
FLUID-GPT (Fast Learning to Understand and Investigate Dynamics
with a Generative Pre-Trained Transformer): Efficient Predictions of
Particle Trajectories and Erosion
Published as part of the Industrial & Engineering Chemistry Research virtual special issue “Multiscale Modeling
and Artificial Intelligence for Multiphase Flow Science”.

Steve D. Yang,∥ Zulfikhar A. Ali,∥ and Bryan M. Wong*

Cite This: Ind. Eng. Chem. Res. 2023, 62, 15278−15289 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The deleterious impact of erosion due to high-velocity particle
impingement adversely affects a variety of engineering and industrial systems, resulting
in irreversible mechanical wear of materials/components. Brute force computational
fluid dynamics (CFD) calculations are commonly used to predict surface erosion by
directly solving the Navier−Stokes equations for fluid and particle dynamics; however,
these numerical approaches often require significant computational resources. In
contrast, recent data-driven approaches using machine learning (ML) have shown
immense promise for more efficient and accurate predictions to sidestep computa-
tionally demanding CFD calculations. To this end, we have developed FLUID-GPT
(Fast Learning to Understand and Investigate Dynamics with a Generative Pre-
Trained Transformer), a new hybrid ML architecture for accurately predicting particle
trajectories and erosion on an industrial-scale steam header geometry. Our FLUID-
GPT approach utilizes a Generative Pre-Trained Transformer 2 (GPT-2) with a
convolutional neural network (CNN) for the first time to predict surface erosion using only information from five initial conditions:
particle size, main-inlet speed, main-inlet pressure, subinlet speed, and subinlet pressure. Compared to the bidirectional long- and
short-term memory (BiLSTM) ML techniques used in previous work, our FLUID-GPT model is much more accurate (a 54%
decrease in the mean squared error) and efficient (70% less training time). Our work demonstrates that FLUID-GPT is an accurate
and efficient ML approach for predicting time-series trajectories and their subsequent spatial erosion patterns in these complex
dynamic systems.

1. INTRODUCTION
Erosion due to high-velocity particle impingement continues to
be a topic of pressing concern due to its deleterious effects in a
variety of energy and technological industries. For example,
erosion results in irreversible mechanical wear of materials/
components in petroleum refining,1 aircraft rotor/engine
blades,2,3 and pipelines in coal-fired power plants.4,5 Recent
studies have estimated that the financial loss due to erosion can
reach up to several billions of US dollars in industrialized
nations.6 To mitigate these effects, computational fluid
dynamics (CFD) is commonly used to solve the Navier−
Stokes equations for fluid and particle dynamics to shed insight
into the specific mechanisms involved in these erosion
processes. However, CFD calculations often require significant
computational time and high-performance computing hard-
ware, particularly for large-scale structures used in industrial
power plants.
In recent years, there has been a rapid paradigm shift from

“traditional” computational approaches to data-driven science,
largely due to advances in computational power and the

increasing availability of data. In the context of CFD and
erosion calculations, recent machine learning (ML) approaches
have shown remarkable accuracy and efficiency in a variety of
systems.7−18 In particular, a previous work by us utilized a
hybrid long- and short-term memory (LSTM) with a three-
dimensional convolutional neural network (3D CNN) to
predict particle trajectories and surface erosion, respectfully, in
an industrial-scale boiler header.18 While our approach was
able to successfully predict surface erosion using only five
initial conditions as input, the LSTM training was computa-
tionally expensive due to its recurrence-based architecture,
taking approximately 26 h on 32 parallel CPUs.
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To overcome this computational bottleneck, we present a
new hybrid ML method, code-named FLUID-GPT: Fast
Learning to Understand and Investigate Dynamics with a
Generative Pre-Trained Transformer. FLUID-GPT utilizes a
Generative Pre-Trained Transformer 2 (GPT-2) with a 3D
CNN. The primary objective of FLUID-GPT revolves around
the accurate prediction of particle trajectories and erosion
phenomena within a sprawling industrial-scale boiler header.18

GPT-2 is an attention-based model that falls under the
umbrella of transformer models. Initially developed for tasks
like natural language processing (NLP) and translation,19 it has
recently gained widespread attention due to its utilization in
interactive artificial intelligence (AI) chatbots and forecasting
models for time-series data.20−22 A transformer model employs
an encoder−decoder architecture in which the encoder
generates a representation capturing relevant information
from the input data. Subsequently, the decoder utilizes this
representation to create output sequences through the
attention mechanism iteratively. Recent research has demon-
strated the effectiveness of focusing exclusively on the decoder
for language modeling, leading to the development of a GPT
model.23

