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ABSTRACT Analyzing cells and tissues under a microscope is a cornerstone of bio-
logical research and clinical practice. However, the challenge faced by conventional
microscopy image analysis is the fact that cell recognition through a microscope is
still time-consuming and lacks both accuracy and consistency. Despite enormous
progress in computer-aided microscopy cell detection, especially with recent deep-
learning-based techniques, it is still difficult to translate an established method di-
rectly to a new cell target without extensive modification. The morphology of a cell
is complex and highly varied, but it has long been known that cells show a non-
random geometrical order in which a distinct and defined shape can be formed
in a given type of cell. Thus, we have proposed a geometry-aware deep-learning
method, geometric-feature spectrum ExtremeNet (GFS-ExtremeNet), for cell detec-
tion. GFS-ExtremeNet is built on the framework of ExtremeNet with a collection of
geometric features, resulting in the accurate detection of any given cell target. We
obtained promising detection results with microscopic images of publicly available
mammalian cell nuclei and newly collected protozoa, whose cell shapes and sizes
varied. Even more striking, our method was able to detect unicellular parasites
within red blood cells without misdiagnosis of each other.

IMPORTANCE Automated diagnostic microscopy powered by deep learning is use-
ful, particularly in rural areas. However, there is no general method for object detec-
tion of different cells. In this study, we developed GFS-ExtremeNet, a geometry-
aware deep-learning method which is based on the detection of four extreme key
points for each object (topmost, bottommost, rightmost, and leftmost) and its center
point. A postprocessing step, namely, adjacency spectrum, was employed to mea-
sure whether the distances between the key points were below a certain threshold
for a particular cell candidate. Our newly proposed geometry-aware deep-learning
method outperformed other conventional object detection methods and could be
applied to any type of cell with a certain geometrical order. Our GFS-ExtremeNet ap-
proach opens a new window for the development of an automated cell detection
system.

KEYWORDS ExtremeNet, adjacency spectrum, cell detection, geometry aware,
microscopic image, protozoa

Automatic detection of different types of cells in microscopy images are of signifi-
cant interest to a wide range of biological research and clinical practices. Therefore,

several computer-aided cell detection methods, ranging from decision trees to deep-
learning-based techniques, have been proposed (1–4). In the early years, many efforts
were devoted to extracting handcrafted features for cell detection and classification (1,
2). However, they faced several challenges, including incomplete feature representa-
tion, the high complexity of the detection methods, and low accuracies of detection.
New methods using a deep-learning architecture are able to extract the depth features
of images more comprehensively. Prior knowledge of the features to be selected is
unnecessary; thus, the accuracy of detection is significantly improved by avoiding the
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misrepresentation of important features. However, the target is essentially detected as
a point rather than a complex, ignoring details such as size and shape (3–5).

Object detection using deep learning is revolutionizing various areas, including
entertainment (6), surveillance (7), and even self-driving automobiles (8). Deep-learning
frameworks for object detection can be grouped into two different approaches: one-
stage detection (e.g., single-shot detection [SSD], you only look once [YOLO], Corner-
Net, and ExtremeNet [9–12]) and two-stage detection (e.g., regional convolutional
neural network [R-CNN] family, including R-CNN, Fast R-CNN, Faster R-CNN, and
Mask R-CNN [13–16]). It is known that the two-stage approach is superior in
detection and positioning accuracy, but the one-stage approach is faster in detec-
tion speed (12). Among the one-stage frameworks, ExtremeNet is considered to be
the best model in terms of performance and accuracy (12). This approach employs
an hourglass network as its backbone network for key-point detection, including
extreme points and center points, and key points are combined with the method of
exhaustion (12, 17).

For microscopic cell detection, ExtremeNet is prone to a combination error in the
case of multiple cell targets and overlapping targets because the geometric correlation
between every two key points is not considered in the key-point combination.

