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Identification of G6PC as a potential prognostic 
biomarker in hepatocellular carcinoma based on 
bioinformatics analysis
Li Tian, MMa,b,c , Yong Liao, PhDa,b,c,*

Abstract 
Hepatocellular carcinoma (HCC) has high mortality and incidence rates around the world with limited therapeutic options. There 
is an urgent need for identification of novel therapeutic targets and biomarkers for early diagnosis and predicting patient survival 
with HCC.

Several studies (GSE102083, GSE29722, GSE101685, and GSE112790) from the GEO database in HCC were screened and 
analyzed by GEO2R, gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were conducted with 
the Database for Annotation, Visualization and Integrated Discovery. The protein-protein interaction network was plotted and the 
module analysis was performed using Search Tool for the Retrieval of Inter-acting Genes/Proteins database and Cytoscape. The 
expression and survival of key genes were identified using UALCAN, Kaplan–Meier Plotter and ONCOMINE online databases, and 
the immune infiltration level of key genes was analyzed via the Tumor Immune Estimation Resource (TIMER) database.

Through database analysis, eight key genes were finally screened out, and the expressions of cyclin-dependent kinase 
regulatory subunit 2 and glucose-6-phosphatase catalytic (G6PC), which were closely related to the survival of HCC patients, 
was detected by using UALCAN. Further analysis on the differential expression of G6PC in multiple cancerous tumors and normal 
tissues revealed low expression in many solid tumors by Oncomine and TIMER. In addition, Kaplan–Meier plotter and UALCAN 
database analysis to access diseases prognosis suggested that low expression of G6PC was significantly associated with poor 
overall survival in HCC patients. Finally, TIMER database analysis showed a significant negative correlation between G6PC and 
infiltration levels of six kinds of immune cells. The somatic copy number alterations of G6PC were associated with B cells, CD8+ 
T cells, CD4+ T cells, macrophages, dentritic cells and neutrophils.

These bioinformatic data identified G6PC as a potential key gene in the diagnosis and prognosis of HCC.

Abbreviations: BP = biological process, CKS2 = cyclin-dependent kinase regulatory subunit 2, COAD = colon adenocarcinoma, 
DAVID = Database for Annotation, Visualization, and Integrated Discovery, DEGs = differentially expressed genes, G6PC = glucose-
6-phosphatase catalytic, GEO = gene expression omnibus, GEPIA = gene expression profiling interactive analysis, GO = gene 
ontology, HCC = hepatocellular carcinoma, KEGG = Kyoto encyclopedia of genes and genomes, KICH = kidney chromophobe, 
KIRC = kidney renal clear cell carcinoma, KIRP = kidney renal papillary cell carcinoma, LIHC = liver hepatocellular carcinoma, 
MCODE = molecular complex detection, OS = overall survival, PPI = protein-protein interaction, SCNAs = somatic copy number 
alterations, STAD = stomach adenocarcinoma, STRING = Search Tool for the Retrieval of Interacting Genes, TCGA = The Cancer 
Genome Atlas, TIMER = Tumor Immune Estimation Resource.
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1. Introduction

The latest 2020 global cancer statistics report released by the 
International Agency for Research on Cancer of the World 
Health Organization showed that live cancer is a major global 
health problem that both developing and developed countries 

are facing.[1] Hepatocellular carcinoma (HCC) is the most 
common liver cancer, accounting for approximately 90% 
of cases.[2] Local regional metastasis and recurrence are the 
primary causes of death in patients with HCC.[3] At present, 
although there are a variety of treatments for HCC, such as 
hepatectomy, liver transplantation and molecular targeting 
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drugs (sorafenib), the treatment effect is still not ideal due to 
high recurrence and high metastasis of HCC.[4–6] Besides, the 
5-year overall survival rate of advanced HCC is still less than 
18% and the main causes of poor prognosis were tumor metas-
tasis and postoperative recurrence.[7–9] However, most patients 
were in the stage of advanced HCC by the time of diagnosis in 
the clinic, and lost the opportunity of surgical resection.[10–12] 
Therefore, screening out new potential biomarkers for HCC 
prognosis is of great significance for reducing the mortality of 
HCC patients, improving prognosis and realizing individual-
ized targeted therapy.