This study employs our FLUID-GPT ML approach to
forecast particle trajectories based on five initial parameters:
particle size, main-inlet speed, main-inlet pressure, subinlet
speed, and subinlet pressure. Subsequently, erosion predictions
are generated by using a CNN-based approach, utilizing the
trajectories produced by our time-series models. We
comprehensively describe our algorithms and conduct a
comparative analysis of training efficiency and accuracy
between our FLUID-GPT approach, LSTM, and bidirectional
LSTM (BiLSTM) for predicting particle trajectories and
surface erosion. Finally, we offer a concise summary and
discuss potential future applications of our hybrid ML
approach. In conclusion, our study underscores the efficiency
and accuracy of FLUID-GPT in analyzing sequential data,

marking a significant step forward in predicting intricate
particle dynamics.

2. COMPUTATIONAL METHODS
Our FLUID-GPT hybrid ML model combines GPT-2 and
CNN within the PyTorch framework. We customized the
GPT-2 architecture from the Transformer PhysX (TrphysX)
package21 to train our CFD data set, which we carried out on a
single NVIDIA K80 GPU. The following sections describe the
GPT-2 and CNN architecture, our data collection, and
transformation process. We then describe our model training
approach, including an early stopping criterion, which we used
to compare the computational efficiency across the various ML
algorithms. A GitHub repository containing all the CFD and
ML models used in this work can be accessed at https://
github.com/SDY159/CFD_ML2.

2.1. GPT-2 Model Architecture. Our utilization of the
GPT-2 model for time-series analysis stems from its inherent
ability to discern patterns and interconnections within
sequential data points autonomously. It is important to
highlight that the original GPT-1 algorithm was primarily
designed for pretraining and focusing on acquiring linguistic
structure and grammar. Subsequently, this foundational model
undergoes refinement through supervised fine-tuning, requir-
ing substantial labeled data pertinent to the specific task.24

However, this reliance on supervised fine-tuning can present
limitations as it necessitates the acquisition and processing of
considerable labeled data sets, potentially restraining the
model’s versatility.
The more recent GPT-2 model, distinguished by its

augmented input capacity and model size compared to GPT-
1, introduced a groundbreaking approach known as “un-
supervised fine-tuning". This innovation empowers the model
to fine-tune for specialized tasks without requiring extensive,
task-specific data volumes. This flexibility enables the model to
seamlessly adapt to varying tasks with reduced data

Figure 1. GPT-2 model architecture. The GPT-2 model contains N Transformer decoder blocks, as shown in the left panel. Each decoder block
(center panel) includes a multi-head masked attention layer, a multilayer perceptron layer, normalization, and dropout layers. The residual
connection (branching line to the addition operator) allows the block to learn from the previous block’s input. The multi-head masked attention
layer (right panel) calculates attention scores using Q, K, and V vectors to capture sequential relationships in the input sequence.
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prerequisites.24 We leverage this unique feature by augmenting
our input data to incorporate the five initial parameters
(discussed in Section 1 Introduction) utilized in CFD
calculations. This augmentation ensures the model’s compre-
hensive learning of particle trajectories, preventing the need for
supplementary training. Further elaboration on our feature
engineering can be found in Section 2.3.1 Data Collection.
GPT-2 model training is accomplished by calculating

attention scores for each timestep, which measures the degree
of association between the current timestep and other
timesteps in the sequence.23 In contrast to recurrent ML
models, which process timesteps one at a time and propagate
information from one stage to the next through a hidden state,
the GPT-2 model employs self-attention. This enables the
model to capture more complex relationships between the
different timesteps in the sequence.
Positional encoding23 is pivotal in enabling the GPT-2

model to distinguish between distinct timesteps accurately.
This involves the introduction of unique patterns for each
timestep, facilitating the model’s ability to discern temporal
variations. These patterns specify each timestep by integrating
sine- and cosine-based positional patterns into the data’s
feature dimension. This can be equated to the addition of
timestamps to a sequence of events, facilitating well-informed
predictions and upholding chronological coherence through-
out the prediction sequence.23