Recently, some implementations that include morphological features indicating the
shapes of target cells in the deep-learning models were reported. Tofighi et al. (18)
developed shape priors with convolutional neural networks (SP-CNN) by learning the
shapes of cells. Falk et al. (5) reported a universal network (U-Net) using deep learning
for cell counting, detection, and even shape measurements. Nevertheless, these im-
plementations are still inept for new cell targets with a variety of cell shapes and sizes,
resulting in imperfect localization and detection (3).

It has long been recognized that cells show distinct and defined geometric order of
a given type. Cells are generally round, but the cells of some unicellular organisms show
great variations in terms of shape and size. For example, protozoa and single-celled
eukaryotes, including some parasites, exhibit morphological features distinct from
those of mammalian cells (Fig. 1).

Herein, we propose a simple and efficient geometry-aware deep-learning ap-
proach for cell detection. By converting the thought that each cell has its own
unique geometric order, we redesigned the ExtremeNet framework by incorporat-

FIG 1 Examples of typical cell images under the microscope. The boxes frame a few targets that need
to be detected and magnified. (A) Nucleus; (B) Toxoplasma; (C) Trypanosoma; (D) Babesia.
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ing a geometric-feature spectrum. We refer to this network as the geometric-feature
spectrum ExtremeNet (GFS-ExtremeNet), which introduces geometric information into
the key-point combination process to achieve improved accuracy in cell detection.

To illustrate this improved performance, we show the high accuracy and effective-
ness of our GFS-ExtremeNet approach with the publicly available data set of mamma-
lian cell nuclei (Fig. 1A) by outperforming other state-of-the-art alternatives (Table 1). In
addition, we demonstrate the generality of our GFS-ExtremeNet model in solving
complicated microscopic cell identification tasks with three newly collected unicellular
parasitic protozoa, namely, Toxoplasma, Babesia, and Trypanosoma parasites. Toxo-
plasma is a single-cell protozoan parasite capable of infecting all warm-blooded
animals as well as one-third of the world’s human population (19–21). The name
Toxoplasma is derived from the Greek word toxon, meaning arc or bow shaped, in
reference to the unique crescent shape of the parasite (Fig. 1B). Trypanosoma parasite,
a unicellular protozoan, infects wild and domesticated animals and humans. In humans,
Trypanosoma parasite is a causative agent of Chagas disease in Latin America and
African sleeping sickness in sub-Saharan Africa (22), and these diseases are some of
the most severe public health problems in these developing countries. In the blood
plasma of patients, a Trypanosoma parasite forms a thin, flattened, and spindle-
shaped body (Fig. 1C). Babesia, an intraerythrocytic protozoan parasite, is respon-
sible for a malaria-like illness that imposes a significant health burden on animals
and occasionally humans worldwide (23, 24). The Babesia parasites are character-
istically pear shaped (Fig. 1D), and sometimes an irregularly shaped form may also
be found within red blood cells (RBCs). Microscopy is the most commonly used
method in the diagnosis and analysis of these parasites from infection samples.
Identifying and analyzing the parasite cells accurately and efficiently can help
reduce the disease burden, especially in areas with limited resources.

RESULTS
Comparison of different target detection models as the backbone network. To

compare various common target detection algorithms, we tested two-stage algorithms,
namely, Faster R-CNN and Mask R-CNN, and one-stage algorithms, namely, SSD,
YOLOv3, CornerNet, and ExtremeNet, on the nucleus data set. As shown in Table 1,
ExtremeNet outperformed all other backbone methods in its AP(0.5:0.95), AP75, and
AP50. AP(0.5:0.95) corresponds to the average precision (AP) for the intersection-over-
union (IoU) threshold from 0.5 to 0.95, with a step size of 0.05. The IoU threshold was
set to 0.5 (AP50) and 0.75 (AP75).