With the rapid development of high-throughput sequenc-
ing technology and bioinformatics technology, more and more 
researchers are using bioinformatics analysis to explore the 
molecules and pathways that play an important role in the 
occurrence and development of HCC so as to predict poten-
tial biomarkers of HCC.[13,14] Gene Expression Omnibus 
(GEO) provides us with a lot of disease-related expression 
profile information, which contains more than 32,000 public 
datasets from 13,000 laboratories, including second-genera-
tion gene chip sequencing and high-throughput sequencing, 
providing important data support for multi-sample tumor 
studies.[15,16] More and more studies are based on data mining 
of GEO platform, and a large number of experiments have 
proved that the key genes mined play an important role in 
the process of cancer occurrence and development.[17,18] This 
study used the GEO platform dataset and aimed to integrate 
multiple datasets to find biomarkers related to HCC prog-
nosis. Gene chip is an efficient and high-throughput tech-
nology to obtain biological information, which can detect 
and analyze differentially expressed genes (DEGs) between 
HCC and normal liver tissues.[19,20] In this study, four HCC 
gene chips were downloaded from GEO database, includ-
ing GSE102083, GSE29722, GSE101685 and GSE112790. 
GEO2R was used to identify DEGs in 337 HCC tissues 
and normal tissues. Next, the Database for Annotation, 
Visualization and Integrated Discovery (DAVID) database 
was applied to carry out the gene ontology (GO) Functional 
Annotation and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) Pathway analysis. The Protein-protein interac-
tion (PPI) network was built by using Search Tool for the 
Retrieval of Interacting Genes (STRING) and visualized with 
Cytoscape. The gene with the highest Molecular Complex 
Detection (MCODE) score in each module was taken as 
the key gene. Among the identified genes, the expression of 
cyclin-dependent kinase regulatory subunit 2 (CKS2) and 
glucose-6-phosphatase catalytic (G6PC) was closely related 
to poor prognosis. Besides, G6PC in HCC is rarely reported. 
Therefore, we used several databases such as UALCAN, 
Kaplan–Meier plotter and ONCOMINE to comprehensively 
analyze G6PC expression and its association with prognosis. 
In addition, Tumor Immune Estimation Resource (TIMER) 
analysis displayed the expression of G6PC and correlation 
with tumor-infiltrating immune cells. These results provided 
strong evidence to illustrate that G6PC could be a potential 
biomarker to predict HCC diagnosis and prognosis.

2. Materials and Methods

2.1. Screening microarray datasets

GEO database (https://www.ncbi.nlm.nih.gov/geo/)[21] stores 
data from second generation chips and we can retrieve some 
experimental sequencing data uploaded by others. We down-
loaded four microarray datasets (GSE102083, GSE29722, 
GSE101685, and GSE112790) from GEO datasets. They have 
the following four characteristics in common: (a) Expression 
profiling by array; (b) The sample was composed of HCC and 
normal liver samples; (c) They all came from the same platform: 
GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 

Plus 2.0 Array; (d) They were updated recently (2019–2020). 
These datasets contained 369 HCC and 47 liver samples alto-
gether. GSE102083 included 152 liver cancers and 14 normal 
livers in Japan. GSE29722 contained 10 pairs of tumor samples 
and normal liver tissues in Canada. GSE101685 included 24 
liver cancer samples and 8 normal liver controls in Taiwan and 
GSE112790 contained 183 HCC tissues and 15 liver tissues in 
Japan.

2.2. Identification of DEGs

GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/)[21] can 
help us to analyze DEGs, which is an useful online software. 
Setting adjusted P < .05 and LogFC (Fold Change) > 1.5 or 
<−1.5 to define DEGs. LogFC < −1.5 was considered upregu-
lated genes and LogFC > 1.5 down-regulated genes. An online 
tool − Calculate and draw custom Venn diagrams (http://bioin-
formatics.psb.ugent.be/webtools/Venn/) was used to calculate 
the overlap of DEGs.

2.3. Functional enrichment analysis of DEGs

The DAVID (https://david.ncifcrf.gov/)[22–24] database was 
employed to carry out Gene Ontology functional and Kyoto 
Encyclopedia of Genes and Genomes pathway analysis of DEGs, 
GO terms contain biological process (BP), cellular component 
and molecular function. KEGG[25] pathway analysis is helpful 
for further understanding the function of DEGs. The screening 
criteria were P<.01 with gene counts >10.

