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Boolean descriptions of gene regulatory networks can provide an insight into interactions between genes. Boolean 
networks hold predictive power, are easy to understand, and can be used to simulate the observed networks in 
different scenarios.
We review fundamental and state-of-the-art methods for inference of Boolean networks. We introduce a 
methodology for a straightforward evaluation of Boolean inference approaches based on the generation of 
evaluation datasets, application of selected inference methods, and evaluation of performance measures to 
guide the selection of the best method for a given inference problem. We demonstrate this procedure on 
inference methods REVEAL (REVerse Engineering ALgorithm), Best-Fit Extension, MIBNI (Mutual Information-
based Boolean Network Inference), GABNI (Genetic Algorithm-based Boolean Network Inference) and ATEN 
(AND/OR Tree ENsemble algorithm), which infers Boolean descriptions of gene regulatory networks from 
discretised time series data.
Boolean inference approaches tend to perform better in terms of dynamic accuracy, and slightly worse in 
terms of structural correctness. We believe that the proposed methodology and provided guidelines will help 
researchers to develop Boolean inference approaches with a good predictive capability while maintaining 
structural correctness and biological relevance.
1. Introduction

One of the main goals of systems biology is to obtain a system-level 
understanding of a biological system, which can be regarded as a set of 
networks of interactions [1]. One of the main networks guiding the de-
velopment and the dynamics of a biological system are gene regulatory 
networks (GRNs). Gene expression networks constitute fundamental 
cellular processes, such as cell proliferation [2], cell differentiation and 
tissue development [3, 4], stress response, metabolic stability [5], and 
apoptosis [6]. Their inference can provide a detailed insight into net-
work dynamics and interactions between genes. While gene expression 
is a complicated multivariate process dependent on numerous factors, 
it can still be represented in a simplistic manner as a GRN. In this net-
work, each node represents a gene and directed edges represent either 
activation or inhibition of a target gene.

* Corresponding author.
E-mail address: ziga.pusnik@fri.uni-lj.si (Ž. Pušnik).

When inferring gene regulatory networks, we are confronted with 
multiple challenges [7]. The number of measurements is typically much 
smaller than the number of genes, which directly affects the size of 
a solution space. In addition, the collected data contain noise due to 
intrinsic biological processes, external factors, and measurement er-
rors [8]. The majority of network inference methods are focused on 
the reconstruction of a simple undirected or directed graph, Bayesian 
network, or a Boolean network [9, 10]. Graphs present a static repre-
sentation of a biological network [11]. Bayesian networks allow us to 
model conditional probabilities among genes and their products and do 
not allow us to model the dynamics of the inferred gene regulatory net-
work [12]. However, neither of these approaches is able to describe 
the dynamical aspects of the underlying networks [11]. They can be 
used as a basis for further development of more complex models, e.g., 
ODE systems [13, 14]. The latter require a precise assessment of kinetic 
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Fig. 1. Visual representation of literature associated with the inference of Boolean networks. Axes correspond to the year of publication, and to the size of inferred 
networks in terms of number of nodes. Marker dot sizes correspond to the maximal number of regulators of each gene used by a given method. E.g., REVEAL and 
Best-Fit Extension can be applied to problems with maximal number of 3 regulators, while MIBNI uses at most 10 regulators.
parameter values, which are often hard or even impossible to obtain, 
especially when dealing with large networks. On the other hand, we 
can use Boolean networks to simulate the dynamics of gene regula-
tory networks even when the values of kinetic parameters are unknown 
[15]. Boolean genetic model presents a simple representation suitable 
for large scale gene regulatory networks [16, 17, 18]. Under a Boolean 
network model, each gene can either be active (1) or inactive (0). This 
property can be used to assess the accuracy of inferred networks, even 
if the underlying gene regulatory network is unknown and only time 
series data is provided.

Lack of ground truth models, i.e., gold standard networks, often 
represents a challenge in comparison and evaluation of inference meth-
ods [19]. In this work, we review fundamental and state-of-the-art 
Boolean inference methods, and apply a methodology for a thorough 
and robust evaluation of these methods. Our methodology includes the 
generation of test networks, selection of evaluation measures, and the 
analysis and visualisation of the obtained results. We demonstrate our 
methodology on five methods for the inference of Boolean networks 
from binarised time series data. The first two present two fundamen-
tal methods, i.e. REVEAL (REVerse Engineering ALgorithm) [20] and 
Best-Fit Extension [21]. While REVEAL can only solve problems with 
consistent and complete data, Best-Fit Extension presents a more gen-
eral method. We examine how the inability to deal with incomplete 
and inconsistent data affects the inference of Boolean networks. Fur-
thermore, we include three state-of-the-art methods, namely, MIBNI 
(Mutual Information-based Boolean Network Inference) [22], GABNI 
(Genetic Algorithm-based Boolean Network Inference) [23], and ATEN 
(AND/OR Tree ENsemble algorithm) [24]. MIBNI is able to model 
larger number of regulators for each gene in comparison to Best-Fit 
and REVEAL. GABNI increases the number of regulators even further. 
Both methods dedicate most of their computation time to the discov-
ery of optimal regulation sets. On the other hand, ATEN focuses on 
inferring the best representation of a Boolean function. We apply the 
proposed evaluation process to compare two different philosophies, 
where the first focuses on finding the optimal regulators (e.g., by utilis-
ing information theory-based approaches [22]), while the second ded-
icates most of the resources to find the most accurate and compact 
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Boolean representation of a GRN (e.g., by applying heuristic algorithms 
[24]).

The main contributions of this work are as follows. Firstly, we pro-
vide a comprehensive review of the fundamental and state-of-the-art 
methods used for Boolean inference of GRNs. Secondly, we provide a 
unified implementation of selected methods, which can be used in ad-
ditional benchmarking experiments and to reproduce the results of this 
work as well as the results of other works reported in the literature. 
Finally, we apply a set of metrics, which can be used to systemati-
cally assess current and future implementations of Boolean inference 
methods. We discuss the obtained results in the context of possible 
extensions of observed methods to increase their performance and ap-
plicability.

2. Background

Even though Boolean networks reflect several benefits in compari-
son to alternative GRN representations, a minority of inference methods 
has been focused on Boolean network inference (the visual representa-
tion of these is presented in Fig. 1). Moreover, the survey [25] placed 
Boolean networks on the lower end of the expressiveness scale. Contrary 
to this classification, Berestovsky and Nakhleh [15] showed that itera-
tive 𝑘-𝑚𝑒𝑎𝑛𝑠 binarisation combined with network inference approaches, 
can capture the correct dynamics of Boolean networks and can provide 
enough predictive power in different applications.

When deriving large GRNs, the size of the solution space can drasti-
cally impede network inference, which is also the case when inferring 
large Boolean networks. The number of possible inputs for a single tar-
get gene equals 2𝑁 , where 𝑁 is the number of genes, and the number 
of possible Boolean functions with 𝑘 inputs equals 22𝑘 . The number of 
genes varies between species, e.g. the number of protein-coding genes 
in the human genome is approximately 20, 000 [26]. To reduce the 
size of the search space, some approaches infer regulatory dynamic 
only for meta-genes, i.e. groups of genes with similar expression pro-
files [27, 28]. It is also possible to reduce the search space of Boolean 
functions by considering only interactions with presumed biological rel-
evance. Reconstruction strategies can focus on single pathways or sets 
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of transcription factors [3, 29]. For example, Moignard et al. [3] anal-
ysed more than 40 genes in cells with blood-forming and endothelial 
potential to map the progression of a mesoderm toward blood in the 
development of the mouse embryo.