Although ExtremeNet has the best performance in the nucleus data set, this
algorithm cannot be used directly for microscopic images. Because of the complexity
of a microscope image, the distributions of cells are globally sparse and locally dense,
with overlapping and juxtaposition. As a result, in the combination process of extreme
points, the extreme point of a given target might be mistakenly paired with the
adjacent extreme point of the other target, resulting in an incorrect recognition result
(Fig. 2A). The reason for this erroneous result is that the algorithm generates only
extreme points and center points without consideration for the relationship between
the points. As a result, the points that have been combined are likely to be combined

TABLE 1 Results of GFS-ExtremeNet and baselines for the nucleus data set

Approach Method Backbone AP(0.5:0.95) AP75 AP50

Two stage Faster R-CNN ResNet-101 21.45 23.96 35.89
Mask R-CNN ResNet-101 45.20 51.82 67.20

One stage SSD ResNet-101 14.32 11.42 32.54
YOLOv3 DarkNet-53 38.68 33.46 76.76
CornerNet Hourglass-104 74.18 79.23 83.46
GFS-CornerNet Hourglass-104 74.86 81.07 85.87
ExtremeNet Hourglass-104 76.66 85.84 88.41
GFS-ExtremeNet Hourglass-104 77.96 87.47 90.22
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with other points again, resulting in an incorrect combination result. To overcome these
drawbacks, we introduced a geometry-aware software into ExtremeNet by using the
adjacency spectrum, namely, GFS-ExtremeNet. The improved detection results through
GFS-ExtremeNet are shown in Table 1 and Fig. 2.

GFS-ExtremeNet. It has long been recognized that cells show distinct and defined
geometric order of a given type. Cells are generally round, but some unicellular
organism cells show great variations in terms of shape and size.

By considering the thought that each cell has its own unique geometric order, we
redesigned ExtremeNet by incorporating a geometric feature, the adjacency spectrum
(Fig. 3). We evaluated our proposed GFS-ExtremeNet method on the same publicly
available nucleus data set. As can be seen from the results in Table 1, our GFS-
ExtremeNet algorithm outperformed ExtremeNet.

In order to evaluate the effectiveness and generalization of the geometry-aware
approach, we also tested the performance of the geometric-feature spectrum on

FIG 2 GFS-ExtremeNet’s role in microscopic image detection. (A) ExtremeNet’s poor performance with
microscopic images; (B) GFS-ExtremeNet’s improved detection result.

FIG 3 Schematic representation of the GFS-ExtremeNet algorithm in microscopic-image detection. Overall, this
geometry-aware approach is divided into two parts. (A) The first part is using the hourglass network to extract the
extreme and the center points of the target and generating heatmaps for those points. In addition, the relationship
of the extreme points is measured and passed to the second stage in forming the adjacency spectrum. (B) The
second part is the feature combination, mainly center grouping. (C) After the geometric relationship is combined,
the adjacency spectrum is then used for verification to form the detection results.
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CornerNet, which is another commonly used object detection framework. As shown
in the Table 1, the performance of GFS-CornerNet was substantially reduced
compared to that of GFS-ExtremeNet but better than that of CornerNet. These
results illustrated the superiority of ExtremeNet and the importance of the
geometric-feature spectrum.

Detection performance with parasite microscopic images. To investigate the
generalizability of our system to the detection of different microscopic cell images, we
conducted the same deep-learning framework analysis on several unicellular protozoon
microscopic images, including banana-shaped Toxoplasma, spindle-shaped Trypano-
soma parasite, and pear-shaped Babesia. Some examples of those microscopic images
are shown in Fig. 4. From the first row of results in Fig. 4, we prove that our model
performs satisfactorily in detecting nuclei, missing very few targets. From the second
row of results, our GFS-ExtremeNet can successfully detect numerous overlapping and
aggregated forms of Toxoplasma in the stained images, distinguishing them from host
cells and debris. Trypanosoma parasite has an elongated and flattened leaf-like body
with a flagellum on its end. The use of this parasite is to prove that our model can
obtain acceptable results in cells with complicated shapes. As a result, the GFS-
ExtremeNet algorithm detected all Trypanosoma parasites, not RBCs. All three types of
cells mentioned above are isolated ones, which leads us to wonder if our model can
detect organisms properly in even more difficult situations. The parasite Babesia, like
the malaria agent, can reside and replicate within RBCs, representing a picture-in-a-