2.4. PPI Network Construction and module analysis

STRING/Proteins database (https://string-db.org/)[26] is a data-
base that searches for protein-protein interactions. We selected 
“Multiple proteins” in the left column and entered gene names 
in the right column, and then picked the organism as “Homo 
sapiens”, choose the minimum required interaction score as 
“medium confidence (0.400)” and hided disconnected nodes in 
the network, clicked the “Export” option, downloaded the file 
in TSV format and imported it into Cytoscape software (ver-
sion 3.7.2; https://cytoscape.org/)[27] which is a very powerful 
tool for visualizing network data. Then, a plug-in in Cytoscape 
MCODE[28] was used to cluster the protein network to build 
functional modules. The default parameters are: degree cut-
off = 2, node density cutoff = 0.1, node score cutoff = 0.2, k-core = 2 
and max.depth = 100.

2.5. Expression and survival analysis of hub genes

In order to comprehensively analyze the effect of key gene 
expression on survival rate, we used the following databases. 
UALCAN (http://ualcan.path.uab.edu./) is an online website 
that can be used to mine and analyze cancer data, and the main 
source of the database is The Cancer Genome Atlas (TCGA), 
including expression profiling and survival analysis.[29] First, we 
entered gene symbols, selected TCGA dataset, and then clicked 
“Expression” or “Survival” to obtain the expression level of hub 
genes and its effect on patient survival. P value was less than .01.

Two genes that met the above screening criteria − CKS2 and 
G6PC. Kaplan–Meier Plotter (http://kmplot.com/analysis/) 
was used to evaluate the overall survival rate of key genes.[30] 
Moreover, we also performed CKS2 and G6PC correlation 
analysis via Gene Expression Profiling Interactive Analysis 
(GEPIA; http://gepia.cancer-pku.cn/).[31] The threshold was 
logrank P value <.01 in Kaplan–Meier Plotter and P value 
<.01 in GEPIA. Literature review showed that CKS2 has been 
proved to predict the prognosis of HCC, so next G6PC was 
selected to conduct further analysis. ONCOMINE (https://
www.oncomine.org/) is a tumor database which can compare 
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gene expression between normal and cancerous tissues in dif-
ferent cancers.[32] The threshold was P value <.01, fold change 
<1.5, and gene rank came from all. A stratified analysis of 
G6PC was also conducted according to patients’ gender, race 
and pathological stage by Kaplan–Meier Plotter (log rank 
P < .05).

2.6. TIMER database analysis

TIMER (https://cistrome.shinyapps.io/timer/) website, which is 
divided into seven modules, the first six modules present TCGA 
data and some analysis, and the last module provides quan-
titative analysis of the infiltration level of immune cells.[33,34] 
Here, we chose Diff Exp module to study the differential gene 
expression between tumor and normal tissues; Gene module 
to visualize the correlation of its expression with immune infil-
tration level in diverse cancer types and somatic copy number 
alteration (SCNA) module to compare infiltration levels among 
tumors with different SCNAs. SCNAs include deep deletion, 
arm-level deletion, diploid/normal, arm-level gain, and high 
amplification. P value less than .01 was considered statistically 
significant.

3. Results

3.1. Screening and identification of DEGs in HCC

Details of gene expression profile datasets such as dataset ID, 
country, the number of tumor and normal samples, and plat-
form information, were demonstrated in Table 1. Totally, 669 
DEGs (271 upregulated genes and 398 down-regulated genes), 
586 DEGs (246 upregulated genes and 340 down-regulated 
genes), 830 DEGs (289 upregulated genes and 541 down-reg-
ulated genes) and 678 DEGs (284 upregulated genes and 394 
down-regulated genes) in GSE102083, GSE29722, GSE101685, 
and GSE112790 datasets, respectively. Venn diagram online 
tool was used to calculate overlapped DEGs. A sum of 337 com-
mon DEGs (Fig. 1A) was found in all four datasets, consisting of 
126 upregulated genes (Fig. 1B) and 211 down-regulated genes 
(Fig. 1C).

3.2. GO and KEGG pathway analysis of DEGs

GO and KEGG pathway analysis was performed by DAVID. 
The results of KEGG showed that upregulated genes were 
mainly enriched in cell cycle, while down-regulated genes were 
significantly involved in metabolic pathways and retinol metab-
olism (Fig. 2A).

