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Abstract

TRAF6 is an adaptor protein involved in signaling pathways that are essential

for development and the immune system. It participates in many protein–
protein interactions, some of which are mediated by the C-terminal MATH

domain, which binds to short peptide segments containing the motif PxExx

[FYWHDE], where x is any amino acid. Blocking MATH domain interactions

is associated with favorable effects in various disease models. To better define

TRAF6 MATH domain binding preferences, we screened a combinatorial

library using bacterial cell-surface peptide display. We identified 236 of the

best TRAF6-interacting peptides and a set of 1,200 peptides that match the

sequence PxE but do not bind TRAF6 MATH. The peptides that were most

enriched in the screen bound TRAF6 tighter than previously measured native

peptides. To better understand the structural basis for TRAF6 interaction pref-

erences, we built all-atom structural models of the MATH domain in complex

with high-affinity binders and nonbinders identified in the screen. We identi-

fied favorable interactions for motif features in binders as well as negative

design elements distributed across the motif that can disfavor or preclude bind-

ing. Searching the human proteome revealed that the most biologically rele-

vant TRAF6 motif matches occupy a different sequence space from the best

hits discovered in combinatorial library screening, suggesting that native inter-

actions are not optimized for affinity. Our experimentally determined binding

preferences and structural models support the design of peptide-based interac-

tion inhibitors with higher affinities than endogenous TRAF6 ligands.
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1 | INTRODUCTION

Protein–protein interactions assemble signal transduction
networks that are critical for cellular function and are
often implicated in disease. Knowledge of which proteins
interact, and how, is essential for a mechanistic under-
standing of information propagation in cells and how
these networks are perturbed in disease. Identifying mol-
ecules that can mimic and compete with native binding
partners provides compounds that can be used as
research tools; such inhibitors may also have potential to
be developed as therapeutics.

Myriad interactions important for signaling involve
the binding of a recognition domain in one protein by a
short linear interaction motif (SLiM) in a partner protein.
Many such domain/motif pairs, including the TRAF6
MATH domain/TRAF6-interaction motif pair that is the
subject of this work, have been compiled in the Eukary-
otic Linear Motif database.1 Most motif definitions are
based on patterns found in a few examples, leading to
incomplete models that do not fully capture the sequence
features necessary or sufficient for binding in the cell. A
deeper understanding of SLiM sequence requirements
can come from large-scale screens, which can provide a
more comprehensive view of protein recognition domain
specificity.2–7

TRAF6 is a member of the tumor necrosis factor
receptor-associated factor (TRAF) family of adaptor pro-
teins with E3 ubiquitin ligase functions.8–10 TRAF6 medi-
ates NF-κB signaling and thereby participates in
immunity and inflammation-related pathways. TRAF6
binds directly or indirectly to tumor necrosis factor recep-
tors and members of the interleukin-1 (IL-1) receptor/
Toll-like receptor superfamily, among other proteins.
Downstream targets for TRAF6-mediated K63-linked ubi-
quitylation connect to the regulation of proteins such as
transforming growth factor-β-activated kinase-1 (TAK1),
IκB kinase (IKK), and mitogen-activated protein (MAP)
kinases, which subsequently lead to the regulation of NF-
κB and AP-1 activity.9,11 Direct inhibition of the C-
terminal domain of TRAF6 (the TRAF-C Meprin and
TRAF Homology—or MATH—domain) has been pro-
posed and explored as a potential therapeutic strategy for
the treatment of a variety of pathologies such as cardio-
vascular diseases, diseases associated with obesity, osteo-
porosis, and others.12–18

TRAF6, like other members of the TRAF family, has
four domains. The N-terminal RING domain works with
the zinc finger domains as an E3 ubiquitin ligase. A
coiled-coil domain trimerizes TRAF6. The 17.4 kDa C-
terminal MATH domain engages peptides containing
TRAF interaction motifs (TIMs) and is responsible for
cellular localization.19 The MATH domains of TRAFs

1, 2, 3, and 5 share high sequence similarity, whereas
TRAF4 and TRAF6 are more diverged in sequence and
function.9,20–22 TRAF6 MATH is reported to bind pep-
tides that contain the motif xxxPxExx[FYWHDE] (here
referred to as TIM6; Figure 1a), where x is any amino
acid. TRAFs 1, 2, 3, and 5 have been reported to bind
[PSAT]x[QE]E, PxQxxD, and PxQxT motifs,1 although
other work suggests deviations from these definitions.28

For TRAF6, the proline and glutamate residues, refer-
enced here as motif positions (0) and (+2), appear strictly
conserved for TRAF6 binding.19,23–28 A preference for
aromatic or acidic residues at (+5) is maintained in
peptides that have been experimentally validated to bind
to the TRAF6 MATH domain (Figure 1a).19,23–28 Struc-
tures show that the TRAF6 MATH domain binds to
peptides that extend a beta-sheet in the MATH domain
(Figure 1b–d).19,23,24 Residues in position (+5) bind in a
pocket comprised of aromatic and basic residues, engag-
ing in electrostatic and pi-pi interactions (Figure 1d).

Given the low complexity of the TRAF6 motif PxExx
[FYWHDE], we reasoned that there might be other
determinants of high-affinity TRAF6 binding. To define
motif-proximal features important for the interaction of
SLiMs with the TRAF6 MATH domain, we used bacte-
rial surface-display screening to explore sequence pref-
erences within a library denoted xxxPxExxx, with x
being a random amino acid, keeping the proline fixed at
position (+0) and the glutamate fixed at position (+2).
We screened this library and identified 236 highly
enriched binders and 1,200 nonbinders. We then used
structure-based modeling to examine the interaction
between the peptides and the MATH domain. Our anal-
ysis revealed residues within the motif that support
high-affinity binding and negative-design elements that
explain why many peptides that contain PxE are not
suitable TRAF6 ligands. These insights help to elucidate
the determinants of TRAF6 binding affinity. We com-
pared the sequence features of the library-identified
binders with reported native TRAF6 binders and found
that most native interaction partners do not match the
top sequences isolated from the library. Notably, there
are no sequences in the human proteome that share all
of the features that are prominent among the tightest
binders from the screen. These results suggest that
native TRAF6 interaction partners may be under func-
tional selection for moderate affinity, and is consistent
with observations that other factors, such as ligand olig-
omerization, are important for triggering TRAF6 bind-
ing in certain biological contexts.9,29 The lack of high-
affinity binders in the proteome provides an opportunity
to out-compete native interactions using designed pep-
tides or mini-proteins that have features uncovered in
our screen.
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2 | RESULTS

2.1 | Library screening by cell-surface
display reveals strong positional
preferences for peptides that bind TRAF6

Bacterial-surface display can provide information about
the binding of short peptides to protein interaction
domains.3,30 For this work, we developed surface-display
constructs in which TIM6 peptides were fused to the C-
terminus of re-engineered OmpX,31,32 such that when the
construct was expressed, the TIM6 peptides were pre-
sented on the outer membrane of Escherichia coli cells.
To measure binding to TRAF6, peptide-displaying cells
were incubated with biotinylated TRAF6 homotrimers
consisting of the coiled-coil and MATH domains (con-
struct termed T6cc). The amount of TRAF6 bound to the
cells was then quantified by adding streptavidin-
conjugated phycoerythrin and analyzing the cells via
fluorescence-activated cell sorting (FACS). The level of
peptide expression was quantified simultaneously, using
a FLAG-binding antibody conjugated to allophycocyanin
(details in Methods).

To evaluate the TRAF6 MATH domain interaction
motif space, we constructed a combinatorial library by
introducing random residue variation around the core
TIM6 element PxE. We used degenerate NNK codons to
encode any of 20 amino acids at “x” positions in the
sequence xxxPxExxx. The proline at position (+0) and
the glutamate at position (+2) were held fixed to increase
the proportion of binders in the library and to force a

specific binding register to facilitate analysis and model-
ing. These sequences were presented in the context of
flanking sequences from CD40; see Table S1 for details of
the display constructs. To isolate cells displaying peptides
that bound to the TRAF6 trimer, we carried out one
round of initial enrichment using magnetic microbeads
(see Methods). This procedure generated a smaller
library, enriched in TRAF6 binders, that we designate
MACSLib; this library was used as the input for subse-
quent enrichment experiments.