Figure 1 depicts the GPT-2 architecture,24 composed of
vertically stacked transformer decoder blocks integrated with
positional encoding. Within each decoder block, a multi-head
masked attention and a multilayer perceptron (MLP) are
enveloped by normalization25 and dropout layers. The input
time-series data is organized as an array (samples, timesteps,

features) in the multi-head masked attention, where each
timestep corresponds to a distinct set of features. This array’s
feature dimension is partitioned and allocated to individual
attention heads, enabling simultaneous processing and the
comprehensive treatment of diverse aspects within the input
sequence. This parallelization boosts the model’s capability to
capture short- and long-range dependencies, culminating in
heightened predictive stability and precision.
As shown in the example in Figure 1, the input is distributed

across four attention heads. Each attention head autonomously
transforms the input sequence into three distinct vectors:
query (Q), key (K), and value (V). These vectors are
subsequently employed to calculate attention scores using
the following formula:23

=A Q K V
QK

d
V( , , ) softmax( )

k

T

(1)

where A designates the attention score matrix, Q stands for the
query vector, KT denotes the transposed key vector, V
represents the value vector, and dk signifies the dimension of
the Q and K vectors. The Q vector corresponds to the current
timestep within the considered input sequence, while K
encompasses insights about all timesteps within the input
sequence. The dot product between the Q and K establishes
the similarity or association between different timesteps,
enabling the model to concentrate on relevant parts of the
data. The V vector carries the data to which the model directs
its attention and is used to generate the output. After the
computation of attention scores, the individual attention heads
merge via concatenation in the final linear layer, culminating in
the determination of the final attention matrix output.

Figure 2. GPT-2 training process. (a) Division of the 50 timesteps into segments using window and stride parameters (ω = 5 and s = 2,
respectively). (b) Each segment’s input and label data points during model training. (c) Computation of the attention layer’s output using eq 1,
which involves masking certain positions in the input sequence to zero out their attention scores (shown as purple boxes).

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.3c01639
Ind. Eng. Chem. Res. 2023, 62, 15278−15289

15280

https://pubs.acs.org/doi/10.1021/acs.iecr.3c01639?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c01639?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c01639?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c01639?fig=fig2&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.3c01639?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 2a illustrates the learning process involving time-
series data. These data are segmented into portions of length
ω, where ω is the window size. These segments undergo
systematic processing utilizing a “striding” technique, wherein
the window traverses the sequence with stride s, resulting in
overlapping parts. In the training phase, the last data point
within the window is omitted from the training input. In
contrast, the initial data point is excluded from the training
label; a visual representation of this is provided in Figure 2b.
This strategic arrangement entrusts the model to assimilate
insights from neighboring segments and derive contextual
understanding across the sequence.
Subsequently, the multi-head masked attention layer

generates Q, K, and V vectors employing the training input
data. These vectors then play a role in computing attention
scores as expressed in eq 1, producing the attention output
depicted in Figure 2c. These scores are used to predict
subsequent timestep values. Training the GPT model involves
the iterative refinement of neural network components
responsible for generating appropriate Q, K, and V vectors.
This process enables the model to learn and generate attention
scores that contribute to accurate predictions of future values
within the time series.
The input sequence of GPT-2 undergoes a twofold

segmentation process. First, the timesteps are partitioned
into windows, each encapsulating a localized context of
consecutive timesteps. Following temporal segmentation, the
feature dimension is distributed across separate attention
heads, facilitating parallelized processing throughout the
sequence. This strategic fusion of windowing and attention
head allocation endows the GPT architecture with the ability

to effectively process and predict time-series data, capturing
intricate sequential relationships comprehensively.
Figure 3 shows how the GPT-2 algorithm predicts

sequential values. We only use the initial timesteps as input
and the entire 50 timesteps as label data. The trained GPT-2
model iteratively predicts the next timesteps until it reaches the
last (50th) step. Notably, GPT-2 is an autoregressive
model26,27 where each timestep is generated based on all the
previous timesteps. For example, the nth timestep, tn, is
predicted based on tn−1, tn−2, ..., t2, and t1. This time-step
prediction method has an advantage over LSTM, which
predicts tn based only on tn−1. Furthermore, as described in our
previous ML study, the “forget” gate in the LSTM algorithm
can forget previous information, which could adversely affect
the predictions.18 For these reasons, GPT-2 possesses several
advantages in accuracy and training efficiency since it
simultaneously accepts all timesteps and calculates attention
scores (via the dot product) to generate contextually
appropriate predictions for the next timestep.

