplementary table 1).

Whole blood flow cytometry and gating
strategies

Whole blood was stained on the day of collection using an
established method for the identification of multiple cell
populations by flow cytometry, along with sources for
antibodies and instrument settings, and novel analysis
methods that capture data on more than 120 phenotypes.
Staining protocol, instrument settings, reagents and
manufactures’ details are all listed in Gustafson et al.10 as
the protocol was followed without deviation. A 7-tube
panel was used to identify a variety of leucocyte
populations (TBNK lyse no wash, T cell-1, B cell, myeloid and
granulocyte)10 (monocytes and T cell-2)23 although only T
cell-2 and TBNK assays were used for the analysis described
in this manuscript. Briefly, 100 lL of fresh whole blood was
blocked for 5 min with 50 lL of mouse serum (Sigma-
Aldrich, St. Louis, MO, USA; Cat #M5905) and stained with
the appropriate antibodies for 15 min in the dark at room
temperature. Following staining, samples were lysed for
20 min with 2 mL of VersaLyse reagent (Beckman Coulter,
Indianapolis, IN, USA; Catalog #A09777) centrifuged for
5 min at 200 g and then washed with PBS-FE (PBS; Gibco;
Gaithersburg, MD, USA, Catalog #14190) containing 1%
albumin (Sigma-Aldrich; Catalog #A7034) and 5 mM EDTA
(Sigma-Aldrich; Catalog #E7889) and fixed in 1%
paraformaldehyde (Mayo Processing Laboratory, Rochester,
MN, USA). Wash step was not performed on TBNK assay;
rather, 100 lL Flow-Count Fluorospheres (Beckman Coulter;
Catalog #B96656) were added directly and sample was

collected on the flow cytometer immediately. All samples
were run on a 3-laser 10-colour Gallios flow cytometer
(Beckman Coulter, Chaska, MN, USA).

An extended analysis focused on T-cell phenotypes was
performed using markers CD152, CD45RO, CD56, CD3, CD8,
CD28, CD4 and CD45 (Supplementary table 2).23 T-cell
parent populations were characterised by side scatter,
forward scatter, CD45+, CD3+, CD4+, CD8+ and CD4+/CD8+

subpopulations. These populations were assessed for PD-1
and CTLA-4 positivity. Cell populations not meeting the
minimum criteria of 100 events were excluded from PD-1
and CTLA-4 analyses. For histogram analyses, an HV whole
blood sample was stained with the T-cell signalling panel.
Histograms were generated from each of 10 antibodies
(except CD45) and used to delineate mononuclear
populations (defined by CD45+ SSClo/med) (Figure 6). Regions
(R1 and R2) were designated for each peak of expression,
including peaks with no expression (N), for each antibody.

Forward scatter and side scatter density plots were
created for each histogram peak.

Validation of the CD152 PE antibody was performed with
isolated peripheral blood mononuclear cells (PBMCs). Cells
were divided into two fractions: unstimulated cells were
analysed immediately and stimulated PBMCs were cultured
with CD3CD28 Dynabeads (Thermo Fisher Scientific,
Waltham, MA, USA) for 24 h to increase the levels of CD152
and then were analysed (Figure 6b). The gating strategy
was determined with the use of the positive CD152
population. PD-1 was similarly validated. Two conditions
were used: in the first condition, PBMCs were blocked with
anti-PD-1 antibody before staining; for the second
condition, Fluorescence Minus One for PD-1 was performed
(Figure 6c). Both samples were used to set up the gating
strategy for PD-1.

Statistical analysis

Prism version 7.0 (GraphPad Software, Inc, La Jolla, CA, USA)
was used for the multiple t-test comparisons and graphical
representations. The approach of false discovery rate was
used for the multiple t-test comparisons with the 2-stage
step-up method of Benjamini et al.27 and a set false discovery
rate with q-value of 10%. Multiparameter analysis and
hierarchical clustering were completed as described by
Gustafson et al.12 in 2017. Hierarchical clustering of PD-1
expression was performed with Partek Genomics Suite 6.6
(Partek Inc, St. Louis, MO, USA). All phenotypes were
analysed except those with event counts < 100 in PD-1 and
CTLA-4 analyses (NKT-DP, NKT-CD4+ and NKT-DN). B-cell
counts also were excluded because they would artificially
skew clustering because of high levels in the CLL cohort. The
analysis was completed as described by Gustafson et al.11 in
2013. Statistical significance of the group distribution was
verified with Fisher’s exact test. Significance between profiles
was determined with a one-way analysis of variance.
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