To identify high-affinity binders in MACSLib, two
separate 5-round enrichment sorts were performed using
FACS to separate binding library members from non-
binding members (details in Methods). The stringency of
the binding assay was gradually increased by using a
lower concentration of T6cc for each round, from 300 to
3 nM. Following sorting, the population of binding cells
in each round was deep sequenced to monitor the enrich-
ment of individual sequences. The two replicate sorting
experiments gave similar results, with sequences from
rounds four and five reflecting similar preferred residues,
indicating convergence of the selection process
(Figure 2). In both replicate experiments, the three
sequences LNLPEESDW, RNVPEESDW, and
TNWPEENDW ranked among the top four binders based
on sequencing read counts, and 14 of the top-20 most-
represented sequences were the same in the two datasets.
Examination of enriched sequences, particularly those in
the final rounds, indicated a strong preference for Trp at
position (+5). In addition, preferences were evident for
Asn at (�2), Glu at (+1), Ser/Asn at (+3), and a polar or

FIGURE 1 TRAF6 MATH domain

interactions with TIM6 peptide ligands.

(a) Alignment of TRAF6-binding

sequences from known partners

showing the numbering scheme used

throughout this paper. (b–d) Structure
of the TRAF6 MATH domain (cyan)

bound to the CD40* peptide (dark grey),

which includes a point mutation relative

to human CD40, PDB ID 1LB6.

(b) MATH domain in surface

representation bound to the CD40*

peptide. (c) Bound peptide with

positions numbered as in (a). Peptide

residues at (+1)–(+5) form a beta-strand

that pairs with the MATH domain

(paired strand in yellow). (d) Interaction

of the (+5) Phe in CD40* with Phe

410 and Arg 392 in TRAF6.
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acidic residue at (+4). A final set of 236 high-confidence
TRAF6 binders was generated by taking the set of
sequences present in rounds 4 and 5 of either replicate
and filtering for sequences that enriched over at least
2 rounds of sorting (Figure 2 red box; see Methods for
details). We also generated a population of nonbinders by
collecting cells from the original unenriched library that
gave a strong peptide-expression signal but no TRAF6
binding signal. The logo for nonbinders did not show
strong enrichment of any particular features (Figure 2,
black box), and the diversity of the nonbinders confirmed
that the input library included all 20 amino acids at each
of the “x” positions.

To verify that the screening hits bound to TRAF6 in a
concentration-dependent manner, we performed single-
clone titration experiments. After titrating TRAF6 trimers
into a clonal population of peptide-displaying cells, we
determined an apparent cell-surface dissociation constant
(K�

d) by fitting the binding signal versus TRAF6 concen-
tration to a standard binding model (Methods;
Equation (1)). Binding between TRAF6 trimers and
peptide-displaying cells was multivalent, and the avidity
enhanced the apparent dissociation constants. We

measured K�
d for 14 peptides selected from the enrich-

ment data as well as a peptide from CD40 with an
affinity-enhancing point mutation (KQEPQEIDF, here
termed CD40*).19,28 Interestingly, all of the top peptides
from the enrichment bound TRAF6 with an apparent
affinity tighter than the CD40* peptide, with some bind-
ing over 10-fold tighter (Table 1 and Figure S1; see

FIGURE 2 Sequence logos for TRAF6-binding and nonbinding peptides. TRAF6 binders were identified by initial MACS enrichment

followed by two replicate 5-round FACS enrichment experiments. MACSLib and enrichment sort replicate logos are built from the unique

sequences with read count ≥ 20 in the samples. A total of 2,865 sequences obtained after the MACS enrichment represent only a subset of

the library at that stage but reflect the diverse residue content provided as input to the enrichment sorts. The final list of binders (red box)

was generated by combining results from both replicates and further filtering for sequences that enriched across multiple rounds.

Nonbinders were defined as sequences with read count ≥ 20 in the nonbinder pool (black box). Sequences of peptides selected for structural

modeling are summarized in the blue box. Residue height in the logos represents the frequency of that residue in the sequence set. The

number of sequences in each set is shown in parentheses.

TABLE 1 Validation of binding for peptides enriched in the

cell-surface display screen

Peptide
sequence

Single clone FACS
Kd* (μM)a

BLI
Kd (μM)b

KQEPQEIDF
(CD40*)

1.2 ± 0.21 240 ± 23

TNWPEENDW 0.084 ± 0.022 37 ± 6.9

LNLPEESDW 0.046 ± 0.0090 28 ± 3.1

RNVPEESDW 0.031 ± 0.0024c 24 ± 3.8

aSingle clone FACS Kd* measurements were performed with trimeric
TRAF6 (T6cc).
bBLI Kd measurements were performed with monomeric TRAF6 (T6m).
cAverage of 2 replicates; in all other cases, the reported values are the
average of 3 replicate binding curves ± the standard error of the mean.
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Methods). For example, RNVPEESDW, LNLPEESDW,
and TNWPEENDW bound TRAF6 with K�

d values of
31, 46, and 84 nM, respectively, whereas CD40* bound
with K�

d = 1.2 μM.
To further validate the cell-surface interactions identi-

fied in the screen, we measured TRAF6-peptide binding
by biolayer interferometry (BLI), using purified mono-
meric TRAF6 MATH domain (construct termed T6m) in
solution and purified peptides attached to the sensor tip
(see Table S1 for construct details). By BLI,
RNVPEESDW, LNLPEESDW and TNWPEENDW bound
to TRAF6 with Kd values of 24.0, 27.5, and 37.2 μM,
respectively, while CD40* bound with a Kd of 238 μM
(Figure 3). The BLI data validate the cell-surface display
results and support the conclusion that top hits from the
screen bind with higher affinity than CD40*, which is
one of the tightest known TRAF6 peptide binders19

(Figure 3). Based on these observations, we conclude that
despite the screening assay being performed in the envi-
ronment of the cell surface, and in a multi-valent context,
enrichment sorting returned high-affinity binders.

2.2 | Structural modeling explains
positive and negative binding
determinants

For computational analysis of the structural determinants
of TRAF6-TIM6 binding, we chose a subset of high-
affinity binders identified from enrichment sorting
(termed MD binders) and a subset of sequences

designated as nonbinders (termed MD nonbinders) (see
Methods and supplementary information). Figure 2
shows logos summarizing features of the two subsets of
sequences.

We first tested whether FlexPepBind (FPB), a peptide
modeling protocol in the Rosetta suite,33 could distin-
guish the MD binders from the MD nonbinders. As input
to FPB, we prepared models of MATH domain-peptide
complexes using the structure of TRAF6 bound to CD40*
(KQEPQEIDF) (PDB ID 1LB6) as a template.19 Starting
from this initial docking position, the binding pose of the
peptide was sampled, and the lowest interface score over
all sampled poses was assigned to each peptide complex
(see Methods for details). Figure 4a shows the score dis-
tributions for the 48 binders and 41 nonbinders by FPB
score, which achieves a good separation of the two popu-
lations. CD40*, scored with the same protocol, gave an
FPB interface score of �34.2, which is in the weaker end
of the range of binding peptides, consistent with the
affinity measurements discussed above.

Because 9-residue peptides will sample an ensemble
of conformations when bound to the TRAF6 domain, we
also tested a molecular dynamics-based protocol for eval-
uating peptide-domain interactions. Starting with com-
plexes modeled on the structure of TRAF6 bound to
KQEPQEIDF, as described above, we computed a detach-
ment temperature (Detach T) for each model, corre-
sponding to the temperature at which the distance
between the alpha-carbon of TRAF6 Phe 471 and the
center of mass of the peptide increased beyond 7 Å when
the temperature was gradually increased from 300 K.

FIGURE 3 Biolayer interferometry (BLI) measurements of TRAF6 monomer in solution binding to different peptides on the BLI tip.