2.2. CNN Architecture. The trajectories generated by the
time-series models (GPT-2, BiLSTM, or LSTM) serve as input
data for a 3D CNN model designed to predict the surface
erosion rate. Utilizing the strengths of a 3D CNN (a type of
advanced neural network) is crucial for our goals. This model
is adept at recognizing patterns in 3D data, such as our time-
series trajectories, making it better at predicting erosion.
Enhancing its ability to understand complex spatial relation-
ships contributes to its prediction accuracy.28

The 3D CNN utilizes specific filters known as kernels to
analyze localized portions of input data and extract relevant
information. These kernels, characterized by designated

Figure 3. GPT-2 validation process. The trained GPT-2 model predicts all 50 timesteps based on the initial timestep, generating subsequent
timesteps based on the previous ones until it reaches the last timestep of the labeled data.
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squared dimensions, filter the data and emphasize significant
features while discarding unnecessary details. The process
includes a stride, indicating the step size of the kernel as it
moves across the data. Additionally, max pooling is applied to
further condense and preserve key spatial insights. As the
process unfolds, the gathered details are progressively
integrated, enhancing the network’s understanding of spatial
relationships within the data. Introducing supplementary layers
helps to streamline the computation and maintain vital spatial
information. The 3D CNN identifies and captures intrinsic
data features through an iterative approach.
Our CNN model’s success in predicting erosion is due to its

ability to recognize spatial patterns that greatly affect erosion in
the boiler header. Specifically, CNN identifies areas where
particles encounter the surface because of fluid movement,
which matches places with higher erosion rates. 3D convolu-
tional layers allow the model to utilize initial conditions and
how particles are positioned, revealing important connections
between these factors and erosion values. These abilities make
the CNN model a good fit for predicting erosion in fluid flow
systems.

2.3. Data Collection, Model Training, and Early
Stopping. 2.3.1. Data Collection. We obtained particle
trajectories and erosion data by running simulations in ANSYS
Fluent 19.2 using the geometry of an OP-650 boiler
header.29−31 The obtained erosion data set from our CFD
simulations captures erosion observations at the simulations’
final time. The particle trajectory data extracted from the CFD
simulations constitutes a time-series data set spanning 50
timesteps with a 2.49 ms time interval. To investigate the
effects of various initial conditions, we adjusted the particle
size, main-inlet speed, main-inlet pressure, subinlet speed, and
subinlet pressure. Our previous study18 provides further details
and background on the CFD equations, configurations, and
initial condition settings, which we also used for this work. In
short, ANSYS Fluent calculates erosion by integrating force
balance equations32 over the particle trajectories, which we
expanded upon in two stages. First, we utilized a time-series
ML architecture to forecast particle trajectories based on initial
conditions. Subsequently, we leveraged a 3D convolutional ML
model that processes the predicted trajectories to predict the
surface erosion profiles.
Our data set encompasses 3125 samples, each comprised of

x, y, and z coordinates of 196 particles across 50 timesteps.
The 196-particle order from the CFD data was shuffled to
minimize the data order dependency. Accounting for fluid flow
fluctuations, we augmented each particle’s trajectory with five
initial condition parameters for every timestep. This yielded a
data set with 3125 × 50 × 196 × 8 dimensions. The last two
dimensions were merged to obtain a final trajectory data set
with a shape of 3125 × 50 × 1568, signifying the number of
samples, timesteps, and features, respectively.
Furthermore, an erosion data set (3125 × 38312) was

crafted, characterizing erosion values across the surface mesh
of the boiler header. We shuffled 3125 samples and divided
them into training, validation, and test sets. For this division,
the test set comprised 10% of the overall data, while the
remainder was split between the training and validation sets in
an 8:2 ratio. To avoid any risk of overfitting, we applied k-fold
cross-validation33,34 with k = 5. This process yielded training,
validation, and test sets containing 2250, 562, and 313 samples,
respectively.

