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Adducin (ADD) is a family of membrane skeleton proteins including ADD1, ADD2, and ADD3 that are encoded by distinct genes
on different chromosomes. Adducin is primarily responsible for the assembly of spectrin-actin network that provides physical
support to the plasma membrane and mediates signal transduction in various cellular physiological processes upon regulation
by protein kinase C-dependent and calcium/calmodulin-dependent pathways. Abnormal phosphorylation, genetic variations, and
alternative splicing of adducinmay contribute to alterations in cellular functions involved in pathogenic processes.These alterations
are associated with a wide range of diseases including cancer. This paper begins with a discussion on how adducin partakes in
the structural formation of membrane skeleton, its regulation, and related functional characteristics, followed by a review on the
pathogenesis of hypertension, biliary atresia, and cancer with respect to increased disease susceptibility mediated by adducin
polymorphism and/or dysregulation. Given the functional diversity of adducin in different cellular compartments, we aim to
provide a knowledge base whereby its pathophysiological roles can be better understood. More importantly, we aim to provide
novel insights that may be of significance in turning the adducin model to clinical application.

1. Introduction

Although adducin functions primarily as a membrane
cytoskeletal protein, it is also an essential molecule in main-
taining a wide range of physiological functions. Aberrant
alterations of adducin resulting from genetic, transcriptional,
epigenetic, and posttranslationalmodifications could be fatal.
While its pathogenic role in hypertension has been known for
decades, its role in other diseases including biliary atresia and
cancer was recognized only in recent years. This review sum-
marizes the characteristics of adducin based on its structure
and function, its dysregulation, and involvement in different
disease pathogenesis. Recent findings on adducin in cancer
will also be discussed including its controversial roles as an
oncoprotein and tumor suppressor. A better understanding of
these particular properties of adducin may provide valuable
insights into direct future studies in the identification of novel
biomarkers and possibly new therapeutic tools.

2. Adducin in Membrane Cytoskeleton

Membrane skeleton was first studied in mammalian red
blood cells.The latter are nonnucleated cells with a supported
lipid bilayer and the ability to withstand high shear force
within the circulatory system [1].This lipid-based membrane
structure was later extracted and studied [2]. On electron
microscopy, the membrane skeleton was found to consist
of long spectrin filaments that are interconnected by actin-
containing junctions, thus forming a scaffold of polygonal
network [3, 4] (Figure 1).

This spectrin-actin lattice forms connections and attaches
to plasma membrane through two protein-protein linkages.
The first linkage is mediated by ankyrin, which binds to
the cytoplasmic domain of transmembrane protein Band 3
and 𝛽-spectrin [5–7]. The second linkage is through protein
4.1 that binds transmembrane protein glycophorin C on
its cytoplasmic domain and binds to the N-terminus of
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Figure 1: The structural proteins in the spectrin-based membrane skeleton at the cytoplasmic surface of plasma membrane. Spectrin is a rod-
shaped protein that binds with actin filaments at each end. Spectrin and actin associate with accessory proteins (ankyrin and protein 4.1)
at the junctional complex and connect with tropomyosin and tropomodulin to form a polygonal structure in the membrane cytoskeleton.
GlycophorinC andBand 3 are the integralmembrane proteins involved in the spectrin-based skeleton conferring themembranewith strength
and deformability.

𝛽-spectrin [8, 9], thus linking the spectrin skeleton to the
membrane. A similar interaction that links the spectrin
skeleton with plasma membrane has recently been identified
between adducin and glucose transporter-1 [10]. Protein 4.1
also exerts its function at spectrin-actin junctions [11–13],
where it interacts with other cytoskeleton proteins including
tropomodulin, tropomyosin, protein 4.9, and adducin and
regulates the formation of spectrin-actin network [14, 15].
Besides providing physical support to the cell membranes,
the spectrin-based membrane skeleton is also involved in
the regulation of membrane trafficking [16], formation of
signaling complex and cell adhesion complex [17], movement
of membrane proteins [18–20], and cell motility [21].