(a) Binding signal is plotted against TRAF6 concentration and fit to a standard single-site binding equation (Equation 1). Error bars are the

standard error of the mean of three replicate measurements. (b) Average dissociation constant from three independently-fit replicate binding

curves. The error bars are the standard error of the mean. The dissociation constant fit for the CD40* peptide has a large error because the

highest TRAF6 concentration used was 150 μM.
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Detach T, like FPB interface score, was able to separate
binding peptides from most nonbinders, as shown in
Figure 4b, with no binders giving Detach T values lower
than 700 K.

To explore the structural origins of sequence trends
apparent in our enrichment sorting results, we used

molecular dynamics simulations to analyze TRAF6 com-
plexes with peptide ligands CD40*, each of the 48 MD
binders, and each of the 41 MD nonbinders (see
Methods). With CD40* and all MD binders, simulations
showed the persistence of 5 hydrogen bonds that posi-
tioned the peptide as an extension of the beta-sheet in

FIGURE 4 FlexPepBind (FPB) and

Detach T scoring of TRAF6 MD binders

and MD nonbinders. The FPB interface

score (a) and Detach T (b) are plotted

for a set of TRAF6 peptide binders

(orange) and a set of nonbinders (blue)

identified by high-throughput screening.

FIGURE 5 Structurally conserved features of high-affinity complexes. (a) Five beta-sheet hydrogen bonds involve main-chain atoms of

residues at positions (+1), (+3), (+5) (yellow), and residues 472, 470, and 468 in the MATH domain (green). The image shows a snapshot

from a simulation of TRAF6 MATH in complex with the peptide LNLPEESDW. (b) Positions of Pro at (+0) and Glu at (+2) (sidechains in

sticks) from different frames of the equilibrated MD simulation of the peptide LNLPEESDW bound to TRAF6 MATH (color scale: red-white-

blue for snapshots from the beginning-middle-end of the equilibrated part of the simulation). Pro binds into the pocket shown with cyan

mesh, and Glu caps the short helix marked in blue. (c) The two most populated clusters for Trp conformations at position (+5) for 65% of

the high-affinity binders. This sidechain arrangement allows simultaneous pi–pi interaction with Phe 410 and cation–pi interaction with Arg

392. The expanded region highlights snapshots from the two most common conformations.
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the MATH domain, as seen for CD40* in PDB structure
1LB6 (Figures 1c and 5a). The hydrogen bonds involved
backbone atoms of residues in positions (+1), (+3), and
(+5) that were highly stable during all 80 ns of
equilibrated-MD simulation. Invariant TIM6 residues Pro
at (+0) and Glu at (+2) also preserved their crystallo-
graphic positions throughout all trajectories, with only
minor displacements (Figure 5b). Pro at (+0) was accom-
modated in the pocket created by residues Phe 471, Met
450, and Tyr 473, while the negatively charged Glu at
(+2) capped a 3–10 helix formed by residues Leu
456, Leu 457, and Ala 458 (Figure 5b) in the MATH
domain.

Trp at (+5) was present in most of the binders
obtained from enrichment sorting, even though this res-
idue is not common in known native interaction part-
ners of TRAF6 (Figure 1a). Indeed, only 14 out of
236 binder sequences identified in the enrichment
screen did not have tryptophan at position (+5). Our
simulations showed different conformations for the Trp

sidechain. Most frequently, the indole group was
inserted into the receptor pocket (Figure 5c), allowing
for simultaneous pi-pi interaction with Phe 410 and
cation-pi interaction with Arg 392. This conformation
represented the most populated cluster for 65% of the
MD peptides and resembles the conformation of Phe at
position (+5) in the complex of CD40* bound to TRAF6
MATH (Figure 1d).19 In particular, clustering the (+5)
Trp conformations from simulation frames by RMSD
showed that more than 60% of the conformations were
within 1 Å of the sidechain arrangement shown in
Figure 5c. We also observed structures in which the Trp
indole was flipped out of the pocket but maintained a
binding interface, including backbone H-bond interac-
tions with Pro 468 and occasional pi–pi or cation–pi
interactions with Phe 410 or Arg 392. Such conforma-
tions were shared among 20% of the MD binders. The
remaining 15% of the MD binders showed unclustered
Trp (+5) conformations in which the backbone was still
involved in an H-bond interaction with Pro 468, but the

FIGURE 6 Overview of the most significant contacts between the highest affinity binders and the TRAF6 MATH domain, as captured

in molecular dynamics simulations. Panels (a)–(f) illustrate specific interactions discussed in the text. Key peptide residues are represented

in sticks: grey for Pro at (+0) and Glu at (+2), purple for residues at positions that favor a particular amino acid, and orange for residues at

positions that favor a group of amino acids with similar features. All of the highlighted interactions are present for >30% of simulation time

for all MD binders. (a) Asn at (�2) can simultaneously form H-bonds with Glu 448 and Thr 475. (b) Glu at (+1) forms a bi-dentate salt-

bridge interaction with Arg 402 when both sidechains are fully extended. (c) Residues at positions (+3), (+4), and (+5), are located in an

electrostatically positive region (as indicated by blue coloring), PDB ID 1LB6. (d) Interactions involving residues at (+1) and (+5), shown as

space-filling Glu and Trp in purple, along with MATH domain residues 402, 410, 392, and 394 (space-filling, cyan), narrow the pocket at

position (+3) so that small residues, such as the Asn pictured in orange sticks, are preferred at this site. (e) Residues at position (+4) face

solvent, and acidic residues at this site, such as the pictured Asp, can form a salt bridge with Lys 469. (F) Trp at (+5) engages in edge-to-face

pi-pi and cation-pi interactions with residues Phe 410 and Arg 392, respectively.
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indole group was flipped out and did not contact the
MATH domain.

The preference for Asn at (�2) in binders from the
screen can be explained by its sidechain interactions with
nearby TRAF6 residues. In all of the MD binders, the
Asn formed a stable interaction with the backbone of Thr
475 on TRAF6 for >40% of simulation time. In more than
70% of the MD binders, the Asn also formed a hydrogen
bond with Glu 448 on TRAF6 for >30% of the simulation
time (Figure 6a). Longer residues at (�2) (e.g., Gln) were
unable to interact with both TRAF6 amino acids. This
interaction pattern appears to be important for high-
affinity binding: Asn at (�2) is present in 190 of the
236 binders from the enrichment.

A preference for Glu at position (+1) can be
explained by a salt–bridge interaction that this residue
forms with Arg 402 in the MATH domain (Figure 6b).
Despite a Cα-Cα distance of �10 Å, the Arg 402 sidechain
can form a salt bridge with the (+1) Glu when both are
fully extended toward one another. In the simulations,
this interaction was stable for more than 80% of equili-
brated trajectory time and was completely missing for
peptides in which Glu is substituted with Asp due to the
shorter sidechain of the smaller residue.

At position (+3), interactions involving residues at
(+1) and (+5), and the positions of MATH domain resi-
dues 392, 394, 402, 410, and 474, narrow the pocket, pro-
viding an explanation for why small residues, such as
Asn and Ser, are preferred at this site (Figure 6d). Resi-
dues at position (+4) are less sterically constrained and
some can form a hydrogen bond or salt bridge with sur-
face Lys 469 (Figure 6e); all MD binder peptides with Glu
at (+4) formed a salt bridge with Lys 469 in more than
60% of simulation frames.