Other Boolean network inference approaches limit the number of in-
puts for a Boolean function [20, 21, 22]. REVEAL by Liang et al. [20] 
and Best-Fit Extension [21] by Lähdesmäki et al. search all possible 

(𝑁
𝑘

)
combinations of input variables for a limited number of inputs, namely 
𝑘 < 𝐾 , to determine a set of Boolean functions with limited error size. 
Since all possible combinations are considered, these methods suffer 
from a very high computational complexity. To mitigate this problem, 
𝐾 is usually low, e.g., the authors of REVEAL do not recommend more 
than 3 genes as an input for a Boolean function of a target gene. Simi-
larly, Han et al. [30] limited the in-degree of a node to 2 in BIBN (full 
Bayesian Inference approach for a Boolean Network). While the selec-
tion of low 𝐾 can be justified by the overall sparsity of GRNs, it may 
not be as appropriate when inferring networks with multiple hub genes, 
i.e., genes with a high degree of connectivity.

Recently, an effort has been made to utilise feature selection ap-
proaches to reduce the size of Boolean network inference search space 
[22, 31]. Barman and Kwon [22] introduced a Mutual Information-
based Boolean Network Inference method MIBNI, which first identi-
fies a set of initial regulatory genes that can best characterise the 
target variable. The method identifies an optimal subset with feature 
selection based on an approximated multivariate mutual information 
measure. The obtained subset is often not optimal, since the mutual 
information is only approximated. This method improves the predic-
tion accuracy in the next step by iteratively swapping pairs of genes 
between sets of selected and unselected genes. In the end, MIBNI 
searches for the best fitting Boolean function that minimises the er-
ror. The limitation of MIBNI is that a Boolean function can consist of 
only two layers and one second layer operator, either a disjunction or 
a conjunction. All regulators, inverted or not, are therefore connected 
only to this operator. The limitation of this representation is that it 
is not functionally complete. This means it cannot be used to repre-
sent any possible Boolean function, despite utilising operators from a 
functionally complete set. Due to these limitations, Barman and Kwon 
proposed GABNI [23], a network inference algorithm that employs a 
genetic algorithm if MIBNI fails to provide an optimal Boolean func-
tion.

Latest Boolean inference approaches can be regarded as hybrid 
methods, which combine multiple different techniques to infer an ac-
curate Boolean network. For example, Vera-Licona et al. [32] incor-
porated evolutionary algorithm as an optimisation procedure to infer 
Boolean functions represented as Boolean polynomial dynamical sys-
tems. NNBNI (Neural Network-based Boolean Network Inference) [33] 
combines mutual information feature selection, genetic algorithms as 
a global search technique, and a neural network to represent a regu-
latory rule. Similarly, RFBFE (Random Forest Best-Fit Extension) [31] 
employs random forest-based feature selection and Best-Fit Extension 
to infer large Boolean networks. Shi et al. introduced ATEN [24] an 
AND/OR Tree ENsemble algorithm for inferring accurate Boolean net-
work topology and dynamics. A Boolean function in ATEN is repre-
sented by an AND/OR tree in three levels. The first level contains the 
logical operator OR (∨), second level nodes are labelled with AND (∧) 
operator, while nodes on the third level are labelled by a Boolean 
variable or its negation (¬). ATEN works by drawing bootstrap and 
out-of-bag samples from time series data to infer ensembles of trees 
and to compute the importance of prime implicants based on out-
of-bag samples. Inferred trees are decomposed into prime implicants, 
and only essential prime implicants are used in the final AND/OR 
tree reconstruction with simulated annealing. Similarly, TaBooN [34] 
utilises tabu search algorithm to generate a Boolean representation of a 
GRN.

An effort has also been made in the development of graphical tools 
for reconstruction, analysis, and visualisation of GRN models from cell 
3

gene expression data [35] (e.g., see Cytoscape [36], VisANT [37], 
GeneNetWeaver [38] and GeNeCK [39]). In addition to tools with a 
graphical user interface that allow GRN visualisation and/or inference 
by utilising known methods and approaches, a number of tools are spe-
cialised for executable models in the Boolean domain [40, 41, 42]. 
BooleSim (Boolean network Simulator) [40] is an in-browser tool for 
simulation and manipulation of Boolean networks. ViSiBooL (Visuali-
sation and Simulation of Boolean networks) [41] is a simulation and 
visualisation tool for the modelling of Boolean networks implemented 
in Java. ViSiBooL allows modelling, simulation, visualisation and or-
ganisation of Boolean networks through a graphical user interface. The 
Single Cell Network Synthesis toolkit (SCNS) [42] is a web-based graph-
ical tool for reconstruction and analysis of executable Boolean models 
implemented in F# [43]. In addition, SCNS can display stable state at-
tractors as a heatmap. In SCNS, gene expression profiles are represented 
with binary states. Regulatory rules are then extracted from a state 
transition graph. The search is limited only to functions with a form 
𝑓1 ∧ ¬𝑓2, where 𝑓1 and 𝑓2 contain only AND or OR gates without nega-
tion. In this representation, regulators in 𝑓1 represent activators while 
regulators in 𝑓2 represent repressors. The algorithm searches for the 
shortest paths between all pairs of initial and final states with a breadth-
first search and extracts transitions where the selected target variable 
changes. The procedure searches for a Boolean function that is compat-
ible with discovered paths. This final step is encoded as a satisfiability 
(SAT) problem. For more information see [42, 44, 45]. One limitation 
of SCNS is its computational complexity. State transition graph with 𝑁
variables can contain up to 2𝑁 states with up to 𝑁 ⋅ 2𝑁−1 transitions. 
The size of a search space, combined with the fact that the SAT prob-
lem is NP-complete, makes SCNS an algorithm with high computational 
complexity.