2.3.2. Model Training. The FLUID-GPT approach
developed in this study is a hybrid ML model to predict
particle trajectories and surface erosion rates in the OP-650
boiler header. Specifically, we used the predicted trajectories
from the time-series models (GPT-2, BiLSTM, or LSTM) as
input data for a CNN model to predict the surface erosion rate.
It is worth emphasizing that our FLUID-GPT approach can
predict surface erosion rates using only information f rom f ive
initial conditions: particle size, main-inlet speed, main-inlet
pressure, subinlet speed, and subinlet pressure.
We fine-tuned the hyperparameters of three time-series

models: GPT-2, LSTM, and BiLSTM, employing the CFD
data set. BiLSTM served as a reference to assess the sequential
memory dependency and accuracy effects of LSTM.35,36 Our
GPT-2 model is comprised of 120,558,816 parameters, while
LSTM and BiLSTM each entail 305,024,608 parameters. We
adopted four LSTM and BiLSTM layers, observing that
reduced layers led to inadequate prediction performance.
Table S1 in the Supporting Information presents results on
model parameter count, R2 scores, and mean squared errors
(MSEs) for the other LSTM and BiLSTM layers.
Hyperparameters for the GPT-2 model included the number

of decoder blocks, attention heads, and window/stride
dimensions. Our GPT-2 model employed an MLP with a
Gaussian Error Linear Unit (GELU) activation function. We
chose this particular configuration due to its superior
performance over the Rectified Linear Unit (ReLU) in
transformer models for NLP tasks. GELU effectively mitigates
the vanishing gradient problem and exhibits a smoothness
property, contributing to improved performance.37,38

We optimized learning rates utilizing the CyclicLR (CLR)
scheduler,39 which progressively reduces the periodic peak’s
magnitude as training advances. CLR has shown superior
performance over alternative learning rate schedules, such as
step and exponential decay, resulting in accelerated con-
vergence and improved accuracy.39,40 The Adam optimization
method was used for each model training.
The CNN processes the predicted trajectory from either

GPT-2 or BiLSTM, along with five initial parameters, to
forecast the surface erosion rates. Our method incorporates
four layers of 3D convolution and max pooling, employing the
GELU activation function. We optimize CNN performance
through systematic enhancements involving kernel size (2, 3),
stride variations (1, 2) in convolutional layers, and kernel sizes
(2, 3) in max pooling. Additionally, we explored different filter
combinations for each set of four convolution layers, denoted
as (2−4−8−16), (4−8−16−32), (8−16−32−32), and (10−
20−30−40). This comprehensive optimization approach
ensures a thorough exploration of the hyperparameters,
contributing to the improved effectiveness of our CNN
model. We employed this optimization strategy for two time-
series models: FLUID-GPT (GPT-2+CNN) and BiLSTM
+CNN. Performance evaluation encompasses key metrics,
including each algorithm’s MSE, R2 score, and training time.

2.3.3. Early Stopping. While training our GPT-2 and
(Bi)LSTM models, we employed convergence criteria to
prevent overfitting and optimize computational efficiency.
Specifically, we utilized an early stopping method where the
training process was stopped when the MSE fell below a
predetermined threshold for three consecutive epochs. We set
the threshold value at 0.0065 based on the results of the CLR
scheduler learning rate optimization procedure. We applied the
same threshold value and counter limits to ensure that both
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Figure 4. (a, b) Training and validation MSEs using the CLR scheduler for the GPT-2 architecture and (c, d) BiLSTM model. The panels show the
MSEs for different learning rates during training and validation.

Figure 5. Window (ω) and stride (s) optimizations for GPT-2 with a fixed number of decoder blocks and attention heads. (a) Training duration
and (b) validating MSE loss for different values of ω and s pairs. The optimal hyperparameter configuration is ω = 4, s = 2, number of decoders =
4, and number of attention headers = 2. The colors indicate the value of s for each ω.
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models were trained using similar convergence criteria for a fair
comparison of their respective performances.

3. RESULTS AND DISCUSSION
3.1. GPT and BiLSTM Hyperparameter Optimization.

3.1.1. Learning Rates and Schedulers. We optimized the
learning rate for the GPT-2 architectures by using the CLR
scheduler, starting at a value of 1 × 10−3. We varied the
learning rate using an order of magnitude reduction strategy,
where each new learning rate was reduced by a power of 10 to
determine the optimal value for efficient and accurate
convergence, as shown in Figure 4. Our simulations showed
that a learning rate of 1 × 10−7 achieved the best performance,
as shown in Figure 4a,b. These results demonstrate the
importance of optimizing the learning rate for optimal
convergence in GPT-2 architectures.
The BiLSTM model was trained in a similar fashion, as

shown in Figures 4c,d. A learning rate of 1 × 10−4 showed the
lowest MSE loss among our variations, with the most stable
training and validation loss profiles. The LSTM model was also
trained, and we also tested the linear and Cosine Annealing
Warm Restarts schedulers,41 which are provided in Figures S1
− S5 in the Supporting Information.