Analyzing our models of the MD binders helped
explain why many nonbinders did not form tight interac-
tions with TRAF6, despite including the conserved Pro at
(+0) and Glu at (+2). At positions (+1), (+3), and (+5),
the MD binders make hydrogen bonds that complete a
beta-sheet with TRAF6. Proline residues are disfavored in
beta structures because they lack the required NH group
for this interaction and prefer backbone dihedral angles
far from the typical range in β-sheets.34 Thus, Pro at any
position between (+1) and (+5) is expected to be highly
unfavorable. Indeed, Pullen et al. showed that mutation
to proline at any of these positions in a peptide from
CD40 (sequence KQEPQEINFPDDLP) abrogated binding
in peptide array experiments.28 A total of 386 of the 1,200
nonbinders (32%) identified in our screen have such a
substitution, which is likely sufficient to prevent high-
affinity binding. None of the 236 binders contain a pro-
line at these positions. Furthermore, the TRAF6 MATH
domain is electrostatically positive near positions (+3),

(+4), and (+5) (Figure 6c), suggesting that positively
charged residues would be destabilizing at these sites.
Indeed, Arg or Lys are found at one or more of these
positions in 287 of 1,200 nonbinders (24%) but in only
2 of 236 binders (0.8%). Mutations by Pullen et al. con-
firm that these substitutions disrupt binding at these
three positions in the context of a CD40 peptide.28 Steric
constraints at position (+3) are further expected to disfa-
vor medium or large residues at this site. Consistent with
this, residues Q, H, I, L, F, Y, or W are found at position
(+3) in 396 of the 1,200 nonbinders (33%) but in only 4 of
the 236 binders (2%). Overall, 851 of the 1,200 nonbinders
(71%) have at least 1 of the unfavorable sequence features
described above (see Table 2 for summary). The nonbin-
ders also lack key residues that form stabilizing interac-
tions in the highest affinity binders. Only 158 of the 1,200
nonbinders (13%) contain Asn at (�2), Glu at (+1), Asp
at (+4), or Trp at (+5), while all of the 236 binders con-
tain at least one of these interactions. Only 7 of 1,200
nonbinders (0.6%) contain two or more of these stabiliz-
ing residues, while 224 of 236 binders (95%) contain two
or more of these interactions.

2.3 | Candidate TRAF6 interaction
motifs in the proteome do not share the
sequence features of the top screening hits

We investigated whether any human proteins contain
close matches to the high-affinity sequences identified by
screening. We defined a position-specific scoring matrix
(PSSM) to score candidate TRAF6 interaction motifs
based on how well they match our top binders. We used
pLogo,35 a log-odds-based method, to construct the
PSSM, using the 236 binding sequences from the enrich-
ment as the foreground and the 1,200 nonbinder
sequences as the background. The nonbinder sequences
were considered a fair approximation of the sequence
composition of the input library, assuming that TRAF6
binders are rare in the library. Indeed, we do not observe
any apparent residue preferences in the nonbinder set

TABLE 2 Fraction of binder and nonbinder sequence sets with

certain sequence features

Sequence feature Binders Nonbinders

Proline any position between (+1)
and (+5)

0/236 386/1200

Positive charge (R, K) at (+3),
(+4), or (+5)

2/236 287/1200

Large/medium residues (Q, H, I, L,
F, Y, W) at (+3)

4/236 396/1200
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(Figure 2). To test if the PSSM score of a sequence repre-
sents how well that peptide binds to TRAF6 on the cell
surface, we scored the sequences used in single clone
titrations. Scores were normalized to the range 0 to
1, with 0 the lowest and 1 the highest possible PSSM
score. We found that PSSM score is correlated with
apparent cell-surface affinity, suggesting that our model
is a good predictor of TRAF6 binding within this
sequence space (Figures 7a,b).

The PSSM was used to score TRAF6 motif matches in
the human proteome to identify SLiMs with the potential
to bind with high affinity. TIM6 matches (10,451 hits
total) were obtained using the SLiMSearch tool36 (regular
expression: …P.E…[FYWHDE]). The logo of hits is shown
in Figure 7c, along with a logo of the experimentally vali-
dated TRAF6 binding peptides from Figure 1a. Figure 7d
shows the distribution of PSSM scores for the sequences
retrieved using SLiMSearch.36 Notably, no sequences in
the proteome occupy the sequence space favored in the
screen (i.e., no sequences have a high score). The
highest-scoring sequence in the proteome is FNE-
PEENFW, with a score of 0.85. Only 4 motifs in the pro-
teome have a PSSM score above 0.75, and only 1 of those
is predicted to be disordered by IUPred (IUPred >0.437).
Additionally, the motifs in the proteome that are experi-
mentally validated to bind to the TRAF6 MATH domain
have low PSSM scores (Table S3).

Despite the low scores for proteome sequences, we
explored whether the screen-based PSSM could be used
in conjunction with other metrics to identify proteome
sequences with the potential to interact with TRAF6 with
high affinity. We constructed a table from the proteome
motif matches that includes a variety of scores and filters
for each hit, compiled from multiple sources (Table S4;
see the supplementary information for details). We
included indicators of whether the motif is predicted to
be structurally accessible for binding (IUPred score37 and
AlphaFold pLDDT score38–40), whether the candidate
protein is involved in similar biological processes as
TRAF6 (based on shared Gene Ontology (GO) annota-
tions with TRAF6, from SLiMSearch),36,41,42 whether the
protein has been annotated to interact with TRAF6
(HIPPIE database43), and whether the motif has any
unfavorable sequence features identified in our structural
analysis (Table 2). Applying filters based on these criteria
narrowed the list of potential biologically relevant TRAF6
motifs in the proteome from �10,000 to �1,000
sequences matching the xxxPxExx[FYWHDE] motif.
Among these candidate motifs, we chose a few with high
PSSM scores, indicating potentially high affinity, for fur-
ther analysis (Table S4).

One of the highest-scoring hits in the proteome is the
sequence QNFPVESDW (PSSM score = 0.85) from
RNF103. RNF103 acts as an E3 ubiquitin-protein ligase

FIGURE 7 TRAF6 motif scoring.

(a and b) The PSSM scores of selected

TRAF6 binding peptides are correlated

with their apparent cell-surface binding

affinity for TRAF6. (a) Reported

dissociation constants are the average of

fits to 2–3 replicate titrations. The
standard error of the mean (SEM) is

reported for each sequence.

(b) Correlation between K�
d and PSSM

score (data from a). Error bars are the

standard error of the mean of 2–3
replicates. (c, top) Position-specific

scoring matrix generated from the

screening data and used to score

candidate binding motifs. (c, bottom)

Sequence logos of all unique TRAF6

motif matches (motif: xxxPxExx

[FYWHDE]) in the human proteome

compared to experimentally validated

TRAF6 MATH domain binders.

(d) Distribution of normalized PSSM

scores of all TRAF6 motif matches in the

proteome, using the matrix shown in the

top of panel c.
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that is localized to the ER membrane; it is involved in the
ER-associated degradation (ERAD) pathway.44 This
sequence has the highly favorable residues Asn and Trp
at positions (�2) and (+5), respectively. The sequence
also contains favorable Ser and Asp residues at (+3) and
(+4), respectively. The TRAF6 motif match is not pre-
dicted to be disordered by IUPRED. However, the average
AlphaFold pLDDT score of the motif is 38.7 (correspond-
ing to predicted disorder) and the motif residues appear
accessible in the AlphaFold-predicted structure.38–40

Although RNF103 localizes to the ER membrane, the
candidate motif (positions 474–482) maps to the cytosol,
given its location between the last transmembrane helix
and the cytosolic RING domain of RNF103.

The sequence GMGPVEESW starts at position 350 in
RIPK1. The sequence has a PSSM score of only 0.46, but
has a highly favorable Trp at (+5) and lacks any of the
major unfavorable sequence features identified by struc-
tural modeling (Table 2). RIPK1 is a serine–threonine
kinase involved in regulating TNF-mediated apoptosis,
necroptosis, and inflammatory pathways.45 It has been
annotated as a TRAF6 interaction partner in the HIPPIE
database, but the details of the interaction are unknown.
RIPK1 has been found to bind to other TRAF proteins46

and also to TICAM1.47 We speculate that RIPK1 may
interact with TRAF6 via the MATH domain engaging
this short segment.

Another hit with potential for biological significance is
the sequence GNFPEENND, which spans positions 1,065–
1,073 in the leptin receptor. This sequence contains an Asn
at (�2), Glu at (+1), and Asn at (+3), which are all favor-
able residues according to our model. It has a PSSM score
of 0.49. The leptin receptor binds leptin, which is secreted
from adipose cells. In obese mammals, leptin levels are ele-
vated, leading to chronic low-grade inflammation.48 TRAF6
is a well-known regulator of the inflammation response,
suggesting a possible link between the two pathways.