For upregulated genes, the BP included cell division and 
mitotic nuclear division. For down-regulated genes, the BP con-
tained oxidation-reduction process and proteolysis (Fig.  2B). 
In terms of cellular components, upregulated genes were most 
accumulated in condensed chromosome kinetochore and chro-
mosome, centromeric region, while down-regulated genes in 
organelle membrane and extracellular region (Fig. 2C). In addi-
tion, molecular function analysis indicated that upregulated 
genes predominantly participated in Adenosine Triphosphate 
(ATP) binding and protein binding, while down-regulated genes 
in oxidoreductase activity, acting on paired donors, with incor-
poration or reduction of molecular oxygen and heme binding 
(Fig. 2D).

3.3. Modular analysis and hub gene identification

The PPI networks of 337 common DEGs were constructed 
using the STRING website and then imported into Cytoscape 
to identify critical gene modules. It demonstrates that a total of 
309 items were filtered into the PPI network, and 37 of the 309 
DEGs were disconnected from the network. Ultimately, a total 
of 272 nodes and 3110 edges were filtered by Cytoscape soft-
ware. Then we analyzed the entire PPI network using MCODE 
plugin and obtained 8 modules (Fig. 3). Genes with the highest 
MCODE score of each module were selected as the hub genes. 
The node color from light to dark indicates the MCODE scores 
are from low to high. Table 2 presented the network informa-
tion related to hub genes, including degree, betweenness central-
ity and closeness centrality.

Validation of G6PC and CKS2 expression and survival anal-
ysis in a variety of cancers.

The UALCAN platform was applied to validate the 
expression level and its effect on survival rate. We verified 
8 key genes by putting them on the UALCAN website and 
found that the expression level of CKS2 in tumor tissues was 
higher than that in normal tissues (P = 1.62E-12). The lev-
els of CKS2 expression were inversely correlated with sur-
vival in HCC patients, that is, the higher the expression of 
CKS2, the lower the survival rate was (P < .0001, Fig. 4A, B). 
Whereas, G6PC had lower expression in tumor specimens 
compared to normal or para-tumor specimens (P = 1.46E-
02), and the lower level of G6PC expression the lower 
probability of a long-term survival in patients with HCC 
(P = .0015, Fig. 4C, D). We also performed GEPIA to assess 
the correlation between CKS2 and G6PC, and found that 

Table 1

Details of four gene chip datasets.

Datasets ID Country Platform Tumor samples Normal samples 

GSE102083 Japan GPL570 152 14
GSE29722 Canada GPL570 10 10
GSE101685 Taiwan GPL570 24 8
GSE112790 Japan GPL570 183 15

GPL = gene expression omnibus platform, GSE = gene expression omnibus series.

Figure 1. Identification of common DEGs in mRNA expression profiling datasets through Venn diagram analysis. (A) An overlap of 337 DEGs from these 
four datasets were selected with adjusted P < .05 and |logFC| > 1.5. (B) Overlapping upregulated DEGs. (C) Overlapping downregulated DEGs. Abbreviation: 
DEGs = differently expressed genes.

https://cistrome.shinyapps.io/timer/
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Figure 2. Functional enrichment analysis of the overlap DEGs. (A) The KEGG pathway enrichment analysis of DEGs. (B) Enrichment of biological processes. (C) 
Enrichment of cellular components. (D) Enrichment of molecular functions. The screening criteria was P < .01 with gene counts >10. Color variable represents 
−Log10 (P value), point size variable represents gene count, shape variable represents different groups, triangle represents upregulated genes, circle represents 
downregulated genes. Abbreviations: DEGs = differently expressed genes, Down = downregulated genes, KEGG = Kyoto encyclopedia of genes and genomes, 
Up = upregulated genes.