3.1.2. Optimizing Window (ω) and Stride (s). In the
hyperparameter tuning process, we employed a grid search to
determine the optimized values, with specific ranges, for each
parameter: window (ω = 2, 4, 8, 16), stride (s = 2, 4, 8, 16),
number of decoder layers (2, 3, 4), and number of attention
heads (2, 4, 8, 16). Our results showed that four decoder block
layers with two attention heads provided the most favorable
outcome, striking a balance between the MSE and training
duration. Figure 5a,b show the GPT-2 training duration and

MSE loss for a range of ω and s pairs, respectively. Our
observations unveiled a noteworthy trend: as the stride (s)
decreased, the corresponding MSE loss exhibited a reduction,
indicating an enhancement in prediction accuracy, especially
when windows overlapped. However, it is essential to note that
a decrease in the stride (s) also increased the training duration.
This effect can be attributed to generating more window steps,
expanding the input data volume due to larger temporal
overlaps.
We, therefore, sought to find a balance between accuracy

and efficiency by selecting an appropriate value for s. We tested
various values of ω and s and found that the early stopping
criteria were triggered at different epochs for each combination
of ω and s. Specifically, the early stopping was activated for 2/
2, 4/2, 8/2, 16/2, and 8/4 (ω/s) pairs, resulting in a much
shorter training duration for these five cases. In addition, we
noticed that a ω:s ratio of 1:1 showed MSEs higher than those
of other settings, as the windows did not overlap, and the
relationship between the windows could not be learned. As
shown in Figure 5, there is an optimal ω for each s that gives
the lowest MSE. After carefully considering these factors, we
chose ω = 4 and s = 2 as the best combination of parameters,
resulting in the best balance between MSE loss and training
duration compared to other settings.

3.1.3. Number of Decoder Layers and Attention Heads.
Our study examined the influence of varying decoder block
layers and attention heads. Training time accelerates as we
reduce the number of decoders, albeit with a trade-off in the
increased MSE values. Figure 5 provides a general overview for
configurations with four decoder blocks and two attention
heads, whereas further details are given in Figures S6 and S11
within the Supporting Information. Smaller strides (s = 2 or 4)

Figure 6. Optimizing CNN: variations in stride and kernel sizes in the convolution layer and variations in kernel sizes in the max pooling layer with
a (8−16−32−32) convolution filter combination. (a) Training duration and (b) MSE loss validation for different hyperparameter values. The
optimal hyperparameter configuration is stride = 2, convolution kernel size = 3, pooling kernel size = 2, and an (8−16−32−32) convolution filter.
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yield heightened performance, particularly with aligned
attention head and stride values. These attributes modulate
information blending and segment overlap. Smaller strides
excel at finer-grained pattern capture, while larger strides reveal
broader trends. Larger attention head numbers augment
complex data handling and overall performance. The pivotal
interplay between attention heads and stride is essential for
orchestrating sequential information flow in input data,
underpinning our analysis.

3.2. CNN Hyperparameter Optimization. We optimized
the hyperparameters for two CNN models: FLUID-GPT
(GPT-2+CNN) and BiLSTM+CNN. Due to the closely
aligned results of these models, additional information on
the optimization of BiLSTM+CNN is provided in Figures S12
and S13 in the Supporting Information. Figure 6 illustrates the
optimization of our FLUID-GPT model utilizing a (8−16−
32−32) convolution filter combination. Further details
regarding the convolution filter combinations in FLUID-GPT
are available in Figures S14 and S15 in the Supporting
Information. As observed in optimizing GPT-2, smaller stride
yields improved MSE performance, albeit at the expense of a
longer training duration. This trade-off aligns with expect-
ations, as a larger stride leads to larger steps between
convolution operations, potentially affecting prediction accu-
racy.
However, a distinct relationship emerged for the kernel sizes

in convolution and max pooling layers. Smaller convolution
kernel sizes correlated with higher MSE values, while reduced
max pooling kernel sizes were associated with lower MSEs.
This phenomenon arises from the operational disparities
between these layers. Smaller convolution kernels capture

fewer features per operation, potentially resulting in
information loss when critical components span a wider
receptive field. Conversely, smaller pooling kernels keep more
information by downsampling less, which is favorable for tasks
requiring precise localization and leads to diminished MSEs.
By evaluating MSEs and training duration, we identified the
optimal hyperparameter configuration: a convolution stride of
2, a convolution kernel size of 3, a pooling kernel size of 2, and
an (8−16−32−32) convolution filter combination. Notably,
this optimal configuration is also held for BiLSTM, reinforcing
our adoption of the same CNN architecture for erosion
prediction.