SLiMs are known to evolve rapidly,49 so although
conservation of a motif can support its functional rele-
vance, lack of conservation does not necessarily indicate
that a motif is not functional. It is notable that the motif
instances in RNF103 and the leptin receptor are not
highly conserved across species (Figure S3). For RIPK1,
the tryptophan at (+5) in the motif is not conserved
beyond mammals. However, the presence of a TRAF6
motif in this region of RIPK1 appears widely conserved
across species; the TRAF6 motifs in other species typi-
cally include acidic glutamate at (+5). Interestingly, the
position of the motif within RIPK1 also varies among spe-
cies (Figure S3), which has been previously observed for
SLiM evolution.49 Experimental follow-up will be
required to assess whether any of the proteome hits inter-
act with TRAF6 in a biological context. Overall, our

conclusion is that the proteome contains few sequences
that match our screen-derived PSSM, and most native
sequences with high scores do not appear to be good
interaction candidates based on other metrics. Biology
does not use the sequence space of highest affinity for
native TRAF6 interactions.

3 | DISCUSSION

The discovery of TRAF6 interaction partners over
decades of experimental research has led to a definition
of the TRAF6 MATH domain binding motif as xxxPxExx
[FYWHDE]. This was arrived at by compiling aligned,
verified TRAF6 binding sequences and identifying their
common sequence features.19,23–28 In this work, we
explored the TRAF6 motif sequence space systematically,
using cell-surface screening of a combinatorial library
that presented the core PxE motif flanked by random res-
idues. The top hits obtained from this screen bound with
affinities comparable to or higher than known TRAF6
interaction partners reported in the literature.19,24 Analy-
sis of screening hits highlighted which residues were
most preferred at each position and identified features
that differentiate binding sequences from nonbinding
sequences among protein segments that contain the core
element PxE.

Two different methods of structure-based modeling
could distinguish the best-binding peptides from the
background, and we used molecular dynamics simula-
tions to study the bound ensembles of diverse binders.
This analysis provided a structural explanation for the
residue preferences observed in our screening data. In
particular, in all high-confidence binders that we ana-
lyzed, Asn at position (�2) can form favorable interac-
tions with Glu 448 on TRAF6, Glu at position (+1) can
form a salt bridge with Arg 402 on TRAF6, and Trp at
position (+5) can form pi-pi interactions with Phe
410 and cation-pi interactions with Arg 392. Our struc-
tural analysis also highlighted negative design elements
that can disfavor PxE-containing segments binding to
TRAF6 MATH. The logo of nonbinders in Figure 2 does
not indicate any strong features, but our data support a
model in which a variety of sequence features, including
proline in positions (+1) to (+5), a large residue at posi-
tion (+3), or a positively charged residue at (+3), (+4), or
(+5) can disfavor binding. Thus, within this 9-residue
stretch that includes PxE, several positive features and
the absence of a variety of negative-design elements are
important for making a functional TRAF6 binder.

The sequence preferences observed in this study,
determined using a large and diverse library, can be com-
pared with point mutations in the native CD40 TIM6
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peptide that were analyzed using peptide SPOT arrays.28

Overall, there is good agreement between the two studies
regarding the favorable and unfavorable residues for
binding. Contrary to our observations, however, the
SPOT array suggests that large residues (H/I/L/F/Y/W)
are tolerated at (+3), in the context of the CD40 pep-
tide.28 This discrepancy could arise from epistasis
between positions in the motif. For example, Trp at (+5)
(as opposed to Phe, in CD40) may place stricter spatial
constraints on the pocket at position (+3), such that large
residues are occluded from position (+3) when there is a
Trp at (+5), but not when the (+5) position is Phe (as in
CD40). In support of this hypothesis, the CD40 SPOT
array shows reduced binding when W is substituted for F
at the (+5) position. Foight et al. also found coupling
between mutations, and a sensitivity of mutations to
motif context, in the interactions of peptides with TRAF2,
TRAF3, and TRAF5 MATH domains.3

Our analysis of the proteome revealed that no
sequences map to the high-affinity, TRAF6 binding
sequence space that we identified using cell-surface dis-
play, and that our resulting PSSM is not a good predictor
of endogenous TRAF6 binding sequences. Indeed, most
of the well-studied peptides from verified TRAF6 MATH
domain binders lack the features of the highest-affinity
binders identified in the screen or only contain 1 or 2 of
the most favorable interactions we identified (Figure 1a,
Table S3). Only 3/12 have an Asn at (�2), and only
TICAM1 contains Trp at (+5). Our findings imply that
the core binding motif is either not under selection for
high affinity, or high affinity is detrimental to TRAF6
function.

Other library-based studies have found enrichment of
hydrophobic residues in binders of protein domains that
does not reflect the composition of the native binding
partners.2,50 The distinct properties of native vs. library-
selected binders could be due to natural selection for
binding specificity, solubility, or peptide intrinsic disor-
der, rather than affinity. Weak SLiM binding that allows
for transient and short-lived interactions can also provide
advantages.51 For example, complexes that use multiple
weak interactions rather than one higher-affinity binding
site provide opportunities for regulation, and enhanced
specificity, as is the case for tandem recognition of SLiMs
by SH2, SH3, WW, and other domains.52–55 The TRAF
proteins provide a different example of the benefits of
weak binding for signaling. TRAF6 uses avidity to signifi-
cantly enhance binding affinity to oligomeric receptor
proteins. In concentration regimes where the binding
affinity of a single-motif peptide is not significant, recep-
tor oligomerization can trigger TRAF6 trimers binding to
three or more motifs in the tails of clustered cytoplasmic
receptors, which then promotes ubiquitylation that

propagates the signal further downstream.9 Artificial olig-
omerization of TRAF6 alone is sufficient to activate sig-
naling through certain pathways, implying that TRAF6
oligomerization is a key part of the signal transduction.29

In this scheme, conserving a weak, fast-exchanging inter-
action between individual motifs and monomeric MATH
domains is likely important for supporting rapid, ligand
binding-dependent assembly and disassembly of a TRAF6
signaling complex.

When profiling the binding preferences of a SLiM-
binding domain using high-throughput screening experi-
ments, different libraries may have different applications.
For identification and prediction of new interaction part-
ners in the proteome, biologically relevant libraries, such
as a library of tiled sequences from the proteome, are
likely more effective than a randomized library.4,30 In
contrast, for the purpose of synthetic biology or inhibitor
design, a randomized library has the potential to better
identify high-affinity sequences that are more likely to
out compete native binders.

High-affinity TRAF6 binders isolated in this work can
serve as lead peptides for inhibitor development. TRAF6
signaling is implicated in inflammation and cardiovascu-
lar disease.12,13,18 Targeting TRAF6 MATH is reported to
improve insulin sensitivity in obese mice, improve heart
function in mouse models of non-ischemic cardiac fail-
ure, reduce atherosclerosis, and inhibit osteoclastogenesis
and bone resorption.14–17 A RANK peptide attached to a
protein transduction sequence to promote cell entry is
currently sold commercially as a TRAF6 inhibitor
(e.g., Novus Biologicals NBP2-26506).16 The reported
affinity of a RANK peptide with sequence RKIPTEDEY
for TRAF6 is 78 μM, determined by isothermal titration
calorimetry.19 The same study reported a Kd of 84 μM for
the CD40* peptide, and we showed that peptides from
our screen bind �10-fold tighter than CD40* (Figure 3).
Thus, peptides from our screen, possibly further opti-
mized by adding an optimal flanking sequence, can serve
as higher-than-native-affinity inhibitors. Having a broad
range of peptide sequences that can disrupt TRAF6 bind-
ing, as we have generated here, can support further
efforts to develop inhibitors with desirable properties,
such as low immunogenicity and cell permeability.