Figure 3. PPI network and MCODE modular analysis of DEGs. The PPI network of DEGs was constructed using Cytoscape software and divided into 8 mod-
ules via MCODE plugin. The node color from light to dark represents the MCODE score from low to high. (A–H) stands for module 1–module 8. Abbreviations: 
DEGs = differently expressed genes, MCODE = molecular complex detection, PPI = protein-protein interaction.
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there was a correlation between CKS2 expression and G6PC 
expression (P = .00068, R = −0.15, Fig. 4E). In addition, CKS2 
has already been reported as a prognostic indicator in HCC, 
and G6PC has been validated as a prognostic biomarker in 
KIRC.[35,36] Hence, we chose G6PC instead of CKS2 for fur-
ther verification in HCC and other tumor types. We used 
ONCOMINE and TIMER to study the expression of G6PC 
across various TCGA tumors. We found that COAD (Colon 
adenocarcinoma), STAD (Stomach adenocarcinoma), liver 
hepatocellular carcinoma, and KIPAN had lower G6PC 
expression in both TIMER (Fig. 5A) and ONCOMINE data-
bases (Fig.  5B, **P < .01, ***P < .001). KIPAN includes KICH 
(Kidney chromophobe), KIRC (Kidney renal clear cell car-
cinoma), and KIRP (Kidney renal papillary cell carcinoma). 
We then used UALCAN to evaluate the impact of G6PC 
expression on patients survival in these types of cancers and 
the result demonstrated that G6PC had lower expression 
in KIRC in comparison with normal specimens (P = 3.97E-
08), and the lower expression level was related to poor sur-
vival rate (P < .0001, Fig. 5C, D). Meanwhile, Kaplan–Meier 

Plotter analysis demonstrates that the lower levels of G6PC 
expression, the poorer prognosis in patients with either liver 
hepatocellular carcinoma (log rank P = 7.3E-06) or KIRC 
(log rank P = 9.3E-11, Fig. 5E, F).

3.4. G6PC expression predicts OS (overall survival) in 
patients with HCC

We did a prognosis analysis based on the expression levels of 
G6PC versus gender, race, and pathological stages of patients 
with HCC. The results showed that there were significant dif-
ferences in the expression of G6PC between male (log rank 
P = 2.2e-07, Fig.  6A) and female (log rank P = .35, Fig.  6B) 
patients. No significant differences in G6PC expression were 
found between Asian (log rank P = 6.6e-05, Fig. 6C) and White 
(log rank P = .015, Fig. 6D) HCC patients. There were no sig-
nificant differences in G6PC expression between stage 2 to 3 
(log rank P = .0038, Fig. 6E) and stage 3 to 4 (log rank P = .01, 
Fig. 6F) HCC patients as well.

Table 2

Hub gene related network information.

Genes MOCDE Score Degree Betweenness centrality Closeness centrality 

CKS2 50.78616352 59 0.00048200 0.88311688
C8B 7 8 0.0042735 0.65
CYP3A4 5.333333333 6 0.03333333 1
LPA 5 7 0.23260073 0.66666667
G6PC 4 6 0.22649573 0.61904762
SOCS2 3 3 0 1
CFP 3.047619048 2 0 1
ACADL 3 3 0.25 0.8

ACADL = Acyl-CoA dehydrogenase long chain, C8B = complement C8 beta chain, CFP = complement factor properdin, CKS2 = cyclin-dependent kinase regulatory subunit 2, CYP3A4 = cytochrome P450 
family 3 subfamily A member 4, G6PC = glucose-6-phosphatase catalytic, LPA = lipoprotein(A), MCODE = molecular complex detection, SOCS2 = suppressor of cytokine signaling 2.

Figure 4. Alterations of hub gene expression and the impact on patients survival. CKS2 was highly expressed in HCC than that in normal tissues and its high 
expression had relation with unfavorable prognosis (A, B). While G6PC was lowly expressed in HCC compared with normal samples and its low expression had 
an adverse effect on patients survival (C, D). There was a connection between CKS2 expression and G6PC expression (E). Abbreviations: CKS2 = cyclin-depen-
dent kinase regulatory subunit 2, HCC = hepatocellular carcinoma, G6PC = glucose-6-phosphatase catalytic.
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3.5. G6PC expression correlates with immune infiltration in 
HCC

As shown in Figure 7A, G6PC expression level was positively 
correlated with tumor purity (partial.cor = 0.11, P = 4.1e-02), 
while negatively correlated with infiltration of B cells (partial.
cor = −0.171, P = 1.48e-03), CD8+ T cells (partial.cor = −0.16, 
P = 2.95e-03), CD4+ T cells (partial.cor = −0.16, P = 2.99e-03), 
macrophages (partial.cor = −0.293, P = 3.48e-08), neutrophils 
(partial.cor = −0.107, P = 4.71e-02) and dendritic cells (partial.
cor = −0.192, P = 3.73e-04). SCNA module was used to exam-
ine the effect of different SCNAs of genes on immune cell infil-
trations, it revealed that among the various SCNAs, the copy 
number amplification was positively correlated with immune 
cell infiltration – the higher of copy number amplification, the 
stronger infiltration of B cells (*P < .05), CD8+ T cells (**P < .01), 
CD4+ T cells (***P < .001), macrophages (*P < .05), neutrophils 
(***P < .001), and dendritic cells (*P < .05, Fig. 7B).