3.3. GPT-2 vs BiLSTM Performance. After optimizing
GPT-2, BiLSTM, and their CNN models, we compared their
prediction performance and training efficiency. Table S3 in the
Supporting Information includes the results of the conven-
tional LSTM model. Figure 7a,b show the training and
validation loss of particle trajectory predictions from GPT-2 vs
BiLSTM and erosion predictions from FLUID-GPT vs
BiLSTM+CNN, respectively. Our early stopping criteria
caused the GPT-2 training to stop after 18 epochs, while
BiLSTM continued training up to 100 epochs. This
preliminary stopping arises since GPT-2 divides the timesteps
into segments with window and stride sizes. It subsequently
processes them with multiple attention heads, allowing the
model to review previous sequence information during each
new segment. In contrast, the BiLSTM approach learns
consecutively without recalling the previous timesteps.
Reviewing past information by GPT-2 leads to more efficient
learning but a longer training duration per epoch than
BiLSTM, which resembles human learning. With early

Figure 7. Training and validation loss comparison between (a) GPT-2 vs BiLSTM and (b) FLUID-GPT vs BiLSTM+CNN, using optimized
hyperparameters. The early stopping activates on GPT-2 training, converging much faster than BiLSTM. FLUID-GPT shows faster convergence,
lower MSE, and a more stable learning profile than BiLSTM+CNN.
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stopping, GPT-2 achieved faster convergence of the validating
loss than BiLSTM, resulting in more accurate and efficient
predictions.
We also compared the individual CNN models from GPT-2

and BiLSTM. However, despite having an identical CNN
architecture, the BiLSTM+CNN model exhibits a lower
accuracy. Our results indicate that errors associated with the
previous model’s predicted trajectories may worsen the
subsequent CNN performance. Evaluation using a test data
set and k-fold cross-validation yielded average MSEs, R2 scores,
and training durations (see Table 1). GPT-2 errors were nearly
half of the average MSE of BiLSTM, with better training
efficiency. The average MSE of FLUID-GPT was 0.35 times
lower than that of BiLSTM+CNN. The training duration was
similar between FLUID-GPT and BiLSTM+CNN due to the
shared CNN model.

3.4. Performance in Predicting Trajectories and
Erosion Rates. Figure 8 compares the predicted particle
trajectories and surface erosion rates obtained from the brute-
force CFD calculations and our optimized GPT-2 and

BiLSTM models for two representative simulations (sample
numbers 50 and 70) from the test data set. Figure 9 shows the
results of our FLUID-GPT approach and BiLSTM+CNN,
both of which use CNN on the output data for each time-series
model. The conventional LSTM results are given in the
Supporting Information (Figure S16) since they are similar to
the BiLSTM results.
Figure 8a−d show that the GPT-2 model performs

exceptionally well in predicting particle trajectories under
turbulent flow conditions. In contrast, the trajectories
predicted by BiLSTM exhibit noticeable deviations from the
benchmark CFD data in Figure 8e,f. These discrepancies can
be attributed to the recurrent nature of the models. In the
context of time-series data, GPT-2 is advantageous because it
requires less contextual information and can capture depend-
encies among all timesteps. However, BiLSTM requires more
detail on the preceding and succeeding data points in the time
series, which can be difficult to capture and may lead to lower
accuracy. In addition, the forget gate in the BiLSTM algorithm
can cause information loss from previous timesteps, further

Table 1. Comparison of the Prediction Accuracy and Training Efficiency of GPT-2, BiLSTM, FLUID-GPT, and BiLSTM
+CNN for Particle Trajectory and Erosion Predictions

training duration

model MSE R2score total (h) epoch time (min)

GPT-2 0.0053 ± 0.0004 0.9807 ± 0.0017 0.7362 ± 0.0474 2.4540
BiLSTM 0.0115 ± 0.0019 0.9427 ± 0.0102 2.4420 ± 0.1333 1.4652
FLUID-GPT 7.2223 × 10−6 ± 5.0736 × 10−7 0.9899 ± 0.0080 0.0651 ± 0.0016 0.0250
BiLSTM+CNN 2.0650 × 10−5 ± 4.4573 × 10−6 0.9707 ± 0.0061 0.0617 ± 0.0011 0.0246