Evaluation of Boolean inference approaches gives us an insight into 
how well does a specific method perform in a specific context. This al-
lows us to select the most appropriate Boolean inference method for a 
given task. The evaluation of methods for inferring Boolean networks 
can be divided into two categories. Namely, dynamic and static eval-
uation. In dynamic evaluation, we focus on predicting the correct be-
haviour of a Boolean network. That is, how well does the simulation of 
an inferred model match the provided binarised time series data. On the 
other hand, in static evaluation we mainly focus on the structure of the 
predicted network, by assessing how similar it is to the underlying sys-
tem by counting correctly and incorrectly inferred edges. In general, the 
estimated dynamic and static accuracy should be positively correlated. 
However, it is well known that different logical expressions can pro-
duce the same truth tables, therefore different network topologies can 
produce similar dynamical output [46]. When the underlying network 
is not known, reference networks with a similar structure can be used 
to approximate structural correctness. However, in this case, structural 
accuracy should be defined in a more general way in the terms of pres-
ence of motifs [47] and graphlets [48]. Motifs present partial subgraphs, 
whereas graphlets are defined as non-isomorphic induced subgraphs. 
Motifs are patterns of interconnections that occur significantly more fre-
quently than expected when compared to random networks [47]. The 
same types of motifs emerged in organisms that are not related, since 
they introduce an evolutionary advantage due to their capability to ex-
ecute various functions and process information. For this reason, motifs 
can be seen as building blocks of GRNs, and play a vital role in their 
general structure. Nonetheless, it is still not entirely clear in what de-
gree can these basic building blocks be further simplified and mapped 
into Boolean domain. The question is, if inference approaches map sim-
ilar motifs to the same Boolean functions with some high probability. 
For this reason, and to better understand the aspect of structural cor-
rectness in the domain of Boolean inference, we analyse the structural 
correctness of inference approaches on the data and networks extracted 
from the GRN of Escherichia coli (E. coli) [38, 49]. This way, the ex-
tracted networks should have similar structural properties as the initial 
network.
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Fig. 2. Flowchart depicting procedure for validation of methods for Boolean in-
ference. The methodology consists of three main segments. In the first segment, 
we generate learning and validation datasets. More specifically, we extracted 
GRNs and produced corresponding kinetic models, which were used to generate 
a time series of gene expression data. Majority of the work in the first segment 
was achieved using GeneNetWeaver [38]. The second segment consists of the 
inference of Boolean networks with selected methods. In the final segment, we 
perform the static and dynamic validation, plot corresponding graphs and anal-
yse the obtained results.

3. Methods

In the following section, we introduce a methodology for evalua-
tion of Boolean network inference techniques. We demonstrate intro-
duced methodology on five different inference methods, namely RE-
VEAL [20], Best-Fit Extension [21], MIBNI [22], GABNI [23] and ATEN 
[24], which we describe in more detail. The methodology is depicted in 
Fig. 2.

3.1. Computational methods for inference of Boolean networks

3.1.1. REVEAL
REVEAL is an information theory-based approach for the inference 

of genetic network architectures [20]. For each target gene, the al-
gorithm exhaustively investigates all 

(𝑁
𝑘

)
combinations of regulatory 

candidate sets, where 𝑘 is a number of regulators and 𝑁 is the number 
of nodes. The regulatory set  completely determines the target gene 𝑥
if  accounts for all the entropy of 𝑥. I.e., if the amount of mutual in-
formation between  and 𝑥 is the same as entropy of 𝑥. If such a set 
is found, a Boolean function is extracted from the predefined lookup 
table. If this set is not found, the function cannot be inferred. Mutual 
information (𝑀) can be expressed by Equation (1) in terms of entropy 
(𝐻) as
4

Table 1. Example of binarised 
time series data with regulators 
𝐴, 𝐵, 𝐶 , and target variable 𝐷.
𝑡 𝐴 𝐵 𝐶 𝐷

1 0 1 0 0
2 0 1 1 1
3 1 0 1 1
4 0 1 1 0
5 0 0 0 0
6 0 1 0 1
7 1 1 1 0
8 1 1 0 1
9 0 1 0 0

Table 2. Example of a state transition 
table with regulators 𝐴, 𝐵, 𝐶 , and tar-
get variable 𝐷 with a Boolean function 
𝑓 (𝐴, 𝐵, 𝐶) = ¬𝐴 ∧ ¬𝐵 ∨𝐵 ∧𝐶 .
𝐴(𝑡) 𝐵(𝑡) 𝐶(𝑡) 𝐷(𝑡 +1)
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

𝑀(𝑥,) =𝐻(𝑥) +𝐻() −𝐻(𝑥,), (1)

and it is therefore not necessary to explicitly compute it, since 
if 𝑀(𝑥, ) = 𝐻(𝑥) then 𝐻() = 𝐻(𝑥, ), making the computation 
faster.

For example, consider binarised time series data from Table 1. After 
we omit values of regulators from the last row and the initial value 
of the target gene, we get 𝐻(𝐷) = 1 and 𝑀(𝐷, {𝐴, 𝐵, 𝐶}) = 0.5. The 
Boolean function for 𝐷 cannot be inferred, since the above condition is 
not satisfied. However, if we fix inconsistencies by changing target vari-
able values in time points 2 and 5, we get 𝐻(𝐷) =𝑀(𝐷, {𝐴, 𝐵, 𝐶}) = 1. 
Nonetheless, the transition table is still incomplete. In order to infer a 
correct Boolean function, we would need to provide missing transitions, 
e.g. 𝐷(𝑡 +1) = 1 for 𝐴(𝑡) = 0, 𝐵(𝑡) = 0, 𝐶(𝑡) = 1 (vector 001) and 𝐷(𝑡 +1) = 0
for 𝐴(𝑡) = 1, 𝐵(𝑡) = 0, 𝐶(𝑡) = 0) (vector 100). The complete transition ta-
ble is given in Table 2. The function 𝑓 (𝐴, 𝐵, 𝐶) = ¬𝐴 ∧ ¬𝐵 ∨𝐵 ∧ 𝐶 now 
completely determines modified time series data.

The computational complexity of reveal is 𝑂(𝑁𝐾+1𝐾𝑡𝑛) for a fixed 
small maximal number of regulators 𝐾 and 𝑡𝑛 time steps. Due to the 
high computational complexity and overall sparsity of GRNs, the au-
thors do not recommend setting 𝐾 to larger than 3. Liang et al. [20] 
evaluated REVEAL on 150 synthetic networks with at most 3 regula-
tors. Furthermore, the authors showed that increasing the number of 
state transitions logarithmically decreases the number of misidentified 
functions.

3.1.2. Best-fit extension
Best-Fit Extension [21] is a Boolean inference algorithm based on 

finding Boolean functions with a minimal error size with respect to par-
tially defined Boolean functions by solving the inconsistency problem. 
A partially defined Boolean function (pdBf) is a pair of sets 𝑇 and 𝐹
containing the vectors of all true and false examples, respectively. The 
function 𝑓 is consistent if 𝑇 is a subset of all examples where 𝑓 is true, 
i.e. 𝑇 ⊆ 𝑇 (𝑓 ), and 𝐹 is a subset of all examples where 𝑓 is false, i.e. 
𝐹 ⊆ 𝐹 (𝑓 ). A consistency problem, e.g. REVEAL, can be solved only if 
the intersect of sets 𝑇 and 𝐹 is an empty set, i.e. there are no input 
vectors in training data for which the output is 0 and 1. For a given 
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target gene, Best-Fit Extension returns all Boolean functions with lim-
ited error size. More specifically, the error of a function 𝑓 is defined 
as

𝜀(𝑓 ) =𝑤(𝑇 ∩ 𝐹 (𝑓 )) +𝑤(𝐹 ∩ 𝑇 (𝑓 )), (2)

where 𝑤(𝑆) is a summation of individual vector weights in the set of all 
training examples. Weights can be uniform or can depend on the train-
ing data, e.g., weights can be proportional to the occurrence of training 
examples.