4 | MATERIALS AND METHODS

Vectors, bacterial cells, and cloning: The expression con-
structs and cell surface display constructs are detailed in
Table S1. The TRAF6 trimeric construct, here termed
T6cc, consisted of residues 310–504 of human TRAF6
(including the MATH domain and coiled-coil trimeriza-
tion domain), an N-terminal BAP tag for biotinylation,
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and a hexahistidine tag for purification. The construct
was expressed using a pDW363 vector to ensure biotiny-
lation. A monomeric TRAF6 construct lacking the tri-
merization domain and BAP tag, here termed T6m,
consisted of residues 350–501 of human TRAF6 and a
hexahistidine tag. The construct was expressed in a
pDW363 vector, although the lack of a BAP tag ensured
no biotinylation of this protein. SUMO-peptide fusion
constructs contained a BAP tag, hexahistidine tag, and
SUMO tag. The construct was expressed in a pDW363
vector to ensure biotinylation. E. coli strains BL21(DE3),
DH5α, and MC1061 were used for protein expression,
cloning, and surface display, respectively. For bacterial
surface display of TRAF6-binding peptides, the eCPX vec-
tor designed by the Daugherty group56 was modified at
the C-terminus to append a FLAG sequence, a linker
containing a SfiI site, and the CD40* peptide sequence,
which included 9 residues resolved in the X-ray structure
of CD40* bound to TRAF6 (PDB ID: 1LB619) plus 8 flank-
ing residues on each side of this core region. The CD40*-
derived sequence used was PTNKAPHPKQEPQEIDFPD
DLPGSNT.

Mutant library construction: The library was con-
structed using primers (from IDT) with NNK codons
included in positions marked “x” the motif xxxPxExxx,
such that the theoretical size of the library was
207 = 1.28 * 109 unique members. The variable sequence
was flanked by SfiI restriction sites for cloning. In paral-
lel, a linear vector for cell-surface display containing the
constant sequence of the display construct, with SfiI sites
matching the library insert, was amplified by PCR. The
insert and linear vector fragments were purified by PCR
Cleanup Kits (Genesee Scientific) before SfiI digestion.
Following purification of the digested fragments, a 5:1
ratio of insert: vector was added to a 200 μl T4 DNA
Ligase (New England Biolabs) reaction and then incu-
bated for 16 hours at 4�C. The ligated mixture was elec-
troporated into fresh electrocompetent MC1061 cells in
four separate transformations. Transformed cells were
transferred into 10 ml warm Super Optimal Broth media
with 20 mM glucose (SOC media) and incubated at 37�C
for 1 hour. The 10 ml culture was then added to 1 L of
LB + 25 μg/ml chloramphenicol and grown to an OD600
of 0.6–0.8 before centrifugation and resuspension in
LB + 20% glycerol for freezing for storage.

Protein purification and preparation: T6cc was co-
expressed with the biotin ligase BirA (from the pDW363
vector) in BL21(DE3) E. coli for 5 hours at 37�C. Media
was supplemented with 0.05 mM D-(+)-biotin. The pro-
tein was then purified using Ni2+-NTA affinity chroma-
tography followed by gel-filtration chromatography into
a final buffer of 20 mM Tris pH 8.0, 150 mM NaCl, 5%
glycerol, 1 mM DTT. Purified protein was concentrated

before storing at �80�C in aliquots for later use. Concen-
trations of T6cc are reported as monomer concentrations.
For solution binding studies, a monomeric variant of
TRAF6 (T6m) was expressed in Rosetta2(DE3) cells over-
night at 18�C and purified similarly to T6cc. T6m was
purified into a final buffer of 50 mM Tris pH 8.0, 180 mM
NaCl, 5% glycerol, and 1 mM DTT. SUMO-peptide fusion
proteins were co-expressed with the biotin ligase BirA
(from the pDW363 vector) in Rosetta2(DE3) E. coli for
5 hours at 37�C. Media was supplemented with 0.05 mM
D-(+)-biotin. The protein was purified by Ni2+-NTA
affinity chromatography followed by gel-filtration into a
final buffer of 20 mM Tris pH 8.0, 150 mM NaCl, 1 mM
DTT, and 10% glycerol.

Magnetic bead presorting (MACS): To generate
TRAF6-bound beads, 2 ml of vortex-mixed Invitrogen
DynaBeads™ Biotin Binder beads were incubated with
T6cc (33 pmol biotinylated T6cc/10 μl beads) for 2 hours
at 4�C and then washed in PBS buffer, as described by
Angelini et al.57 The TRAF6-decorated beads were then
added to cultures of induced cells expressing the peptide
library (induced with 0.2% w/v arabinose for 2 hours at
37�C). After incubation for 3 hours at 4�C, beads were
magnetically isolated for 60 seconds before aspiration
and replacement of PBS buffer. Beads were then gently
shaken in the fresh buffer for 5 minutes at 4�C. The bead
wash cycle was repeated 7 times before beads were placed
in LB media for growth overnight. 100 μl of the final
growth stock was serially diluted on LB + agar
+25 μg/ml chloramphenicol plates. Colony-forming units
were tabulated to back-calculate the number of cells in
the MACS-sorted library, which yielded 1.42 * 105 cells.

Bacterial FACS preparation: For enrichment sorts and
single-clone FACS cell surface titrations, 5 mL cell cul-
tures were grown overnight at 37�C in LB + 25 μg/mL
chloramphenicol and 0.2% w/v glucose. The next day the
culture cell density was measured by OD600, and approxi-
mately 3.25 * 105 cells of each stock were isolated for new
growth in 5 mL LB. Upon reaching an OD600 of 0.5–0.6,
cells were induced with 0.2% w/v arabinose for 2 hours at
37�C. Density was again measured, and cells were pel-
leted by centrifugation and resuspended in PBS + 0.5%
BSA. Cells were then aliquoted into a 96-well Multi-
Screen HTS® GV sterile filtration plate (2 x 107 cells per
sample) and washed with fresh PBS + 0.5% BSA. Cells
were then incubated in 30 μl of αFLAG-APC [PerkinEl-
mer] (prepared at a 100:1 dilution in PBS + 0.5% BSA) at
4�C for 15 min. Next, cells were resuspended in 50 μl of
TRAF6 solution (25 μl PBS + 0.5% BSA mixed with 25 μl
of the chosen TRAF6 concentration) and incubated at
4�C for 60 min. Following a wash with 200 μl PBS + 0.1%
BSA, cells were resuspended in 30 μl streptavidin-PE
(SA-PE) [ThermoFisher] (prepared at a 100:1 dilution in
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PBS + 0.1% BSA) and incubated at 4�C for 15 minutes.
Cells were then washed in 200 μl PBS + 0.1% BSA, resus-
pended in another 200 μl PBS + 0.1% BSA, and placed on
ice prior to FACS analysis or sorting. FACS analysis was
performed using an HTS Canto II instrument and sorting
took place on a FACS Aria III cell sorter
(BD Biosciences). Sorted cells were collected in 1.5 ml
microcentrifuge tubes containing 500 μl Luria-Bertani
media with 25 μg/ml chloramphenicol.

Single-clone titration experiments. For single-clone
titration experiments, samples for FACS analysis were
prepared as described above using eight concentrations
of TRAF6 for each clone: 0 nM, 3 nM, 10 nM, 30 nM,
100 nM, 300 nM, 1 μM, 3 μM. Binding curves were gener-
ated by plotting the mean PE value vs. TRAF6 concentra-
tion and fit to the following equation to determine a K�

d

value:

y¼Finitþ Fsat�Finitð Þ x
xþK�

d

� �
ð1Þ

where y is the mean PE fluorescence value and x is the
concentration of TRAF6. Finit, Fsat, and Kd were treated
as floating parameters; Finit is the y value in the absence
of TRAF6 and Fsat is the y value at which the binding
curve saturates. Although the cell-surface binding data fit
well to a hyperbolic binding equation, this assay is not
likely to be at equilibrium, and we discourage interpreta-
tion of the apparent binding constant K�

d as a true equi-
librium dissociation constant.