Back in the early 1970s, spectrin was found to interact
with actin alone at a very low affinity [22–24], raising the
question of how spectrin and actin were able to form the
cytoskeletal network mentioned above. It was later found
that the assembly between spectrin-actin was facilitated by
two proteins: protein 4.1 [11, 12] and adducin [25–27]. Unlike
protein 4.1, adducin is preferentially associated with spectrin-
actin complex as compared to spectrin or actin alone and
is a crucial assembly factor that recruits and promotes the
association of spectrin to actin [28, 29].Namedby its ability in
‘adducing’ the formation of spectrin-actin complex, adducin
acts as an assembly factor for the formation of spectrin-actin
membrane skeleton. As it self-associates, it forms an actin-
binding domain located at the extended tails to bundle with
actin filaments at the sides [27], while the flexible tail allows
adducin to bind with large molecules including spectrin and
actin filaments simultaneously [30]. Such assembly of the
spectrin-actin lattice is facilitated by adducin in an ordered
pathway reaction. Beginning with the binding of spectrin to
actin, adducin then associates itself with the spectrin-actin
complex, recruits additional spectrin to the assembly lattice,
and bundles and caps the fast-growing barbed end of actin
filaments to prevent the addition or loss of actin subunits
[27–29, 31–33]. Other accessory proteins mentioned earlier
are also required for the assembly of spectrin-actin network
in membrane skeleton.

3. Adducin Structure, Subunits,
and Localization

Adducin is encoded by three different yet closely related
genes [34, 35], referred to as 𝛼-, 𝛽-, and 𝛾-adducin or ADD1,
ADD2, and ADD3, respectively, mapping to three different
chromosome locations. It is expressed as heterotetramers
in either 𝛼/𝛽 or 𝛼/𝛾 heterodimeric combinations. Gardner
and Bennett were the first group to isolate and identify the
membrane-associated protein adducin from red blood cell
cytoskeleton based on its calmodulin binding activity [25].
Adducin is associated exclusively with plasma membranes
and is detected in a wide range of tissues [29, 36, 37].
Other than red blood cells that contains 50 pmol per mg
of membrane protein, brain tissue has the most abundant
adducin (12 pmol permgmembrane protein) among all other
tissues, suggestive of certain specialized functions of adducin
in nerve cells [29]. While 𝛼- and 𝛾-adducins are ubiquitously
expressed and 𝛼/𝛾 heterodimers are found in platelets and
most other nonerythroid cells [35, 38], 𝛽-adducin is tissue-
specific and restricted to the brain and hematopoietic tissues
as 𝛼/𝛽 heterodimers [34, 35, 39]. It has been reported that the
physical and functional properties of red blood cell adducin
and brain adducin are indeed closely related [29].

Polypeptide mapping of adducin has revealed the struc-
tural and functional properties of different domains [30].
Adducin subunits are related in sequence and have simi-
lar domain structures, containing an N-terminal globular
head domain, a neck domain, and a C-terminal protease-
sensitive tail domain that is homologous to myristoylated
alanine-rich C-kinase substrate (MARCKS) protein [30]. Li
et al. described the importance of subunit oligomerization
necessary for its activities and observed that adducin does
not exist as monomers but forms dimers or tetramers in its
neck and probably head domains [40]. Such head-head and
even tail-tail contact was shown to be essential inmaintaining
the oligomeric conformation of equilibrium [30, 34]. Among
the three subunits, the 22-residue MARCKS-related tail
domain is highly conserved and contains calmodulin binding
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sequence as well as abundant protein kinase A/protein kinase
C (PKA/PKC) phosphorylation sites [30, 34]. Phosphoryla-
tion sites for PKA and Rho-kinase have also been identified
at around the neck domain of adducin subunits; however,
similar phosphorylation site is lacking in the head domain,
rendering it unable to bind calmodulin or interact with
spectrin and actin [30]. The structural characteristics of the
MARCKS-related tail domain are essential for its interac-
tions with other proteins, suggesting a role in mediating
spectrin-actin assembly through the fundamental regulation
of adducin functions.

Cellular localization of adducin is compatible with its
roles in various cellular functions. For example, adducin is
localized at spectrin-actin junctions inmature red blood cells
and is expressed during early erythropoiesis [41, 42]. It is also
concentrated at sites of cell-cell contact in epithelial tissues,
but restricted to the lateral cell borders of intestinal epithelial
cells. It is expressed in cultured cells such as keratinocytes
and Madin-Darby Canine Kidney (MDCK) cells and serves
as a constituent in synaptic structures. Moreover, adducin
is highly expressed at dendritic spines, platelets, and axon
growth cones in cultured neurons [29, 36, 43, 44]. Recent
evidence shows that adducin could be subjected to phos-
phorylation and also to be redistributed and translocated to
nucleus possibly in both phosphorylated and unphospho-
rylated form [45, 46]. However, redistribution of adducin
appears to be calcium-calmodulin-dependent that is in turn
affected by PKA, PKC, andRho-kinase phosphorylation, with
properties similar to those of the MARCKS protein family.
Redistribution or translocation of adducin offers a diversity of
functional roles apart from maintaining cytoskeletal stability
[47]. More details about the functional roles of adducin are
described in the following sections.