For example, consider binarised time series data in Table 1 and a 
Boolean function 𝑓 (𝐴, 𝐵, 𝐶) = ¬𝐴 ∧ ¬𝐵 ∨ 𝐵 ∧ 𝐶 (see Table 2). From Ta-
ble 1 we can extract a partially defined Boolean function pdbf(𝑇 , 𝐹 ), 
where 𝑇 = {010, 011, 000, 111} and 𝐹 = {101, 011, 010, 110}. Next, we 
assume equal weights (𝑤𝑖 = 1) of all examples in pdbf(𝑇 , 𝐹 ). Then 
𝑤(𝑇 ∩ 𝐹 (𝑓 )) = 𝑤(010) = 1 and 𝑤(𝐹 ∩ 𝑇 (𝑓 )) = 𝑤(011) = 1. When we con-
sider uniform example weights, the error size (Equation (2)) is equal to 
the number of misclassifications.

Best-Fit Extension constructs a generalised truth table filled with 
symbols “0”, “1”, “?”, “∗”. The symbol “∗” represents a conflict, where 
a vector is both in 𝑇 and 𝐹 . If a vector does not appear in the train-
ing data, then its output is marked with a “do not care” value “?”. 
Best-Fit Extension generates a generalised truth table for all possible 
combinations 

(𝑁
𝑘

)
of regulatory candidate sets and extracts functions 

with minimal error size. Computational complexity of the Best-Fit Ex-
tension is the same as in REVEAL, nonetheless, unlike REVEAL, Best-Fit 
Extension solves the inconsistency problem with a minimal error size. 
Best-Fit Extension was evaluated on the cdc15 yeast gene expression 
time series data set of cell cycle regulated genes [50]. Instead of the en-
tire network, the authors focused only on a set of five genes, i.e. Cln1, 
Cln2, Ndd1, Hhf1, Bud3, and inferred all Boolean functions with up to 
three regulators and limited error size. The obtained results matched 
with other studies [51]. For example, the cyclin gene Cln1 was found 
to be regulated by the complex Swi4/Swi6 [51]. This was also predicted 
by the Best-Fit Extension, where the Boolean functions with regulators 
Swi4 and Swi6 achieved minimal error size.

3.1.3. MIBNI
To reduce the running time and improve the inference accuracy, 

Barman and Kwon [22] introduced MIBNI, a Mutual Information-based 
Boolean Network Inference method. MIBNI first identifies a set of ini-
tial regulatory genes that can best characterise the target variable. The 
method identifies an optimal subset  with a feature selection based on 
an approximated multivariate mutual information measure [52]. The 
problem is that the number of all possible subsets grows exponentially. 
Mutual information feature selection works incrementally under the 
assumption of independent features, or in our case independent gene 
expressions. In each iteration, a new variable 𝑣 is added to an optimal 
candidate set  based on the following criterion

argmax
𝑣∉
𝑀(𝑥, 𝑣) −

∑
𝑟∈
𝑀(𝑟, 𝑣), (3)

where 𝑥 represents the target gene.
Again, consider binarised gene expression data from Table 1. We 

first initialise the set  with a variable that maximises mutual in-
formation with the target variable 𝐷. In our case, we would select 
a regulator 𝐴 with 𝑀(𝐷, 𝐴) = 0.049, 𝑀(𝐷, 𝐵) = 0 and 𝑀(𝐷, 𝐶) = 0. 
Now, we would apply mutual information feature selection based on 
Equation (3) and would consider two candidate regulators 𝐵 and 𝐶 . 
In our case, we would select 𝐵 since 𝑀(𝐴, 𝐵) = 0.016 and 𝑀(𝐴, 𝐶) =
0.049.

MIBNI limits the maximal size of the set  to 10. The method 
then improves the prediction accuracy by iteratively swapping a pair 
of genes between the sets of selected and unselected genes. In the end,
5

MIBNI searches for the best fitting Boolean function that minimises the 
error. By applying smart feature selection, MIBNI reduces the size of a 
search space of all possible Boolean functions. Nonetheless, the number 
of possible functions with 10 variables is still large, and MIBNI mit-
igates this by considering only disjunctive or conjunctive functions. 
This is biologically unrealistic. For example, two monomers 𝑥1 and 
𝑥2 can form a dimer that activates a target gene, while a third pro-
tein 𝑥3 represses the target gene independently. The Boolean function 
𝑓 (𝑥1, 𝑥2, 𝑥3) = 𝑥1 ∧ 𝑥2 ∨ ¬𝑥3, which describes this system, cannot be ex-
pressed using only logical conjunction or disjunction. In general, every 
Boolean function can be expressed with two levels in disjunctive normal 
form (DNF).

MIBNI was evaluated on 300 random networks with different sizes, 
from 10 to 100 nodes and up to 10 regulators. These were extracted 
from E. coli GRN used in DREAM3 challenge [53]. In addition, the 
method was evaluated on a yeast cell cycle network used in [54] with 
10 genes and 23 interactions, of which MIBNI correctly identified 14. 
Through extensive simulations, MIBNI showed better performance than 
other network inference methods, including REVEAL [20], BIBN [30] 
and Best-Fit Extension [21].

3.1.4. GABNI
The limitation of MIBNI is that only disjunction and conjunction 

functions are considered as Boolean functions. For this reason, Barman 
and Kwon introduced GABNI [23]. If MIBNI fails to find an optimal 
solution for a target gene, GABNI employs a genetic algorithm (GA) 
used to select an optimal set of regulatory genes. Each chromosome is 
composed of a binary vector of size 𝑁 , where each element defines the 
presence or absence of 𝑖-th gene as a regulator of the observed gene. At 
each GA generation, a phenotype for each chromosome is defined on 
the basis of the gene expression data of regulatory gene 𝑥(𝑡 + 1) and its 
potential regulators 𝑟(𝑡) = 𝑟1(𝑡)𝑟2(𝑡)...𝑟𝑘(𝑡) for all bit strings b = 𝑏1𝑏2...𝑏𝑘
as 𝑥′(𝑡 + 1) = argmax𝑏∈{0,1} 𝑃𝑟(𝑥(𝑡 + 1) = 𝑏|𝑟(𝑡) = b). Each chromosome is 
evaluated with the following fitness function

𝑓 = 1
(1 −𝐶(𝑥,𝑥′)) ⋅ 𝛾 + 𝑘

, (4)

where 𝑘 is a number of regulatory genes, and 𝐶 is a gene-wise consis-
tency (Equation (5)). Parameter 𝛾 is set such that (1 − 𝐶(𝑥, 𝑥′)) ⋅ 𝛾 ≫ 𝑘. 
Variant roulette wheel selection is then used to select two parent chro-
mosomes for crossover with a small mutation probability to generate 
two offspring chromosomes. Each offspring replaces its parent in the 
next generation if it performs better in terms of its fitness, which is 
obtained with Equation (4). Barman and Kwon applied their GA over 
1000 generations, with a population size of 𝑁 + 10. For more informa-
tion, refer to [23]. A drawback of GABNI is that it identifies only the 
most suitable target genes and cannot be directly used for the infer-
ence of Boolean functions. Instead, GABNI generates a list of regulators 
and a truth table with the most probable outcome for all different input 
vectors extracted from binarised time series learning data. Therefore, 
this table can also be incomplete, if not all possible input vectors are 
present in the learning data. Nonetheless, GABNI can still identify the 
interaction types, i.e., activation or repression, between the target and 
its regulators based on the number of occurrences the regulator has the 
same value as the target gene, i.e. activation, or the regulator has the 
opposite value of the target gene, i.e. repression. GABNI was tested on 
artificial and real time series gene expression datasets and was eval-
uated on 300 random networks with different number of nodes, from 
10 to 100. The method was also evaluated on the data from the past 
DREAM challenges [53, 55, 56]. More specifically, on two E. coli net-
works and three yeast networks. In addition, GABNI was validated on 
a budding yeast cell cycle network with 11 nodes and 29 interactions 
[57]. In all cases, GABNI performed well in terms of dynamical as well
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Fig. 3. Representation of the Boolean function 𝑓 (𝐴, 𝐵, 𝐶) = ¬𝐴 ∧¬𝐵∨𝐵∧𝐶 with 
an AND/OR tree.

as in terms of structural accuracy, where the gold standard network was 
given.