Figure 8. Comparison of particle trajectories predicted by GPT-2 and BiLSTM against ANSYS Fluent CFD simulations for representative
simulations from the test data set (sample numbers 50 and 70).
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affecting prediction accuracy. Figure 9a−d highlight the good
agreement between the FLUID-GPT and CFD benchmark
calculations. Figure 9e,f present erosion predictions by the
BiLSTM+CNN model, demonstrating satisfactory agreement
in regions with significant erosion but displaying errors in areas
with lower erosion than the CFD benchmarks.
In general, GPT-2 outperformed BiLSTM in both accuracy

and efficiency, with a 54% decrease in average MSE (from
0.0115 to 0.0053) and a 70% reduction in training duration
(from 2.45 to 0.73 h). This advantage can be attributed to two
algorithmic improvements in GPT-2: (1) information control,
which segments the input data into windows and strides,
enabling greater control over information mixing, and (2)
autoregressive modeling, which considers all previous time-
steps when predicting the next step. In contrast, BiLSTM
processes input data sequentially and only predicts the
subsequent step based on the previous step, resulting in
lower accuracy and efficiency than GPT-2. Further deficiencies
of BiLSTM can be attributed to the lack of information control
and inability to consider all previous timesteps to predict the
next step, which are algorithmic improvements implemented in
GPT-2. For predicting erosion, the training durations of
FLUID-GPT and BiLSTM+CNN are similar since the same
CNN model is used. However, the average MSE of FLUID-
GPT improves by 65% compared to BiLSTM+CNN (from
2.0650 × 10−5 to 7.2223 × 10−6). We attribute this

improvement to the superior performance of GPT-2 in
predicting particle trajectories. The BiLSTM model’s initial
and final segments of the predicted trajectories deviate from
the CFD benchmarks, which negatively impact erosion
prediction accuracy. In contrast, the GPT-2 model performs
exceptionally well in predicting particle trajectories, even under
turbulent flow conditions, which allows the model to capture
erosion features more accurately.

4. CONCLUSIONS
In conclusion, we have developed FLUID-GPT, a new hybrid
GPT-2+CNN ML architecture for accurately predicting
particle trajectories and erosion on industrial-scale steam
header geometry. Our FLUID-GPT approach can predict
surface erosion rates using only information from five initial
conditions: particle size, main-inlet speed, main-inlet pressure,
subinlet speed, and subinlet pressure. We optimized our GPT-
2 model through systematic variation of learning rates and
schedulers, implementation of early stopping criteria, and
comprehensive analysis of hyperparameters such as the
number of decoder layers, attention heads, and window/stride
sizes. Furthermore, we refined the CNN component by fine-
tuning kernel and stride sizes within convolutional layers,
optimizing the kernel size for max pooling, and carefully
selecting filter combinations across various convolutional layer
variations. The training time for FLUID-GPT was approx-

Figure 9. Comparison of surface erosion predicted by FLUID-GPT and BiLSTM+CNN against ANSYS Fluent CFD simulations for representative
simulations from the test data set (sample numbers 50 and 70).
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imately 47 min on a single GPU, with an impressive R2 score of
0.98 and 0.99 for predicting particle trajectories and erosion,
respectively.
Our study shows that the FLUID-GPT hybrid ML approach

outperformed traditional time-series models such as LSTM
and BiLSTM for predicting particle trajectories and erosion
prediction. Specifically, GPT-2 showed a 54% decrease in MSE
and was 70% faster than BiLSTM. For predicting erosion,
FLUID-GPT showed a 65% improvement in MSE compared
with BiLSTM+CNN. Our results demonstrate that the
FLUID-GPT hybrid ML approach significantly improves
upon our previous LSTM study for predicting trajectories
and surface erosion. In particular, the GPT-2 algorithm yields
impressive accuracy and has a fast-training duration compared
to that of LSTM. Overall, our work demonstrates that FLUID-
GPT is an accurate and efficient approach for predicting
complex trajectories and their subsequent erosion patterns. As
such, this approach could have promising widespread
applications in other research areas requiring time-series
analyses or predictions of complex spatial properties arising
from time-dependent phenomena.
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