4. Discussion
HCC is one of the most common malignant tumors in the world, 
ranking second in mortality and numerous gene networks and 
multiple signal transduction pathways are dysregulated in 
HCC.[37,38] The rapid development of modern biotechnology and 
high-throughput sequencing technologies help people explore 
the mechanism of HCC pathogenesis at the molecular level, so 
as to further explore the occurrence and development process of 
HCC. However, the understanding of the biological mechanism 
of HCC is limited, and most of these studies are focused on 
a single dataset. Although HCC has different genomic charac-
teristics, discovering the commonalities between heterogeneous 
genomic profiles is crucial for us to understand the develop-
ment and progress of HCC. Therefore, the purpose of this study 

was to investigate the genes that were in common change in 
four HCC microarray datasets.[38] In this study, computational 
bioinformatics analysis was used to systematically analyze the 
microarray datasets between HCC and adjacent tissues. By 
computational analysis of the differences in genome-wide gene 
expression between HCC tissues and para-tumor normal tis-
sues, a total of 337 DEGs were identified, among which 126 
genes were upregulated and 211 genes were down-regulated. 
GO pathways of DEGs were mainly enriched in cell division, 
condensed chromosome kinetochore and oxidoreductase activ-
ity, acting on paired donors, with incorporation or reduction 
of molecular oxygen. MCODE modular analysis of DEGs 
authenticated 8 key genes and the expression levels of CKS2 
and G6PC impacted the survival of HCC patients with statisti-
cal significance.

CKS2, officially called cyclin-dependent kinase regula-
tory subunit 2, also known as cell cycle regulator, is elevated 
in HCC.[39] CKS2 has been shown to be closely related to the 
progression of a variety of cancers. For example, studies have 
shown that expression of CKS2 is associated with poor sur-
vival in patients with tongue squamous cell carcinoma and have 
found that the CKS2 gene may have the potential as a biomarker 
for predicting the progression of superficial bladder cancer to 
muscle invasive cancer.[40,41] CKS2 has been confirmed as an 
unfavorable prognostic marker in HCC.[36,39,42] Previous reports 
demonstrate that overexpression of CKS2 may facilitate pro-
liferation of HCC cells by reducing PTEN expression.[42] High 
expression of EGFL7 can regulate HCC cell proliferation and 
apoptosis through CKS2-mediated Wnt/β-catenin signaling.[43]

The G6PC gene family consists of three members: G6PC, 
G6PC2 and G6PC3. These genes have different tissue-specific 
expression patterns, and mutations in all three genes have been 
linked to different diseases in humans.[44] G6PC, also called 
Glucose-6-phosphatase catalytic subunit, multiple studies have 

Figure 5. G6PC expression in multiple cancers and its influence on OS. TIMER and ONCOMINE results both illustrated that G6PC was lowly expressed in 
COAD, STAD, LIHC, and KIPAN (*P < .05, **P < .01, ***P < .001, A, B). We then employed UALCAN to determine whether G6PC expression had correlation with 
patients survival in several cancers above except for HCC (P < .01). Results showed that G6PC was expressed lowly in KIRC as well and its low expression 
was associated with poor survival (C, D). Kaplan–Meier Plotter confirmed that G6PC expression was in connection with poor OS in HCC and KIRC again (E, F). 
Abbreviations: COAD = colon adenocarcinoma, G6PC = glucose-6-phosphatase catalytic, HCC = hepatocellular carcinoma, KIPAN includes KICH (kidney chro-
mophobe), KIRC (kidney renal clear cell carcinoma) and KIRP (kidney renal papillary cell carcinoma)LIHC = liver hepatocellular carcinoma, OS = overall survival, 
STAD = stomach adenocarcinoma, TIMER = tumor immune estimation resource.
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Figure 6. G6PC expression predicts HCC patients OS independent on race and stage, but gender (log rank P < .05). There were significant differences in the 
expression of G6PC between male (A) and female (B) patients. No significant differences in G6PC expression were found between Asian (C) and White (D) 
HCC patients. There were no significant differences in G6PC expression between stage 2 to 3 (E) and stage 3 to 4 (F) HCC patients as well. Abbreviations: 
G6PC = glucose-6-phosphatase catalytic, HCC = hepatocellular carcinoma, OS = overall survival.