3.1.5. ATEN
Instead of selecting the optimal subset of genes that can charac-

terise a target gene, Shi et al. [24] focused on producing an accurate 
Boolean function in DNF by employing AND/OR Tree ENsemble al-
gorithm (ATEN). A Boolean function in ATEN is represented by an 
AND/OR tree in three levels. The first level contains the logical disjunc-
tion (∨), second level nodes are labelled with conjunction (∧), while 
nodes on the third level are leaves. Leaves are labelled by a Boolean 
variable or its negation (¬). An example of a Boolean function depicted 
with an AND/OR tree is presented in Fig. 3.

ATEN works by drawing bootstrap samples from time series data. 
Each sample is used to infer a Boolean function for a target gene 
using simulated annealing. Inferred trees are decomposed into prime 
implicants, and only essential prime implicants are used in the fi-
nal AND/OR tree construction. For example, the Boolean function 
𝑓 (𝐴, 𝐵, 𝐶) = ¬𝐴 ∧ ¬𝐵 ∨𝐵 ∧ 𝐶 is composed of prime implicants ¬𝐴 ∧ ¬𝐵
and 𝐵 ∧ 𝐶 . ATEN first extracts a set of prime implicants by inferring 
AND/OR tree for each bootstrap sample drawn from time series data. 
Out-of-bag sample is then used to calculate the importance of prime im-
plicants. The importance is measured based on how removing or adding 
a prime implicant to the tree reduces or increases misclassification. Im-
portant prime implicants are extracted with recursive procedure. In 
each iteration, only a percentage of prime implicants with the high-
est importance is kept and the duplicate of the time series dataset is 
extended based on the states of all remaining prime implicants for all 
the time steps. This extended dataset is then used in the next iteration 
of a recursive algorithm to update the set of important prime impli-
cants. The procedure terminates when none of the newly constructed 
prime implicants is more important than the prime implicants from the 
previous iteration. Finally, the AND/OR tree is inferred by selecting 
the optimal input features, i.e. genes or prime implicants, with simu-
lated annealing, where at each iteration a new tree is proposed based 
on the set of permissible moves, i.e. adding a leaf, removing a leaf, 
adding or removing prime implicants, etc. The new tree is then ac-
cepted with a certain probability based on the misclassification rates 
and the current temperature. By employing the same procedure for 
every gene, ATEN produces a full Boolean network. For a more de-
tailed explanation of the algorithm and other information, see [24, 
58].

ATEN was evaluated on artificial networks containing 50 or 150
nodes with at most 5 regulators for each node and different noise lev-
els, i.e. 1% and 5% noise. The noise was introduced by random flipping 
of a state with a corresponding probability. In addition, ATEN was eval-
uated on a Drosophila segment polarity gene regulatory network [59]. 
Overall, ATEN outperformed MIBNI, Best-Fit Extension, and the infer-
ence approach described by Vera-Licona et al. [32] in terms of recall, 
false positive rate and F1 score.
6

3.2. Validation

3.2.1. Synthetic data generation
Generation of synthetic learning and validation data is composed 

of multiple steps. First, we generate a set of static ground truth GRNs 
from a reference network, e.g., from E. coli GRN [38, 49]. Networks 
extracted from realistic GRNs, at least to some degree, retain topologi-
cal properties of the reference network such as sparsity, shallow paths, 
and frequently occurring network fragments and motifs [47, 60]. By in-
cluding these properties in our datasets, we can get a better insight into 
how Boolean inference methods would perform in real world scenar-
ios.

Generated networks act as a basis for generation of dynamical ki-
netic models, which are then simulated to produce a time course of 
gene expression data. Finally, we binarise the time series data using the 
iterative 𝑘-𝑚𝑒𝑎𝑛𝑠 algorithm [15] with depth 3. Simple 𝑘-𝑚𝑒𝑎𝑛𝑠 cluster-
ing with two classes can miss features in the data, such as fluctuations 
and oscillations. Iterative 𝑘-𝑚𝑒𝑎𝑛𝑠 better addresses these shortcomings 
[15].

We generated synthetic data with an in silico benchmark gener-
ation and performance profiling tool GeneNetWeaver [38]. This tool 
allows us to import or extract networks from larger GRNs. In addition, 
GeneNetWeaver constructs dynamical kinetic models based on ODE sys-
tems and is able to simulate various types of experiments, i.e. wild-type 
data, knockdown and knockout data, multifactorial perturbations, and 
time series data. Examples of generated networks are presented in Ap-
pendix A (see Figs. A.1, A.2 and A.3).

3.2.2. Dynamic validation
An important aspect of Boolean models is the capability to pre-

dict the dynamical response of a biological system. For this reason, 
the dynamic validation offers an important view into predicted model 
correctness. We evaluated each network based on its predicted dynam-
ics. For each gene, we can define gene-wise consistency 𝐶 (Equation 
(5)) as the absolute difference between the observed and predicted be-
haviour, 𝑥 and 𝑥′, averaged across 𝑡𝑛−1 time steps, excluding the initial 
state:

𝐶 =
∑𝑡𝑛
𝑡=2

||𝑥(𝑡) − 𝑥′(𝑡)||
𝑡𝑛 − 1

. (5)

Dynamic error (Equation (6)) is a gene-wise consistency averaged 
across all 𝑁 genes and is a quantitative measure for the whole 
model:

Dynamic error =
∑
𝑥∈ 𝐶(𝑥,𝑥′)
𝑁

. (6)

Dynamic error can take a value between 0, perfect match, and 
1, perfect mismatch. Dynamic error can be interpreted as a nor-
malised Frobenius norm of the difference between the matrix con-
taining the initial time series of all genes and a predicted time 
series ‖‖𝑋 −𝑋′‖‖𝐹 ∕((𝑡𝑛 − 1)𝑁). It can also be written in a bilin-
ear matrix form 𝑎𝑇 | (𝑋 −𝑋′)

𝑖𝑗
|𝑏∕((𝑡𝑛 − 1)𝑁), where 𝑎 and 𝑏 are 

column vectors containing ones. Two notations above offer dif-
ferent representations and means for calculating the dynamic er-
ror. Finally, we measure a model performance in terms of its dy-
namic accuracy (Equation (7)), which is an opposite of dynamic er-
ror:

Dynamic accuracy = 1 −Dynamic error. (7)

3.2.3. Static validation
While dynamic validation is prevalent in the inference of dynamic 

models, e.g., Boolean networks, due to the lack of ground truth net-
works, static validation is more frequently used when the main goal 
of inference is to produce a structural representation of a gene regu-
latory network [9]. When performing the static validation of obtained 
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Boolean networks, we applied and extended the measures as introduced 
in [61] and latter adapted in [24]. To evaluate the inferred networks 
from a static perspective, i.e. structural correctness, we compared a se-
lected GRN structure with its inferred counterpart. We converted each 
Boolean network to a graph by replacing Boolean functions and their 
regulators with undirected edges for every target gene. Based on this 
comparison, there are four possible basic measures that can be ob-
served, namely

• TP: the number of correctly predicted edges,
• TN: the number of correctly predicted non-edges,
• FP: the number of falsely predicted edges,
• FN: the number of falsely predicted non-edges.