4. Adducin Regulations and Functions

Theheterogeneous functions and activities of adducin appear
to be dependent on its C-terminal MARCKS-related tail
domain, which has similar sequence with high homology
with the MARCKS protein family. The MARCKS family of
proteins are well-known as the predominant substrate for
PKC [48, 49]; they are localized in the plasmamembrane and
able to bind and cross-link actin filaments. Phosphorylation
by PKC or binding to calcium-calmodulin, however, can
inhibit its actin-binding activity, causing it to redistribute to
the cytoplasm. Besides,MARCKS proteinsmay also associate
with plasma membrane through electrostatic interactions
between its basic residues and the acidic phospholipids of the
membrane such as phosphatidylserine. This interaction was
also shown to be affected upon phosphorylation whereby the
electrostatic binding of MARCKS proteins to phospholipids
would be reduced and thus dissociate from the membrane
[50, 51].

Adducin are functionally associated with MARCKS
proteins. The MARCKS-related tail domain of adducin is
required for its activity in forming the spectrin-actin network
of membrane skeleton [40]. It was shown that its spectrin-
recruiting activity would be abolishedwhen the ionic compo-
sitionwas disturbed, suggesting that the tail domainmediates

the direct contact with spectrin-actin through electrostatic
interactions [40]. Like the MARCKS proteins, adducin is
a substrate of various protein-kinases such as PKC, PKA,
and Rho-kinase and is regulated in a phosphorylation-
dependent and calcium-calmodulin-dependentmanner [52].
Ser-726 in 𝛼-adducin and Ser-713 in 𝛽-adducin are the major
phosphorylation sites common to both PKC and PKA [53].
Phosphorylation of adducin by PKC and PKA generally
inhibits the actin capping, actin binding, spectrin-recruiting
activity, and calmodulin binding [53]. Conversely, phospho-
rylation by Rho-kinase enhances adducin-actin interactions
and spectrin recruitment [54, 55]. Changes in intracellular
calcium could alter PKC activation and secondarily influence
adducin phosphorylation. Since the dominant calmodulin
binding site was also found in the MARCKS-related tail
domain of adducin, changes in calcium level may result in
the inhibition of calmodulin binding by PKA/PKC phospho-
rylation. However, the binding of calmodulin could in turn
inhibit phosphorylation events by PKA/PKC, thus forming a
reciprocal regulation of adducin [53]. Major functional con-
sequences of adducin phosphorylation are listed in Table 1.

While the activity of adducin in spectrin-actin assembly
might be modulated upon phosphorylation, the phospho-
rylated form of adducin has been reported with diverse
functions at other localizations. Phospho-adducin redis-
tributed to the cytoplasm is known to play important roles in
morphological regulation during platelet activation [38, 56],
localizing cell-cell contacts in epithelial cells [36, 57], the
formation of membrane such as lamellipodia [58], stabilizing
endothelial adhesion junctions [59], establishing cell-cell
junctions [60, 61], and modulating cell motility [55, 58].
Translocation of phospho-adducin to the nucleus has been
studied. Chen et al. identified the nuclear localization signal
(NLS) in the tail region immediately adjacent to Ser-716 and
the nuclear export signal (NES) in the neck region of 𝛼-
adducin, indicating an inherent mechanism for adducin to
shuttle between cytoplasm and nucleus. A recent literature
has reported the different nuclear export abilities between
three adducin isoforms. While 𝛼-adducin was suggested to
have the potential role in regulating transcription, it was
found to interact with RNA polymerase II and zinc-finger
protein 331 [62]. Interestingly, reduced cell-cell adhesion
together with impaired cell proliferation characterized by
mitotic defects was observed when 𝛼-adducin was depleted
[46, 63]. Duringmitosis,𝛼-adducin appeared to be crucial for
proper mitotic spindle assembly. It could be phosphorylated
by cyclin-dependent kinase 1 (CDK1) at Ser-12 and Ser-355
and subsequently bind to myosin-X that would enable it
to associate with mitotic spindles [63]. Another study also
demonstrated that Ser-713 and 726 of 𝛽-adducin translocated
to the nucleus may associate with heterochromatin and
centrioles to stabilize their structures duringmitosis [64].The
evidence suggests that adducin may play different regulatory
roles in cell proliferation machinery in accordance with its
subcellular localization. However, due to the fact that some
of the studies on adducin did not distinguish between the
phosphorylated and unphosphorylated form, it could be
possible that those works focused on total adducin that could
also have similar functions.
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Table 1: Phosphorylation and calmodulin binding sites and the functional consequences.