FIG 4 Detection results obtained by GFS-ExtremeNet. Examples of nuclei (Nucl), Toxoplasma (Toxo), Trypanosoma
(Tryp), and Babesia (Babe) parasites are presented. The first-column images are the original images to be detected,
the second-column images are the center-point heatmaps, and the third-column images are extreme-point
heatmaps. The fourth-column images are the final test detection result, where the target is identified by the box
frame, with the name and score of the target shown.
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picture situation. As shown in the last line of Fig. 4, a high accuracy of detection was
obtained for this intraerythrocytic parasite.

In comparison, we measured the AP(0.5:0.95), AP75, and AP50 values of different
parasitic targets, including Toxoplasma, Trypanosoma, and Babesia, with both GFS-
ExtremeNet and ExtremeNet (Table 2). As shown in Table 2, as with the nucleus data
set, GFS-ExtremeNet outperformed ExtremeNet for all three parasites targets, indicating
the irreplaceable role of the geometric-feature spectrum in cell detection.

To visualize how capable the GFS-ExtremeNet model is in distinguishing between
different parasites, we deployed a two-dimensional (2D) t-distributed stochastic neigh-
bor embedding (t-SNE) plot to show cluster performance (Fig. 5). t-SNE can be used to
visualize high-dimensional data in 2D, maintaining local structures. The t-SNE plot
shows three separated distribution clusters, indicating that GFS-ExtremeNet can cor-
rectly distinguish different parasites.

The practicality of the model is largely determined by how well it will do when asked
to make new predictions for data that it has not already seen. To avoid the bias of the
images acquired, we gathered 10 different trypanosome images from the Internet,
representing the data style in a variety of different situations. Our GFS-ExtremeNet
model was able to achieve an average of 94.4% recognition accuracy with these new
images.

In comparison with biologists. To compare our GFS-ExtremeNet model with human
biologists, the participants and the machine were provided with each of the 130 parasite
images. Four experienced annotators commented on the images to identify the parasites
independently (Fig. 6). Close analysis of the results reveals that the GFS-ExtremeNet
model achieved 69.26% � 3.68%, 70.22% � 1.31%, and 95.89% � 1.18% average accu-
racies for Babesia, Toxoplasma, and Trypanosoma, respectively, while humans achieved
68.25% � 8.92%, 70.50% � 9.57%, and 83.75% � 3.86% average accuracies. As seen
from this result, in terms of accuracy, the performance of GFS-ExtremeNet is similar to

TABLE 2 Results of GFS-ExtremeNet and ExtremeNet on parasite microscopic imagesa

Parasite Model AP(0.5:0.95) AP75 AP50

Babesia ExtremeNet 35.87 23.18 72.90
GFS-ExtremeNet 37.14 24.55 74.16

Trypanosoma ExtremeNet 58.30 68.23 92.00
GFS-ExtremeNet 58.72 68.41 95.02

Toxoplasma ExtremeNet 30.91 22.60 68.47
GFS-ExtremeNet 32.70 23.50 69.77

aThe performances of GFS-ExtremeNet (with geometric-feature spectrum) and ExtremeNet (without
geometric-feature spectrum) with three parasites targets were compared.

FIG 5 t-SNE plot of GFS-ExtremeNet. t-SNE provides a method to evaluate and refine the clustering of
different parasite cells’ images. Data points are colored according to their labels.
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or better than that of humans. Moreover, the high error bar for humans indicates the
variable performance of humans. It cannot be easy for inexperienced clinicians to
distinguish between different cell targets and even between cells and artifacts (such as
stain or platelet debris) by the physical examination of slides alone. Therefore, the
detection accuracy highly depends on how well trained and experienced the profes-
sionals are. The deep-learning system may potentially aid clinicians in these examina-
tions by providing automated, accurate, and timely testing.