Based on these measures, we evaluated Boolean network inference 
approaches based on standard classification measures, i.e., precision, 
recall, accuracy and F1 score, described in Equations (8), (9), (10) and 
(11), respectively. Precision is a fraction of correctly inferred edges 
among all edges in the inferred network, namely:

Precision = TP
TP+ FP

. (8)

On the other hand, recall presents a fraction of correctly inferred edges 
among all edges in the initial network:

Recall = TPR = TP
TP+ FN

. (9)

Precision and recall are important metrics, since we are more interested 
in edges than in non-edges. Accuracy is the proportion of all correct pre-
dictions, including edges and non-edges:

Accuracy = TP+ TN
TP+ TN+ FP+ FN

. (10)

F1 score is defined as a harmonic mean of the precision and re-
call:

F1 = 2 ⋅ Precision ⋅ Recall
Precision+ Recall

. (11)

In general, F1 score accounts for class imbalance, and is thus im-
portant for our analysis, since the number of non-edges in GRN 
is much greater than the number of edges. The same metrics can 
be applied to undirected and directed graphs. One can get even 
more exact and realistic measures from the perspective of biolog-
ical context by applying the same metrics to a directed graph. 
In a sense, Boolean networks can even be seen as an extension 
of a directed graph. Additionally, if the Boolean inference method 
utilises edge probabilities or modifiable parameters that would di-
rectly affect true positive and true negative rates, AUC (area under 
the curve) can also be considered for different scenarios (e.g., see 
[62]).

Additionally to standard classification metrics, we extended our 
evaluation using the Matthews correlation coefficient (MCC) and book-
maker informedness (BM), described in Equations (12) and (13), re-
spectively. MCC is a robust metric that summarises the classifier per-
formance in a single value, if positive and negative cases are of equal 
importance [63]. MCC measures the correlation of the true classes with 
the predictions and ranges from −1 (perfect misclassification) to 1 (per-
fect classification). It yields a high score only if the predictor correctly 
predicts the majority of positive as well as the majority of negative cases 
[64]. MCC can be expressed as:

MCC = TP ⋅ TN− FP ⋅ FN√ . (12)

(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)
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Bookmaker informedness (BM) combines the prediction of false neg-
atives and false positives in a single metric and ranges from −1 to 1
similarly as MCC [65]. It can be expressed as:

BM = TPR+ TNR− 1 = TP
TP+ FN

+ TN
TN+ FP

− 1. (13)

3.2.4. Running time
Running time is an important indicator that can give us an insight 

into the computational complexity of a method and its implementa-
tion. However, to assess the scalability of a method, we must take into 
account the increase in running time, as the complexity of the prob-
lem increases. In our case, we used three different network sizes. Even 
though it is not biologically realistic, we could also increase the maxi-
mal number of regulators or the number of training examples. Analysis 
of running time from the perspective of computational complexity also 
mitigates the problem of comparing algorithms on different systems 
with a varying number of cores and other computational resources. In 
our case, implementations of GABNI and ATEN are parallelised and can 
take advantage of multicore platforms. Nonetheless, parallelisation of 
an algorithm does not affect its computational complexity, only its run-
ning time, which is reduced by a constant factor.

3.3. Case study

We used GeneNetWeaver [38] to extract GRNs from the E. coli
network and to generate gene expression datasets. We extracted 10 net-
works with 16 nodes and at least 5 regulators (see Appendix A, Fig. A.1), 
10 networks with 32 nodes and at least 10 regulators (see Appendix A, 
Fig. A.2), and 10 networks with 64 nodes and at least 20 regulators 
(see Appendix A, Fig. A.3). For each network, we generated 10 time se-
ries with noise and 56 time steps. We believe that the number of time 
steps is low enough to maintain biological relevance, while at the same 
time providing enough data to inference methods to infer as accurate 
Boolean networks as possible. All parameters were the same as in in-
silico network challenge DREAM4 [53, 55, 66]. To obtain data suitable 
for Boolean inference, we binarised the time series data with iterative 
𝑘-𝑚𝑒𝑎𝑛𝑠 with depth 3. To obtain representative and accurate results, we 
inferred 10 networks based on 10-fold cross validation for each network 
and inference method. We therefore inferred 1500 networks with 16, 
32 and 64 nodes. Every performance measure was evaluated based on 
10-fold cross validation and averaged across 10 networks for different 
sizes.

We implemented a Python 3 script to evaluate the selected Boolean 
network inference methods, namely, REVEAL, Best-Fit Extension, 
MIBNI, GABNI, and ATEN, from a static and dynamic perspective. The 
script utilises a module subprocess from the Python Standard Library 
to run methods in separate processes. This module also allowed us 
to evaluate approaches implemented with different programming lan-
guages and technologies. REVEAL and Best-Fit Extension are written 
in Python 2. Their implementations are available in the package pub-
lished in [15]. Barman and Kwon provided us with the source code 
for methods MIBNI and GABNI written in Java. While GABNI was al-
ready fully implemented, we had to partially implement MIBNI, since 
only MIFS and SWAP routines were provided. ATEN is written in R
and is available at https://github .com /ningshi /ATEN. Validation soft-
ware with training data, results and implementations of methods for 
inference of Boolean networks is available within a Linux Docker im-
age at https://hub .docker .com /r /zigapusnik /review _and _assessment _
bn _inference.

4. Results

We evaluated methods REVEAL, Best-Fit Extension, MIBNI, GABNI 
and ATEN based on dynamic accuracy, structural accuracy, precision, 
recall, F1 score, BM, MCC (see Fig. 4) and running time (see Fig. 5). We 
ran the methods on NVIDIA DGX A100 system with 32 allocated CPU 

https://github.com/ningshi/ATEN
https://hub.docker.com/r/zigapusnik/review_and_assessment_bn_inference
https://hub.docker.com/r/zigapusnik/review_and_assessment_bn_inference
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Fig. 4. Dynamic accuracy, structural accuracy, precision, recall, F1, bookmaker inf
Boolean inference methods for networks with 16, 32, and 64 nodes. Results were ob
network size. Solid lines represent mean values. Shaded areas represent 95% confide
cores. Nonetheless, only GABNI and ATEN are parallelised and have 
the capability to take advantage of multicore platforms. In accordance 
with our expectations, dynamic accuracy decreases as the number of 
nodes in a network increases. Except for REVEAL, all methods achieve 
similar dynamic accuracy. REVEAL focuses on inferring Boolean func-
tions with no inconsistencies and with all input vectors present in the 
learning examples. Inconsistencies in training examples are common 
and arise due to noise, which is a consequence of the stochasticity of 
biochemical reactions. For this reason, the majority of genes are not 
inferred with REVEAL, which consequently leads to a poor dynamic per-
formance. GABNI does not infer a Boolean function for a target gene, 
and instead produces a truth table with the most probable outputs. We 
therefore mapped the output from the truth table if the current vector 
was present in the corresponding table. Otherwise, we set an output of 
a target gene to 0, i.e. False. In our case, GABNI achieved comparable 
results to other methods since we provided enough learning examples, 
i.e., 10 time series with 56 time steps for each GRN. In the case when 
only limited number of examples is available, GABNI performs worse. 
In the network inference stage, dynamic accuracy is typically the main 
metric that inference approaches try to maximise. This can also be the 
reason that all Boolean inference approaches achieved similar results in 
terms of dynamic accuracy.