Phosphorylation sites Functional consequences References

Protein kinase A

𝛼-Ser-726
𝛽-Ser-713
𝛼-Ser-408
𝛼-Ser-436
𝛼-Ser-481

Inhibit of actin-binding activity
Inhibit spectrin-recruiting activity
Inhibit calmodulin-binding activity

Localize cell-cell contact in epithelial cells

[36, 53, 57]

𝛼-Ser-481 Stabilize endothelial adhesion junctions [59]

Protein kinase C

𝛼-Ser-726
𝛽-Ser-713

Inhibit actin-capping activity
Inhibit spectrin-recruiting activity
Inhibit calmodulin-binding activity

[29, 37, 53]

𝛽-Ser-713
𝛽-Ser-726

Nucleus translocation: support the structure of
heterochromatin and centrioles during mitosis [64]

𝛼-Ser-726 Promote membrane protrusions and cell motility [58]

Protein kinase C and calpain 𝛼-Ser-726
𝛾-Ser-656–668 Platelet activation and maintaining shape of resting platelet [38, 56]

Rho-kinase 𝛼-Thr-445
𝛼-Thr-480

Enhance actin filament binding activity
Enhance membrane ruffling

Enhance cell motility
[54, 55]

Ca2+/calmodulin
𝛼-718–734
𝛽-425–444
𝛽-705–721

Inhibit actin-capping activity
Inhibit spectrin-recruiting activity
Affect the rate of phosphorylation

[28, 33, 73]

Alterations of cell morphology have been shown to con-
vey cell shape signals to control cell growth [65, 66]. Disrup-
tions of a cell’s cytoskeleton can inhibit cell-cycle progression
in G1/S transition [66–68], and an intact cytoskeleton is
essential for endothelial cells or fibroblasts to passage through
late G1 and subsequent S phase entry [69–72]. It is likely
that the cell shape signals conveyed by adducin may exert
considerable impact on the biochemical signaling machinery
in controlling cell proliferation.

5. Adducin and Related Disorders

Given its functional versatility and involvement in different
biological processes, it is not surprising that adducin is
implicated in disease pathogenesis. Adducin participates in
signaling transduction machinery upon regulation at differ-
ent levels, and there is mounting evidence to suggest that
dysregulations of adducin could lead to various diseases
including cerebrovascular diseases, gastrointestinal disorder
in infants, cardiovascular diseases, and cancer.

5.1. Hypertension. Essential hypertension is characterized by
a chronic elevation in blood pressure without a specific med-
ical or biological cause [74, 75]. Patients with hypertension
have common defects in renal tubular function including
enhanced constitutive renal sodium reabsorption and impair-
ment in renal sodium excretion [75]. Early experimental
studies on hypertension have shown that the red blood cells
in Milan hypertensive strain of rats (MHS) were smaller
than those in the normotensive control (MNS) and with a
faster rate of ion transport [76]. To detect the subtle differ-
ences between the membrane skeletons of MHS and MNS,
membrane skeleton from MHS was injected into MNS and
vice versa. MHS rats immunized with membrane skeleton

of MNS red blood cells produced anti-adducin antibodies,
suggesting a genetic or structural difference in adducin that
may contribute to altered ion transport and possibly the
subsequent development of hypertension [76]. The identifi-
cation of adducin also led to a long series of studies aimed at
delineating its role in the initial pathophysiological triggering
mechanism of hypertension. Experimental data suggested
that abnormalities in red blood cell membrane skeleton
were genetically determined within stem cells [77] and that
hypertension is closely related to the genetic variations of
membrane skeleton proteins.