Discussion and conclusions. Our study is the first to investigate a cell recognition
task with the use of a geometric-feature spectrum as well as the first to propose a
geometry-aware deep-learning approach. Cell shape and size can vary considerably,
making an algorithm for reliable detection difficult. Parasites can live inside host cells
and their shapes can overlap erythrocytes to make recognition even more difficult. Very
few of the previous works considered the importance of shape in cell target detection.
To address these challenges, we proposed the GFS-ExtremeNet model, enabling sys-
tematic learning of the features from a determined area within extreme points.
Through experiments on publicly available and self-obtained microscopic cell images,
we have successfully demonstrated that our GFS-ExtremeNet model can detect multi-
ple cell types, including Babesia, Toxoplasma and Trypanosoma parasites, with high
accuracy. However, the labeling of specific extreme points that best reflect the geo-
metric features of a target of interest is a prerequisite for new-target training. It may
limit the use of this method by a nonprofessional developer. As a result, the accuracy
is highly dependent on the labeling of the extreme point in the innate area of data
training. In the future, an automatic extreme-point detection method which will be able
to reduce the time needed for labeling and be broadly applicable by the general public
and inexperienced clinicians will be developed.

Moreover, the internal rules in our model for feature selection within the
extreme boxes are not well understood. Traits such as color and texture might be
also important for the deep-learning model to recognize the target. Therefore, to
build a more reliable model, images from other testing scenarios need to be learned
by the model.

Our model can be applied to any microscope image targets with certain geometric
orders, showing promising and broader application potential for microscopic image
analysis. This is immensely helpful in the development of an automated cell detection
system with improved efficiency and a reduced error rate.

MATERIALS AND METHODS
Data set. Four different microscopic image data sets, including images from nuclei, Toxoplasma,

Trypanosoma, and Babesia, were used in this study. For nuclei, we used a publicly available data set to
verify and compare the performance of our model with those of alternative models. A total of 670
whole-slide images (WSIs) with 29,461 nuclei were used, and images were split into train, test, and

FIG 6 The accuracies of humans were compared to those of GFS-ExtremeNet. The performance of
GFS-ExtremeNet is similar to or better than that of humans.
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verification sets, with a ratio of 8:1:1. With complete annotations for object segmentation masks made,
we found the extreme points in the four directions of the mask and used them as our annotations of
targets.

The other three sets of parasite images were acquired with a bright-field light microscope (Olympus
IX53) with 100� oil immersion objectives. In total, we collected 261 Toxoplasma, 480 Trypanosoma, and
567 Babesia WSIs. We used LabelMe (25) to obtain annotations of these parasites, and we then marked
the four extreme points of each target.

Deep-learning methods for object detection. Deep-learning methods for object detection can be
grouped by two different approaches: one-stage detection and two-stage detection. Faster R-CNN and
Mask R-CNN, two representative algorithms for two-stage detectors, are selected in this study. YOLO,
SSD, CornerNet, and ExtremeNet, main representatives of one-stage algorithms, were also evaluated. The
detailed algorithms and model setting followed those in previously described papers (9–12).

ExtremeNet. ExtremeNet, one of the most state-of-art algorithms mainly converts the detection of
key points to extreme points in four directions and a central point. In the first part, four extreme-point
heatmaps and one center-point heatmap are detected by the standard key-point estimation network, the
hourglass network (usually used in the human pose estimation field). In the second part, the extracted
key points are combined through pure geometric theory, and a set of extreme points corresponding to
a detection target are formed. The detailed algorithm is divided into two steps, key-point detection and
center grouping (12). In key-point detection, the algorithm transforms the problem of target detection
into key-point estimation, avoiding regional classification and feature learning. A multichannel heatmap
was predicted using the fully convolutional encoder-decoder network. Using the hourglass network as
the backbone, each heatmap was weighted point by point logically, the purpose of which was to reduce
the number of false-negative results around the ground truth. The loss of the improved version was used
in the training network, as follows:

Ldet � �
1

N�i�1

H �
j�1

W �1 � Ŷij��
log�Ŷij�

�1 � Yij�� �Ŷij��
log�1 � Ŷij�

if Yij � 1

otherwise

where Ldet is the improved focal loss, H is the length of the microscopic image (represented by pixels),

W is the width, and N is the number of targets in the image. The value of Ŷij is the predicted score of
the location, �i, j�, in the heatmap through the network, and Yij is the corresponding true value. Both �

and � are hyper-parameters, equal to 2 and 4, respectively.
To improve the accuracy of target detection, a class-independent offset map was added to the

algorithm to compensate for the resolution loss �L1� caused by the process of down-sampling. Smooth
L1 was used during offset map training �Loff�, as follows:

Loff �
1

N�k�1

N

SL1�����, x� ⁄ s � ⎣x� ⁄ s⎦�

where SL1 is the smooth L1 loss, Δ(�) is the key point offset, x� is the coordinate of the key point, and s
is the down-sampling factor.

Under the supervision of the above two losses, Ldet and Loff, the network outputs four extreme-point

heatmaps and one center map: Ŷ�c�,Ŷ�t�,Ŷ�l�,Ŷ�b�,Ŷ�r� � �0,1�H�W.
As can be seen from the above Ldet and Loff, this key-point-based target detection algorithm has an

advantage: a greatly reduce labeling time compared with those of other supervised methods. In the
microscopic image, there is a large number of parasites with different shapes. The algorithm needs to
manually mark only the four extreme points of each target. Because of the mentioned advantages, we
used the hourglass network and the two losses of Ldet and Loff in GFS-ExtremeNet.

In addition, we used the hourglass network as the backbone network. As used mainly in pose
estimation, the basic network is a fully convolutional neural network. Given a single red, green, and blue
(RGB) image, the network outputs the precise pixel position of the key points of the target using
multiscale features to capture the spatial position of each joint point of the target. Its network structure
is shaped like an hourglass, hence the name “hourglass network” (17).

For center grouping, ExtractPeak (12) first extracts all the extreme points in the heatmap, which are
defined as the maximum values in the 3 by 3 sliding window, forming four sets of extreme points: T, L,
B, and R. The second step is brute-force algorithm in which the center point of each extreme-point

combination, �x�l� � x�r�

2
,

y�t� � y�b�

2 �, is calculated. If the response at the corresponding position of the

center map exceeds the present threshold, 	c, then this set of five points is taken as a temporary result
because of its geometric ignorance between adjacent key points, and the score of the candidate
combination is the average of the five corresponding points.

Adjacency spectrum. According to the shortcomings of ExtremeNet described above, from the
perspective of graph theory, we introduced the adjacency spectrum into the key-point combination
process of ExtremeNet to measure the geometric relationship of each key point of the target cell to the
adjacency spectrum. The process of model building is as follows:

1. The hourglass network extracts extreme points in four directions, as follows: K � 	T � �x�t�, y�t��, L �

�x�l�, y�l��, B � �x�b�, y�b��, R � �x�r�, y�r��
, where �x�t�, y�t�� is the top extreme point, �x�l�, y�l�� is the left
extreme point, �x�b�, y�b�� is the bottom extreme point, and �x�r�, y�r�� is the right extreme point.

2. According to graph theory, the graph G � �V, E� is constructed by using the above four extreme
points. V � 	v1, v2, . . ., vn
 is the node set in graph G, and E � 	e1, e2, . . ., em
 is the edge set formed
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by the connection of two adjacent nodes in V. For example, Gcell is the graph constructed by four
extreme points of the cell. E has no directionality in our model, so G is an undirected graph.

3. The nth-order square matrix, A�G� � �aij�n � n, constructed based on G, is called the adjacency
matrix of graph G and is denoted by A, where

aij � �
ij

0

if there are connections between vi and vj

if there are no connections vi and vj
.