Figure 7. Correlations of GPC expression with infiltration of immune cells in LIHC. (A) G6PC expression had a positive relationship with tumor purity and a neg-
ative relationship with infiltration of immune cells such as B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils and dentritic cells. (B) High amplication 
of G6PC had strong correlation with infiltration of immune cells. The box chart showed the distribution of each immune subgroup in each copy number state of 
LIHC (*P < .05, **P < .01, ***P < .001). Abbreviations: G6PC = glucose-6-phosphatase catalytic, LIHC = liver hepatocellular carcinoma.
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shown that its high expression was significantly correlated with 
short-term recurrence and poor prognosis of ovarian cancer, 
and was expected to be one of the predictors of prognosis and 
recurrence of ovarian cancer.[45] Here, we found that G6PC was 
down-regulated in a variety of tumors including HCC and KIRC, 
and low G6PC expression correlated with an unfavorable prog-
nosis in HCC and KIRC.[35,46] Chen et al have pointed out that 
G6PC can act as an independent prognostic factor, therefore, we 
then focused on exploring the association between G6PC and 
HCC. It has been shown that the expression of G6PC, which 
encodes the key gluconeogenesis enzyme glucogen-6-phospha-
tase, was significantly reduced in HCC, which was consistent 
with our research.[47] In our study, G6PC expression negatively 
correlated with the OS in HCC patients. Moreover, G6PC expres-
sion predicts HCC patients OS independent on race and stage, 
but gender. Besides, G6PC expression is significantly positively 
related to tumor purity. The reason is that Figure 5A showed 
that the expression level of G6PC in hepatoma cells is lower 
than that in normal hepatocytes. However, the purpose here is 
to illustrate the correlation of G6PC expression with immune 
infiltration level. Tumor purity is a major confounding factor in 
this analysis, since most immune cell types are negatively cor-
related with tumor purity. In the database of Human Protein 
Atlas, we found that G6PC is mainly expressed in hepatocytes, 
proximal enterocytes and renal tubular epithelial cells, while 
immune cells do not express G6PC protein under normal cir-
cumstances. Therefore, the higher the tumor purity, the higher 
the expression level of G6PC and the lower the level of immune 
infiltration. TIMER analysis also showed a negative correla-
tion between G6PC expression and infiltration of immune cells 
within the tumor, such as infiltrating B cells, CD8+ T cells, CD4+ 
T cells, macrophages, neutrophils and dendritic cells. The result 
suggests that G6PC may be involved in regulating the infiltration 
of immune cells in tumor microenvironment. G6PC encodes the 
key enzyme glucose-6-phosphatase, which functions in catalyz-
ing glucose-6-phosphate into glucose during gluconeogenesis, 
thus its reduced expression resulting in decreased gluconeogen-
esis and reduced level of glucose as well, which may eventually 
affect tumor cell proliferation and tumor progression.[47] Thus, 
G6PC may be used as a potential prognostic marker for HCC.

In summary, this study clarified the expression of G6PC in a 
variety of tumors, and its low expression was associated with 
poor prognosis of HCC, which may be used as a new potential 
prognostic marker and a potential molecular target for targeted 
therapy of HCC. However, this study had some limitations. 
First, clinical data from GEO did not apply to every sample. In 
addition, the microarray data were from different stages of liver 
cancer, and the expression levels of certain genes may not be 
exactly the same at different stages. Finally, the specific molec-
ular mechanisms and biological functions of these potential 
candidate genes remained to be verified by further experimental 
studies, which could be extended to the interpretation of a vari-
ety of omics data including transcriptome, proteome, non-cod-
ing RNA, epigenome, metabolome and biological system level.

5. Conclusions
In this study, bioinformatics analysis of microarray data and 
literature review of HCC showed that there were interactions 
between core genes. G6PC may be a potential biomarker for the 
diagnosis and prognosis of HCC, which will be conducive to 
an in-depth understanding of the molecular mechanism of the 
development of HCC.
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