5.1.1. Adducin Polymorphism in Hypertension. Despite over
20 years of research and the use of large-scale genome-
wide association studies (GWAS) in the identification of
candidate genes in essential hypertension, only modest asso-
ciation was found. This is in part limited by genetic het-
erogeneity and epitasis in this multifactorial disease. Whole
genome scanning has provided us with a clue that single
nucleotide polymorphism (SNP) may be involved in linking
gene polymorphisms to blood pressure phenotype [78–81].
Adducin polymorphism in the 𝛼-subunit (Gly460Trp) (ref
SNP cluster ID, rs4961) is one of the few candidate gene
polymorphisms affecting blood pressure both in rats and
in humans. Clinical impact of adducin polymorphisms in
hypertension and related disorders has been extensively
studied in different experimental settings and across different
populations [82–113]. Results fromexperimental, clinical, and
epidemiological studies indicate that genetic variants of 𝛼-
adducin, andGly460Trp in particular, contribute significantly
to the pathogenetic mechanisms of hypertension.

Sequence analysis on full-length cDNA adducin in MHS
andMNS rats revealed pointmutations inMHS adducin sub-
units 𝛼-Phe316Tyr, 𝛽-Gln529Arg, and 𝛾-Gln572Lys [114, 115].
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Chromosomal region of the Add1 locus in MHS transferred
to MNS strain could induce a high blood pressure phe-
notype and vice versa [116]. Adducin polymorphisms were
also seen in human genome at ADD1-Gly460Trp (rs4961),
ADD1-Ser586Cys (rs4963), ADD2-Cys1967Thr (rs4984), and
ADD3-IVS11+386Ala>Gly (rs3731566) [117]. Among these
polymorphisms, theADD1-Gly460Trp gene variant was iden-
tified as a candidate gene for hypertension. In human case-
control association studies, ADD1 gene with themutant allele
(460Trp) showed an increased risk of hypertension and a
reduced sodium content in red blood cells with a faster rate of
ion transport than those with the wild-type ADD1 460GlyGly
homozygote allele [117, 118]. In line with clinical studies, renal
tubular reabsorptionwas increased in untreated hypertensive
patients who carry the mutated 460Trp allele compared to
those with 460GlyGly homozygote [119]. Many epidemio-
logical studies have since been conducted to evaluate the
association of Gly460Trp variant with hypertension across
different populations [85, 86, 88, 90, 95, 105, 108, 109, 112,
118, 120–123]; the magnitude of its impact was found to be
variable when environmental-biological-genetic factors were
also considered. High dietary salt intake is also a risk factor
for hypertension, and blood pressure responses to dietary
salt could be influenced by adducin genetic variations. For
example, individuals with an 460Trp allele were genetically
predisposed to salt-sensitive hypertension [117, 124].

In vitro and in vivo studies based on ADD1mutation have
unraveled the primary molecular mechanism that underlies
the transition from normotension to hypertension in the
context of sodium handling. Both the mutated Add1 gene
(Phe316Tyr) in rat and the mutated ADD1 gene (Gly460Trp)
in human affect protein functions that increase Na+/K+
pump (also known as Na+/K+-ATPase) cellular expression
and activity in renal tubular cells as well as Na+/K+ pump-
dependent signal transduction [125–127]. Furthermore, the
mutant gene also impaired Na+/K+ pump endocytosis that
would enhance renal salt reabsorption and ultimately lead to
high blood pressure [119, 120].

The interactive relationship between adducin polymor-
phism and ouabain, an endogenous hormone that modulates
Na+/K+ pump activity, appears to play a role in regulating
sodium homeostasis and hypertension. Plasma levels of
ouabain increase in parallel with the copy number of the
mutant 460Trp allele [128], through which the renal Na+/K+
pump activity is modulated by this mutant phenotype.
Further efforts are required to unmask the interactions
between 460Trp allele and other environmental-biological-
genetic factors such as salt intake, age, and genetic patterns
(e.g., physiological interaction with adducin subunit geno-
types ADD2 and ADD3, ACE polymorphism [129], WNK1
polymorphism, and NEDD4L polymorphism) [130] in the
pathogenesis of hypertensive [131–136]. A more detailed
review on adducin polymorphism in hypertension has been
described by Citterio et al. [137].