The weight, 
ij, is expressed by the Euclidean distance, d�vi, vj�, between two points; that is, 
ij � d
�vi, vj� � |vi � vj|. The adjacency matrix is denoted

A(G) ��
a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·

an1 an2 · · · ann

 .

4. Calculate the adjacency spectrum, Spec0, of graph G from adjacency matrix A. The characteristic poly-
nomial corresponding to A is f�G, �� � |�E � A| � �n � a1�

n�1 � a2�
n�2 � ··· � an�1� � an, an is the

coefficient in the characteristic polynomial, and the calculated eigenvalues, � of f�G, ��, form the adja-
cency spectrum, Spec0 of G, and the process is transformed into a solution of the characteristic equation
��E � A�x � 0; that is,

|�E � A| � |
� � a11 �a12 · · · �a1n

�a21 � � a22 · · · �a1n

· · · · · · · · · · · ·

�am1 �a11 · · · � � amn

| � 0,

which solves for n complex roots, and �1, �2, . . ., �n are the n eigenvalues of the adjacency matrix minus
those of the adjacency spectrum, Spec0 � ��1,�2, . . ., �n�.

GFS-ExtremeNet. The architecture of the GFS-ExtremeNet algorithm is based on the basis of
ExtremeNet with the introduction of the adjacency spectrum. In the first stage, parameters such as
� and � in loss Ldet, batch size, and the maximum number of iterations, �, were optimized. After
training the hourglass network with the losses of Ldet and Loff, back-propagation, and the use of the
Adam optimizer to update the parameters in network N, we obtained four extreme-point heatmaps

and a center map: Ŷ�c�, Ŷ�t�, Ŷ�l�, Ŷ�b�, Ŷ�r� � �0, 1�H�W. The marked extreme points and corresponding
images then needed to be fed into the hourglass network, N. At the same time, we calculated the
adjacency spectrum in the training set temporarily stored in Spec0 after storing the adjacency spectra
of all targets. The cluster radius, Rs, of the adjacency spectrum corresponding to the target needed
to be calculated. The second stage consisted of geometric combinations and verification of the

FIG 7 The algorithm of deep geometric-feature spectrum ExtremeNet (GFS-ExtremeNet).
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adjacency spectrum. In the center-grouping stage, according to ExtractPeak, the heatmap was
transformed into the coordinate set T, L, B, and R of the key points; the distances between the
points were calculated and sequentially combined according to the distance. Using the geometric
relationship, the combinations of the key point and the center point were verified one by one until
the target outlook was formed. After the geometric relationships were combined, the semisuccessful
target was temporarily formed, with the adjacency spectrum of the semisuccessful target calculated
and verified by the Spec0 of the first stage. If the verification was successful, it would eventually form
a fully successful target; otherwise, it would continue to combine. The algorithm of GFS-ExtremeNet
is shown in the Fig. 7.

Training detail and index. We trained our network on the TensorFlow framework (26) with a Tesla
K40C and 128-GB memory in an Ubuntu 16.04 system. In the training process, we generally followed the
parameters set by the original ExtremeNet model: the learning rate of the network was 0.00025, and the
optimizer for the training network was Adam. We fine-tuned our network from a pretrained ExtremeNet
model during training. In addition, we used a total of 4 graphics-processing units (GPUs; Tesla K40C) to
train 100,000 generations with a batch size of 28.

The average precision (AP) over a set of fixed recall thresholds was used to evaluate the performance
of the models. The intersection-over-union (IoU) threshold was set to 0.5 (AP50) and 0.75 (AP75).
AP(0.5:0.95) corresponds to the average AP for IoU from 0.5 to 0.95, with a step size of 0.05. For each test
image, the network generated five heatmaps and then applied our center-grouping algorithm to these
heatmaps. Following ExtremeNet, we kept the original image resolution instead of resizing it to a fixed
size.

Data availability. The codes and data sets that support the findings of this study are available on
https://github.com/jiangdat/GFS-ExtremeNet.
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