The results of structural accuracy analysis are displayed in Fig. 4
(Accuracy). Opposite to dynamic accuracy, the structural accuracy in-
creases as the number of nodes in a network increases. At first glance, 
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ormedness (BM) and Matthews correlation coefficient (MCC) for the evaluated 
tained with 10-fold cross-validation and averaged across 10 networks for each 
nce intervals.

Fig. 5. Running time for the evaluated Boolean inference methods for networks 
with 16, 32, and 64 nodes. Results were obtained with 10-fold cross-validation 
and averaged across 10 networks for each network size. Bars represent running 
time, and whiskers represent 95% confidence intervals. Values are displayed in 
a logarithmic scale.
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this seems counter-intuitive, since the problem gets harder with larger 
GRNs. However, structural accuracy accounts for all correctly predicted 
edges and non-edges alike, and a majority classifier that always pre-
dicts a non-edge will achieve high structural accuracy. For this reason, 
REVEAL performs best in terms of structural accuracy. In addition, 
structural accuracy exhibits little or no deviation, since the majority 
of the variance is introduced with predicted edges being either true 
positives, false positives, or false negatives. For the above reasons, struc-
tural accuracy alone is not suitable as a performance metric in the 
domain of inferring gene regulatory networks. To gain better insight 
into structural correctness, one should consider precision and recall as 
well.

GABNI, MIBNI, Best-Fit Extension, and ATEN achieved comparable 
results in terms of precision, i.e., the ratio of correctly predicted edges 
among all predicted edges. Precision, recall, and F1 score also decrease 
when the number of nodes in a network increases. As opposed to the 
structural accuracy, REVEAL achieved the worst results, since it was un-
able to infer the majority of genes. MIBNI and GABNI performed best 
in terms of recall, i.e., the ratio between the correctly predicted edges 
and all true edges. However, MIBNI and GABNI performed the worst 
in terms of structural accuracy, which means that both methods infer 
a significantly larger number of regulators than necessary. MIBNI in-
fers up to 10 regulators for a given target gene. GABNI can infer even 
more regulators for a target gene. More precisely, it can infer up to 
0.6 ⋅𝑁 regulators per gene, where 𝑁 is a total number of genes in a net-
work. In both cases, the maximal number of regulators is reached if the 
training examples contain inconsistencies and an optimal subset could 
not be determined. However, inconsistencies are almost ubiquitous due 
to noise in the training sets, which arises from the stochastic nature 
of biochemical reactions, other internal and external factors, and vari-
ability within experiments. A greater number of false positives affects 
the score of structural accuracy negatively, while it does not hinder 
precision and recall, since a greater number of inferred edges corre-
sponds to a larger number of true positives. The F1 score is a harmonic 
mean of precision and recall, which can also be observed in Fig. 4 (F1). 
REVEAL, Best-Fit Extension, MIBNI and ATEN performed similarly in 
terms of BM and MCC scores. GABNI performed best for smaller net-
works. Both scores, in a sense, measure how similar is the predicted 
network to the one constructed with random guessing. Obtained results 
indicate that the observed inference methods performed poorly and do 
not substantially outperform random guessing in the context of static 
evaluation. Precision, recall, and F1 score alone are not as suitable as a 
performance metric and should be, to ensure unbiased evaluation, only 
taken into account together with the structural accuracy, BM and MCC 
scores.

In addition to the performance metrics, we also measured the re-
quired running time to infer a Boolean network for each method. Re-
sults are displayed in Fig. 5. In addition to the total running time, 
we should also consider the computational complexity, which can be 
estimated with the increase of running time as the number of nodes 
in a network increases. Results are displayed on a logarithmic scale, 
due to an exponential increase in running time. An exponential fac-
tor in computational complexity arises from the exponential number 
of possible regulators for a given target gene, and a double expo-
nential increase in possible functions as the number of regulators in-
creases. Best-Fit Extension and REVEAL have the lowest running times 
for small networks (16 nodes). Nonetheless, both methods have the 
steepest slope and are thus less suitable for larger networks. Despite 
the fact that both methods have a similar computational complexity, 
REVEAL requires significantly more time to infer a network. This in-
dicates that the current implementation of REVEAL is not optimal, 
which can result from the use of inappropriate data structures or un-
necessary recalculations of the required expressions. In addition to 
lower running time, Best-Fit Extension also outperforms REVEAL, since 
it can successfully deal with inconsistencies in the input data. Other 
approaches have a slightly more acceptable slope and are thus more 
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suitable for larger networks. Overall, ATEN requires the largest amount 
of time to infer a network, however, it also has the best scalabil-
ity.

5. Discussion

Since the static validation is usually performed on directed or undi-
rected graphs obtained from a Boolean network, high metric values do 
not necessarily mean good prediction. Therefore, static validation needs 
to be used in a combination with the proposed dynamical validation to 
thoroughly investigate the predictive power of obtained Boolean net-
works. All methods performed well in terms of dynamic accuracy and 
slightly worse in terms of structural correctness. Poor performance of 
Boolean inference approaches in terms of structural correctness can 
also be observed in [10]. According to our experiments, all methods 
performed poorly in terms of precision. This indicates that dynamic 
accuracy should not be the only criterion when inferring gene regula-
tory networks in Boolean domain. Additional metrics, e.g. MC and BM, 
that explain how do the inference results compare to random guess-
ing, should also be utilised. MCC and BM combine the prediction of 
false negatives and false positives in a single metric and give a more 
comprehensive view on the classifier performance. Even though MCC 
surpasses other conventional metrics for the assessment of classifica-
tion, it may not represent a robust metric if the prevalence (ratio of 
positive cases in a dataset) significantly differs among datasets [63]. In 
the context of GRN inference, this might prove to be problematic for two 
reasons. Firstly, average connectivity within a network and thus preva-
lence of edges can differ significantly among different species [67]. 
Secondly, if we presume that the average connectivity is independent 
of a (sub)network size within the same species, the number of edges 
within the network will grow linearly with the network size. On the 
other hand, the number of all possible edges grows quadratically with 
the network size. This means that the prevalence will decrease in larger 
sub(networks) even within the same species. MCC could thus reflect dif-
ferent trends for the same method among different species, as well as 
within the same species for (sub)networks with different sizes. How-
ever, this is also the case for other conventional metrics as employed in 
this study. To make the assessment of inference methods more robust 
and transferable to different scenarios, one should opt to use a metric 
that reflects larger robustness to variable prevalence, such as BM [63, 
65].