5.2. Adducin Dysregulation in Other Diseases. The signifi-
cance of the ADD1 460Trp allele in other conditions has
also been described, including cerebrovascular disease such
as hemorrhagic stroke [90, 103], cardiovascular disease such

as atherosclerosis [138] and myocardiac infarction [139], and
renal diseases [99, 101, 113]. Additionally, ADD1 Ser617Cys
polymorphism (rs4963) was reported to be associated with
hypertension in the Asian population [140]. Intriguingly,
recent research has identified this variant in association with
an increased susceptibility to several human malignancies
including noncardia gastric cancer and colorectal cancer
[141, 142]. It has been reported that ADD2 (rs4983) variant
in combination with sodium-calcium exchanger 1 (NCX1)
variants (rs11893826 and rs434082) could possibly interact
in regulating systemic inflammation and influence the risk
of system lupus erythematosus [143]. Mutation in ADD3
is associated with inherited cerebral palsy due to impaired
neuromotor activity [144]. Through GWAS across different
populations, SNPs (rs17095355, rs10509906, and rs7099604)
identified at chromosome 10q24 (ADD3 and XPNPEP1 loci)
were also shown to increase the susceptibility for biliary
atresia (BA) [145–149]. Genetic factors may underpin patho-
genesis of BA, which is a devastating disease of the liver and
bile ducts characterized by fibroobliteration and obstruction
of extrahepatic biliary system in the first few weeks of
life [150]. Several studies have been conducted to elucidate
pathogenic pathways of BA. A study using zebrafish model
has demonstrated that the loss of add3a, but not xpnpep1,
could lead to impaired biliary function and intrahepatic
defects possibly through suppressing hedgehog pathways
[151]. In addition, upregulated expression of ADD3 is also
reported to contribute in liver fibrosis in BA and associated
with downregulation of miR-145 which targets ADD3 [152].

How adducin dysregulation can lead to such a diverse
range of disorders is incompletely understood. One potential
mechanism involves a linkage between the epigenetic mod-
ulation of adducin expression and clinical phenotypes. In
essential hypertension, a case-control study found that the
extent of ADD1 promoter methylation was inversely asso-
ciated with the risk of hypertension in a gender-dependent
manner. Lower level ofmethylation led to a higher expression
of ADD1 protein regardless of genotype, leading to increased
Na+/K+ pump activity and salt reabsorption [153]. By the
same token, targeted deletion of individual adducin subunits
could lead to various abnormalities. Add1, Add2, and Add3
nullmice have been generated asmammalian diseasemodels,
each of them are presented with specific phenotypes [154].
Table 2 listed the characteristics associated with the animals
and implied the possible functions of these proteins in vivo.

For instance, 𝛼-adducin is the limiting subunit in
oligomer formation and 𝛼-adducin deficiency would abolish
the protein expression of 𝛽- and 𝛾-adducin in red blood
cells. This may result in significant growth retardation with a
hereditary spherocytosis red blood cell phenotype and hydro-
cephalus in 𝛼-adducin knockout mice [155]. Surprisingly,
however, in in vivo studies involving 𝛽- and 𝛾-adducin null
mice, red blood cells were able to retain intact membrane
skeleton and normal hematological parameters despite a
reduced𝛼-adducin protein level [39, 156]. Consistent findings
were seen in 𝛽- and 𝛾-adducin knockout models, indicating
that 𝛼-adducin is required to partner with 𝛽 or 𝛾 subunit
for the stability and functioning of red blood cells and that
the loss of either 𝛽 or 𝛾 subunit would compensate the
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loss of the other subunit to maintain the normal red blood
cell phenotype. It is noteworthy that mice with 𝛾-adducin
depletion are phenotypically normal with only a slight reduc-
tion in 𝛼-adducin protein level, but 𝛽-adducin knockout
mice are presented with various functional disorders. This
phenomenon has raised the intriguing possibility that 𝛼-
adducin may function as homodimer or homotetramer and
compensate for the loss of 𝛾-adducin in different tissues,
except in tissues such as brain and hematopoietic cells where
𝛽-adducin is uniquely expressed, and 𝛼-adducin may not
be able to function and compensate for the loss of 𝛽-
adducin.