Biolayer Interferometry (BLI): BLI experiments were
carried out on an Octet Red96 instrument (ForteBio).
Streptavidin-coated tips (ForteBio) were pre-incubated
for 10 min in BLI buffer (20 mM Tris pH 8.0, 207 mM
NaCl, 1 mM DTT, 1% Glycerol, 0.1% BSA, and 0.1%
Tween-20). Biotinylated SUMO-peptides were immobi-
lized on streptavidin tips. Loaded tips were then
immersed in a solution of the TRAF6 MATH domain,
which had been diluted to the relevant concentration in
BLI buffer. Association data were collected at room tem-
perature at an orbital shake speed of 1,000 rpm (sampling
rate) until the signal plateaued. Subsequently, TRAF6
bound tips were transferred to a well containing the
above buffer, and dissociation data were collected until
the signal plateaued. Due to the fast kinetics of the inter-
action, we elected to calculate Kd values using the steady-
state signal of the association step. The raw association
data of a SUMO-only control was subtracted from that of
the SUMO-peptides. The normalized signal of the associ-
ation step was averaged over 10 seconds after reaching a
plateau and plotted against the concentration of TRAF6
MATH domain. The binding curve was fit to Equation (1)

in Kaleidagraph58 using non-linear least-squares fitting to
determine the dissociation constant.

Enrichment sorting of MACS-presorted library: To iso-
late the best TRAF6 binders, we performed a five-round
enrichment sort using the MACS-sorted library
(MACSLib) as the input. On each day, the library was
sorted for TRAF6 binding as described above (Bacterial
FACS preparation) using a single permissive gate set to
collect successfully expressed TRAF6 binders. The gate
was set manually each day using positive and negative
binding controls. Selection for TRAF6 binding was gradu-
ally increased by using a lower concentration of T6cc
each day (concentrations used: 300 nM, 100 nM, 30 nM,
10 nM, 3 nM). Collected cells were grown overnight
before splitting half of the pool to continue the sort and
the other half to harvest for plasmid DNA and subse-
quent Illumina sequencing. We performed two duplicate
5-day enrichment experiments, generating 10 total pools
for deep sequencing.

Nonbinding clone FACS sorting. Using the unenriched
(pre-MACS) library as input, a gate was drawn to define
the region where peptide-expressing cells are found in
the absence of TRAF6. This gate was used to collect 2 *
104 cells in the presence of a high TRAF6 concentration
([T6cc] = 6 μM) to isolate clones with no detectable bind-
ing to TRAF6.

Illumina amplicon preparation: Figure S2 gives an
overview of this procedure. Sorted pools were grown
overnight at 37�C in LB, and bulk plasmid DNA was har-
vested by QIAprep miniprep kit (Qiagen). We then PCR
amplified the variable region of the plasmids from each
cell-sorted pool, appending a MmeI restriction site to the
50 end. At the 30 end, we appended: (a) an unused, ran-
domized 9 nt barcode UID sequence, (b) a 6 nt indexing
sequence for multiplexing (Illumina TruSeq), and (c) a
custom reverse-read annealing sequence. Barcodes are
given in Table S1, amplicon construction is depicted in
Figure S2, and a lookup table is provided in Table S2.
Amplified fragments were digested with MmeI. A
double-stranded DNA fragment with a 2 nt overhang
matching the MmeI cut site was then ligated to each
MmeI-cleaved fragment. This fragment contained the
standard 50 Illumina adapter sequence and one of 24 pre-
selected 5 nt barcodes for sample multiplexing. 50 and 30

Illumina anchoring sequences were appended to the
amplicons in a subsequent PCR amplification. More than
50 amplicons were Sanger sequenced (QuintaraBio) to
assess amplicon quality, which revealed the expected
sequences and variable positions. The sequencing length
of each amplicon was 65 nt, so forward and reverse
paired-end 40 nt reads overlapped by 15 nt. Immediately
prior to Illumina sequencing, the MIT BioMicro Center
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verified fragment size for all pools by agarose gel and
multiplexed all pools at equimolar amounts.

Illumina data collection and processing: Illumina
sequencing was performed on a NextSeq500. The reads
were demultiplexed using custom python scripts: https://
github.com/jacksonh1/NGS_demultiplexing. Reads that
did not exactly match one of the barcode/index pairs
(first 5 nts of the forward read and first 6 nts of the
reverse read, respectively) were discarded. Additionally,
we required each of the first 5 nts of the forward read to
have a Phred score of 20 or greater. Next, the “reformat.
sh” tool from the BBTools suite (Version 38.94) was used
to de-interleave the paired-end reads and filter for reads
with an average Phred score greater than or equal to
20 (using the parameter: “minavgquality = 20”).59 In our
dataset, the forward reads covered the entire variable
region of the displayed peptide. Therefore, reverse reads
were discarded after de-interleaving, and only the higher-
quality forward reads were used for further analysis. For
each sample, we used custom Python scripts to count the
abundance of each sequence in each sample at the DNA
level, using an alignment-based counting strategy. Here,
the forward reads were aligned to a counting template
sequence covering the variable region of the display con-
struct: *********CCT***GAA*********CCGG, where * rep-
resents variable nucleotide positions. Sequences that
mismatched 3 or more times to constant positions of the
template (non * positions) were removed. Sequence
counts were then further collapsed to just the TRAF6
motif region: *********CCT***GAA*********. The result
was a list of sequences and their associated read counts
for each sample. NGS data, processed data files, and
Python scripts are available at https://github.com/
jacksonh1/TRAF6_screen and https://doi.org/10.6084/
m9.figshare.20485914.v3 (see supplementary information
for file descriptions). All sequence logos in this study
were generated using the logomaker python library.60

Enrichment data analysis: For each replicate enrich-
ment experiment, the nucleotide sequences were trans-
lated into amino acid sequences, and only those DNA
sequences coding for peptides matching the xxxPxExxx
motif were kept for further analysis. Amino acid
sequences containing the characters “*” or “X” were then
removed (corresponding to sequences containing stop
codons or “N” bases). Read frequencies were calculated
by dividing the read count of each sequence in each sam-
ple by the total number of reads in that sample. When a
sequence had fewer than 20 reads, the frequency was set
to 0 to minimize effects from low read counts. To deter-
mine a set of TRAF6 binding sequences, we first removed
any sequences that did not have 50 or more reads on at
least one of the five enrichment days or the input library
(MACSLib). We then filtered for sequences with 20 or

more reads on Day 4 and/or Day 5 in either replicate
enrichment. The resulting list of binders was then further
filtered to include only those sequences that enriched
two or more times (defined as an increase in read fre-
quency from one day to the next day) during either
enrichment replicate, yielding a final list of 236 unique
TRAF6-binding peptides.

Nonbinder data analysis: The NGS data from the non-
binder FACS sample (Nonbinding clone FACS sorting)
were analyzed to define sequences of peptides that do not
bind to TRAF6. Sequences were filtered to include only
those DNA sequences coding for peptides matching the
xxxPxExxx motif and having a read count of 20 or more.
Amino acid sequences containing the characters “*” or
“X” were removed. The final list of nonbinders contained
1,200 unique peptides.

Generation of PSSM for proteome scanning: To gener-
ate a PSSM from the enrichment and nonbinder data, we
used pLogo, which uses log-odds-based scoring to gener-
ate a PSSM from a given set of foreground sequences and
background sequences.35 We used the 236 unique
TRAF6-binding peptides determined from the enrich-
ment experiment as the foreground and the 1,200 unique
nonbinding peptides from the nonbinder sample as the
background.