To increase structural as well as dynamical accuracy, a general struc-
ture of GRNs could also be considered. Gene regulatory networks are in 
general sparse, shallow and are composed of patterns that occur sig-
nificantly more often than expected in random networks [47, 48]. This 
prior knowledge could be utilised to infer more accurate Boolean net-
works in terms of structural correctness [68]. It could either be defined 
as a set of predefined rules and guidelines, or could be extracted from 
the provided additional reference networks before the inference phase. 
Some inference methods can already, at least to some degree, rely on 
prior knowledge [69, 70, 71]. However, an automatic extraction of fre-
quently occurring patterns and other network properties from reference 
networks is yet to be applied in the context of inferring Boolean net-
works.

Another reason for a slightly worse structural performance of infer-
ence methods, could be that multiple regulators with different descrip-
tions of Boolean function produce the same results based on the same 
binarised learning data. In other words, for a given target gene, the sys-
tem can be either underdetermined or overdetermined, where multiple 
solutions or no solutions are possible. In addition, binarisation of time 
series data can introduce a loss of information [72, 73], while different 
binarisation techniques can produce different results [15]. To mitigate 
this problem, Boolean inference methods could in addition to binarised 
learning data also consider data in continuous format (e.g. [74]). For ex-
ample, to select a compact and accurate subset of potential regulators 
for a given target gene, an information theory-based approach could 
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compute mutual information based on discrete and continuous data. 
Two obtained scores can then be directly compared based on their rank. 
This would give us additional insight and confidence into a selected sub-
set of potential regulators. In addition to continuous time series data, 
Boolean network inference approaches could also utilise other data 
sources to improve their inference performance in terms of structural 
correctness (e.g., see [75, 76]). Gene expression depends on interac-
tions between multiple biological processes. For instance, copy number 
variations, histone modifications, DNA methylations, etc., could also 
be incorporated. For example, Zarayeneh et al. [76] included copy 
number variations and DNA methylations in the process of network in-
ference.

Other extensions to improve inference of Boolean networks could 
also be made. For example, Schwab et al. [77] developed a network re-
construction pipeline to infer an ensemble of Boolean networks from 
single-cell RNA-sequencing (scRNA-seq). The reconstruction pipeline 
generates pseudo-time series by exploiting the heterogeneity of single-
cell populations, where the state of each single-cell measurement is 
assumed to be a potential predecessor or successor of the state of each 
other single-cell measurement from the same individual. Next, potential 
regulatory interactions are filtered with correlation-based screening. Fi-
nally, an ensemble of Boolean networks is inferred with the filtered 
Best-Fit approach. By applying this preprocessing step to filter potential 
dependencies, Schwab et al. [77] improved the computational time and 
robustness to noisy data. Biological systems are inherently stochastic 
and robust in the presence of noise. Therefore, the stochastic Boolean 
network model is potentially useful in the modelling of gene regula-
tory networks [78]. The inference methods included in our assessment 
produce Boolean network models, which can be applied using differ-
ent updating schemes. Reconstruction of a deterministic network is a 
laborious process requiring significant computing resources. However, 
inference of stochastic networks presents an even more challenging 
problem.

Other formalisations of Boolean functions could be explored in the 
context of optimisation and inference. For example, the representation 
of Boolean functions with semi-tensor products offers additional alge-
braic principles that could be exploited in the domain of inference of 
Boolean genetic models. Nonetheless, recent advances in semi-tensor 
product based studies of Boolean networks have mostly been applied 
in the context of observability and controllability of logical control net-
works [79, 80].

Overall, none of the validated methods did not outperform others 
and there is no clear winner. However, REVEAL stands out negatively. 
It performed worse in terms of static as well as dynamic validation, 
since REVEAL cannot deal with inconsistencies in learning data. To 
mitigate this problem, one could preprocess the learning data and as-
sign the most probable output to examples with conflicting outputs. 
On one hand, GABNI achieved the best F1 score and has good pre-
dictive power, while on the other hand it performed the worst in 
terms of structural accuracy. According to the obtained results, the 
methods that overestimate the number of regulators have higher pre-
cision and recall, while performing worse in terms of structural accu-
racy.

6. Conclusion

Accurate Boolean descriptions of gene regulatory networks can give 
us a detailed insight into the dynamics of GRNs. These descriptions can 
be obtained using different inference methods, which, as we showed, 
still have room for improvement. Better understanding of the inter-
actions between genes would have a beneficiary impact in the field 
of synthetic as well as systems biology. However, the ability to re-
construct an accurate network with a given set of methods needs to 
be assessed before these are applied in relevant biological applica-
tions.
10
In this paper, we reviewed fundamental and state-of-the-art meth-
ods for Boolean inference of GRNs and applied a methodology for a 
thorough evaluation of these methods. We demonstrated our evaluation 
approach on five different inference methods, namely REVEAL, Best-Fit 
Extension, MIBNI, GABNI and ATEN. If needed, we reimplemented a 
given method. To perform a thorough evaluation of the selected meth-
ods, static and dynamic validation measures were proposed. We mea-
sured the static and dynamic performance on the networks extracted 
from the GRN of E. coli. To assess the scalability of each method, we 
validated these on different network sizes, i.e. networks with 16, 32 and 
64 nodes.

Our results indicate, that the inference methods aimed at the re-
construction of Boolean networks could be further improved. Overall, 
all methods performed well in terms of dynamic accuracy and worse 
in terms of structural correctness. For this reason, we suggested guide-
lines for inferring Boolean rules in the domain of gene regulatory net-
works, which include learning from continuous as well as binarised data 
and incorporation of learning data from multiple sources as well as 
integration of prior knowledge. We strongly believe that these exten-
sions would increase the performance of Boolean inference methods 
and should be incorporated in the inference process in the near fu-
ture.

Declarations

Author contribution statement

All authors listed have significantly contributed to the development 
and the writing of this article.

Funding statement

This work was supported by Slovenian Research Agency [P2-0359; 
J1-9176], Ministry of Education, Science and Sport of the Republic of 
Slovenia [ELIXIR-SI RI-SI-2] and by European Regional Development 
Fund [ELIXIR-SI RI-SI-2].

Data availability statement

Data associated with this study [validation software with training 
data, results and implementations of methods for inference of Boolean 
networks] has been deposited within a Linux Docker image at https://
hub .docker .com /r /zigapusnik /review _and _assessment _bn _inference.

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

Acknowledgements

We would like to thank Shohag Barman and Yung-Keun Kwon for 
providing the source code for MIBNI and GABNI methods.

https://hub.docker.com/r/zigapusnik/review_and_assessment_bn_inference
https://hub.docker.com/r/zigapusnik/review_and_assessment_bn_inference


Ž. Pušnik, M. Mraz, N. Zimic and M. Moškon Heliyon 8 (2022) e10222
Appendix A

Fig. A.1. Six examples of 16-node networks extracted from the gene regulatory network of E. Coli using GeneNetWeaver [38].
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Fig. A.2. Six examples of 32-node networks extracted from the gene regulatory network of E. Coli using GeneNetWeaver [38].
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Fig. A.3. Six examples of 64-node networks extracted from the gene regulatory network of E. Coli using GeneNetWeaver [38].
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