In the brain, 𝛼-adducin is highly expressed in dendritic
spines and growth cones of neurons as constituents of
synaptic structures and necessary for maintaining periodic
structure and diameter in axons [44, 157]. Adducin knockout
mice models have already demonstrated the functional roles
of𝛼-adducin inCSF homeostasis [155],𝛽-adducin in synaptic
plasticity in hippocampus modulating motor coordination
and learning/memory process, and 𝛾-adducin in promoting
outgrowth of neurite as well as budding of secretory protein
vesicles from the Golgi network [158, 159]. Since adducin
forms actin branching and stabilizes synapses with its actin
capping activity, its dysregulation may alter neural network
and memory maintenance [160]. Alterations in phosphory-
lated adducin expression have been reported in patients with
amyotrophic lateral sclerosis (ALS), implying that adducin
may be involved in the regulation of pre- and postsynaptic
stability at neuromuscular junction [161].

In the kidney, 𝛾-adducin plays important role in modu-
lating renal salt reabsorption through its interaction with the
thiazide-sensitive NaCl cotransporter, thereby influencing
blood pressure homeostasis [162]. 𝛾-Adducin has recently
been revealed to partake in renal and cerebral circulations
through the regulation of vascular myogenic response [163].
Lastly, 𝛾-adducin might direct angiogenesis [164], suggesting
that it might play important roles in cancer progression.
Taken together, these findings indicate the role of adducin
in regulating and maintaining the dynamics of cell mem-
branes.

5.3. Cancer. There are only a limited number of studies
that worked on the functional properties of adducin in can-
cer, and recent works have largely focused on its role in drug
resistance, tumorigenesis, and tumor metastasis. Here, we
summarize the key findings and examine some of the con-
troversies.

5.3.1. Adducin in Drug Resistance. Györffy et al. performed
microarray analysis across 30 different cancer cell lines
treated with 11 different anticancer drugs and identified
ADD3 as one of the candidate genes for multidrug resis-
tance [165]. ADD3 was also reported to be associated with
chemoresistance in osteosarcoma [166]. Another in vitro
study described an increase in ADD3 expression in temo-
zolomide resistant glioblastoma cells and that its expression is
colocalized with CD133 in glioma stem-like cells, suggestive
of a positive correlation between ADD3 and cancer stem cell
phenotype as well as chemoresistance [167].

5.3.2. Adducin in Tumorigenesis and Metastasis. Adducin
also takes part in oncogenic signal transduction pathways in
various cancers. It was found that ZNF322A, previously iden-
tified as an oncoprotein, could promote tumor cell growth
and metastasis in lung cancer via ADD1 and CCND1; knock-
down of ADD1 would suppress lung cancer cell migration
and invasion [168]. Moreover, the growth suppressive effect
of forced miR-145 overexpression in glioma cells is likely to
be mediated through the suppression of Sox9 and ADD3
proteins [169]. Another study reported that 𝛼-adducin-
Ser724 and 𝛾-adducin-Ser662 were both downstream signal
transduction molecules of c-MET pathway implicated in
small-cell lung cancer invasion and metastasis [170].

Considering that numerous signaling pathways which
involve PKC are being activated during cancer progression,
an increased PKC-mediated phospho-adducin level is likely
to occur in cancer cells. Indeed, alterations in adducin expres-
sion, localization, and phosphorylation states have been
observed upon malignant transformation. In renal cell carci-
noma, adducin was found to be associated with tumor pro-
gression, characterized by a reduction in total adducin
level but increased 𝛾-adducin-Ser660 phosphorylation. The
change in phosphorylation level correlated with changes in
cellular distribution from the apical-basal membranes to the
lateralmembrane in proximal tubular cells [45, 171]. High lev-
els of PKC𝛿 in mammary tumor cells could similarly increase
its metastatic potential [172]. The ability of PKC𝛿 to promote
tumor cell motility may be the result of increased adducin
phosphorylation, which could enhance cell migration and in
turn tumor metastasis [58].

Notably, Shen et al. suggested the notion that the
phosphorylation-related variants of adducin are involved
in tumorigenesis. For instance, the substitution of a serine
residue by a cysteine in Ser586Cys in ADD1 could prevent
its phosphorylation, influence its activity in proliferation, and
increase susceptibility to colorectal cancer [141]. SNPs that
alter amino acids may also influence posttranslational mod-
ifications including phosphorylation and therefore protein
function. Taken together, these research findings are sug-
gestive of adducin’s roles in oncogenic pathways and cancer
progression. As loss of adducin phosphorylation was seen in
bone marrow and tumor samples of cancer patients treated
with cyclin-dependent kinase inhibitors [173], chemother-
apeutics targeting adducin may potentially be exploited as
novel treatment strategy for these patients.