Scoring motif matches in the proteome: To generate
a table of TRAF6 motif instances in the proteome, we
used SLiMSearch 436 to find all matches to the consen-
sus TRAF6 binding motif (regex: “…P.E…[FYWHDE]”)
in the human proteome. The PSSM generated with
pLogo (described above), was then used to score the
hits from SLiMSearch using custom python scripts. We
used the SLiMSearch “shared functional annotations”
feature to allow filtering the hits to proteins that share
Gene Ontology (GO) terms with TRAF6. The set of
GO terms used to filter the hits can be restricted by
the likelihood that a given term is shared by any two
proteins in the proteome (“sig” or “p-value”). We used
this feature and custom python code to create filters of
different cutoff values (sig < = 0.01, 0.001, 0.0001, and
0.00001) to allow filtering hits to those that share
TRAF6 GO terms with sig less than or equal to the
given cutoff value. The HIPPIE database was used to
label motif instances in proteins that are annotated to
interact with TRAF6.43 AlphaFold 2 structure predic-
tions for the human proteome were downloaded from
the AlphaFold Protein Structure Database.38–40 Per-
residue AlphaFold pLDDT scores for each motif in the
table (+3 flanking residues) were extracted from the
predicted structures using custom python scripts. For
proteins in the table with no corresponding AlphaFold
Protein Structure Database entry, the pLDDT columns
were left blank.
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Selection of binding and nonbinding peptides for
modeling studies: 48 binders were chosen from the bind-
ing sequences identified in the enrichment experiment
for structure-based modeling (MD binders). Three of the
48 binders (RNVPEESDF, RNVPEESTW, and
WNMPAEYDF) came from an earlier analysis of the
enrichment data and are not present in the final set of
236 binders. However, all three sequences enrich at least
once during the enrichment experiment and are likely
real binders despite not making the final cutoff. In addi-
tion, 41 nonbinder sequences were selected from the non-
binder pool for structural modeling (MD nonbinders).

Computational Rosetta modeling: The pipeline for
modeling mutated peptide interactions proceeded as fol-
lows. First, all structures were alchemically mutated onto
the crystal structure of TRAF6 bound to the CD40* pep-
tide (seq: KQEPQEIDF, PDB: 1LB6) using FoldX. For
each mutated pose, we used Rosetta relax to remove ste-
ric and angle violations. Next, the Rosetta FlexPepDock
module was used to create 500 poses of each using the
lowres_preopt flag to more aggressively sample the space
in case of necessary residue rearrangement. The
talaris2013 score function was used for all model scoring
in Rosetta. The top pose by Rosetta score was isolated
from each mutated sequence and used to rationalize resi-
due preferences for the binders. The Rosetta version used
was rosetta_bin_linux_2017.08.59291_bundle.

Scoring peptide binding affinity: We implemented two
different computational pipelines for scoring peptide
binding to TRAF6: FlexPepBind (FPB)33 and an in-house
protocol based on computing a detaching temperature
(DetachT) by using short molecular dynamics simula-
tions at increasing temperatures.

Structures were prepared using TRAF6-CD40* com-
plex structure 1LB6 as a model. All sequences were
9 amino acids long and shared the PxExxAr short linear
TRAF6-interacting motif (TIM6). We assumed that all
peptides bound in the canonical TRAF6 binding groove
with a position similar to that of the CD40* peptide
KQEPQEIDF.19

Binding energies were computed using the FPB pro-
gram implemented in Rosetta version 3.6 with scoring
function ref2015.61 We generated models of peptide-
protein complexes starting with structure 1LB6
(chains A, TRAF6 MATH domain, and B, CD40*), first
relaxing the structure with the Rosetta Fast-Relaxation
protocol to remove internal clashes and any angle viola-
tions in the receptor and CD40*. We then introduced
point mutations into the CD40* peptide, keeping the
backbone atoms fixed and optimizing the sidechain con-
formations of mutated residues using the fixed-backbone
design package with Resfile flag.62 Next, the Rosetta FPB
module was used to sample 100 variations of the docking

pose for each peptide, allowing both backbone and side-
chain atoms to move, using the refinement flag, and
applying harmonic constraints around the crystallo-
graphic distances between the peptide and TRAF6 to
reduce the conformational sampling space. Specifically,
we restrained backbone hydrogen bond distances
between the peptide residue in position (+0) and TRAF6
residue G472 and between the peptide residue in position
(+2) and TRAF6 residue G470 (using the observed dis-
tances in structure 1LB6). Models were ranked based on
total interface score, calculated as the sum over energy
terms contributed by interface residues of both partners.
Interface residues were defined as those with Cβ (Cα for
Gly) within 8 Å of any atom in the TRAF6 protein. We
used the lowest-interface score complex for our analysis.
The following is the command-line flag array for model-
ing peptides using Rosetta: ($name indicates a wildcard
inserted to match the peptide to be run).

$rosdir/FlexPepDocking.static.linuxgccrelease -s
$name\_Dock_0001.pdb -native $nativepdb -lowre-
s_preoptimize -pep_refine -nstruct 500 -use_input_sc
-ex1 -ex2 -out:file:silent $name\_Dock. silent -out:file:
silent_struct_type binary.

For the Detach-T protocol, the crystal structure was
initially minimized and equilibrated for 20 ns with
CHARMM36a using ACEMD code. The resulting struc-
ture was then mutated using the VMD-Mutator tool to
introduce changes into structure 1LB6.63 We ran MD
simulations with the temperature increasing from 300 up
to 1,000 K, using a temperature step of 10 K every 100 ps
for a total time of 5 ns, restraining protein CA that were
more than 15 Å from the binding pocket to avoid protein
diffusion in the unit cell. For each peptide, we recorded
the temperature at which the distance between the geo-
metrical center of TRAF6 residue 471 and the center of
mass of the peptide segment composed of residues P
(0) � x (+1) � E (+2) increased to greater than 7 Å.

Molecular Dynamics simulation of a subset of
TRAF6-peptide complexes: For 89 complexes (48 MD
binders and 41 MD nonbinders), we performed short
molecular dynamics (MD) simulations to identify key
interactions or disruptive elements that influence peptide
binding. Simulations were performed in NAMD using the
CHARMM36m force field.64,65 Each of 89 TRAF6-peptide
complexes was solvated with a 15 Å pad of TIP3P water
(resulting in a final simulation box of ≈80,000 atoms).
Simulations were performed at a constant pressure of
1 atm and temperature of 300 K, a non-bonded cut-off of
12 Å, rigid bonds between heavy atoms and hydrogen
atoms,66 and particle-mesh Ewald (PME) long-range elec-
trostatics.67 All complexes were first subjected to 1,000
energy minimization steps. Relaxed models were then
equilibrated for 50 ns using a time step of 2 fs with all Ca
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atoms restrained by a 10 kcal mol�1 Å�2 spring constant.
Finally, 100 ns production runs were done using
ACEMD,68 with non-bonded cut-off and PME parameters
set as in the equilibration phase, and the time step
increased to 4 fs. To prevent protein diffusion in the water
box, a restraining spring constant (5 kcal mol�1 Å�2) was
applied to all Cα atoms of the protein more than 15 Å
from the peptide-binding pocket.

Structures from the production runs were analyzed to
determine root mean square deviations (RMSD), root
mean square fluctuations (RMSF), and the presence/
absence of specific interactions (hydrogen bonds, salt-
bridges) using a Donor (D)-to Acceptor (A) distance cutoff
of 3.2 Å; hydrogen bonds were additionally required to
have an A–D–H angle of <30�. We also checked for struc-
turally favorable aromatic sidechain arrangements. In par-
ticular, cation-pi interactions were defined using the
distance between the indole/phenyl group centroid and
the guanidium centroid or amino group for Arg/Lys,
respectively, and the angle between the respective planes.
The angle was defined between the normal vectors to the
planes of the sidechain rings, the guanidium group, or the
positively charged groups. To qualify as cation-pi interac-
tion, the distance had to be below 5.5 A. If the sidechains
had an angle between 45 and 135�, the cation-pi interac-
tion was defined as T-shaped, otherwise as stacked.69,70

We applied a similar definition for pi–pi interaction, set-
ting the distance threshold between the centroids of the
two aromatic rings to 7 Å, and the angle range between
75� and 90� for T-shaped or < 15� for stacked (parallel dis-
placed or vertical).71–73 MATH domain charge distribu-
tions for Figure 6 were computed using the Coulombic
electrostatic potential (ESP) tool in ChimeraX.74
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