That said, microarray gene expression profiling studies
have found that ADD3 mRNA expression was in fact sig-
nificantly downregulated during glioma progression when
compared to its less malignant or nonneoplastic counterparts
[174, 175]. Another microarray analysis also found a reduced
ADD3 expression in relation to increased migratory activity
in glioma cells [176]. These microarray data on glioma
specimens are in sharp contradictions with what have been
described in the foregoing sections which include mainly
cell-based studies. One possible explanation of this apparent
discrepancy could be due to differences in microenviron-
ment. We surmise that adducin could preferentially acts
as an oncoprotein in a two-dimensional cell-based setting,
where its expression would correlate negatively with tumor
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progression. By contrast, adducin may act as a tumor sup-
pressor in a three-dimensional microenvironment found in
whole-tumor specimens.Newly published data fromLechuga
et al. has demonstrated the function of adducin in negatively
regulating cancer cell motility and invasion [177]. Without
having any effects on cell proliferation, stable knockdown
of either ADD1 and ADD3 increased migration of non-
small-cell lung cancer cells (NSCLC), and overexpression of
ADD1 reduced its migration and invasion activities. It was
suggested that the negative effect of ADD1 overexpression in
cell motility could be mediated by the enhanced adhesion
to extracellular matrix (ECM), as well as remodeling of the
actin-cytoskeleton [177]. Indicating that the interaction of
adducin with the ECM or the microenvironment could be an
important factor when considering its functional roles.

5.3.3. Alternative Splicing of Adducin in Cancer. Another
possible explanation for the above discrepancies could be due
to the differential expression of ADD3 transcript isoforms
generated from alternative splicing. Two different splicing
isoforms, ADD3a and ADD3b, have been identified early in
1999. Citterio et al. was the first to report the genomic orga-
nization of adducin in which ADD3a transcript contained
exons 12, 13, and 14, while exon 13 was absent in ADD3b
[137]. In a recent study using exon array, transcript variants
of ADD3 have been further validated and found to be differ-
entially spliced between non-small-cell lung cancer (NSCLC)
and normal lung tissue. Of the 16 exons in ADD3 gene, the
cassette exon, exon 15 (ENSE00000986819), is preferentially
expressed in NSCLC but not in normal lung tissue [178]. In
line with this, ADD3 containing the cassette exon was found
to be highly expressed in the highly metastatic 4T1 murine
breast tumor when compared to the nonmetastatic 168FARN
tumor, in which the cassette exon was missing [179]. It
was concluded that alternative splicing events of ADD3 and
cassette exon inclusion may potentially play a role in cancer
progression. It is also noteworthy that cassette exon in ADD3
may have effects on its normal functions. The generation
of the amino acids insert was predicted to form a small
coiled coil motif upstream of the MARCKS-related region
[179, 180]. Interestingly, both spliced isoforms of ADD3 were
found in fusion with nucleoprotein 98 gene (NUP98) in
patients with leukemia, and this translocation would also
result in the formation of a chimeric protein involved in
leukemogenesis [181, 182]. These studies suggested that the
cancer-specific splicing transcript of adducin may play a role
in tumorigenesis and can serve as a novel cancer biomarker.

6. Conclusion

Adducin is a major constituent of the membrane skeleton.
Abnormal phosphorylation and genetic variants of adducin
may disrupt membrane skeleton that in turn influence a
variety of physiological processes and manifest in a variety
of diseases. GWAS have revealed SNPs in adducin to be
associated with particular clinical phenotypes although the
effect size remains weak and further experimental studies
are needed to elucidate the precise pathogenetic mechanisms
involved. It appears that adducin genetic variants might

contribute to aberrant protein phosphorylation and subse-
quent molecular alterations. Future studies that integrate
SNPs information with related adducin phosphorylation
would help to delineate its role in various diseases mentioned
in this review. Moreover, the role of adducin in cancers
remains unclear and controversial. More work should be
done especially in an in vivo setting since cell-based studies
may not fully reflect the properties of adducin in a disease-
relevant environment. The differential splicing pattern of
adducin in cancer should also be further investigated. This
review provides a summary of adducin for its structure, regu-
lation, and functions to pathogenic properties that can
inform future basic and translational researches in this intri-
guing and exciting field of study.
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