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ABSTRACT

Snail-type transcription factors (TFs) are found
in numerous metazoan organisms and function in
a plethora of cellular and developmental processes
including mesoderm and neuronal development,
apoptosis and cancer. So far, Snail-type TFs are
exclusively known as transcriptional repressors.
They repress gene expression by recruiting tran-
scriptional co-repressors and/or by preventing
DNA binding of activators from the basic helix-
loop-helix (bHLH) family of TFs to CAGGTG E-box
sequences. Here we report that the Caenorhabditis
elegans Snail-type TF CES-1 can activate transcrip-
tion in vivo. Moreover, we provide results that sug-
gest that CES-1 can share its binding site with bHLH
TFs, in different tissues, rather than only occluding
bHLH DNA binding. Together, our data indicate
that there are at least two types of CES-1 target
genes and, therefore, that the molecular function
of Snail-type TFs is more plastic than previously
appreciated.

INTRODUCTION

Snail-type TFs have been identified in numerous meta-
zoan organisms, first in the fruit fly Drosophila melano-
gaster (1), and subsequently in others, including the
nematode Caenorhabditis elegans (2), and human (3,4).

Snail-type TFs are involved in many biological processes
such as development, mesodermal and neuronal differen-
tiation, apoptosis and cancer (5-7). The Snail-type family
of TFs includes members that most resemble the
firstly identified Snail, and proteins that resemble the
homologous proteins Scratch and Slug. They possess
three to five C2H2 zinc fingers with which they
bind DNA in a sequence-specific manner. The DNA-
binding specificity of several Snail-type TFs has been
characterized to a limited extent. In vitro gel shift assays
(2,8-11) and recently, in vivo (12) studies found that the
Snail-type TFs bind the CAGGTG E-box and often more
specifically the ACAGGTG sequence (referred to here as
‘Snail-box’).

So far, Snail-type TFs have been exclusively reported
to function as repressors in vivo [see e.g. (3,4,13—15)]. The
repressor activity of vertebrate Snail-type TFs depends on
the SNAG repressor domain, which mediates repression
by recruiting histone deacetylases (6,16). However,
except for Scratch, C. elegans and Drosophila Snail-type
TFs do not contain a SNAG domain. Other mechanisms
of repression by Snail-type TFs include interactions with
the co-repressors dCtBP (17) and Ebi (18). In addition,
Snail-like TFs can repress gene expression by preventing
the binding of members of the basic region helix-loop-
helix (bHLH) family of TFs to DNA, thereby antagoniz-
ing the function of these transcriptional activators
(3,10,13,15,19).

The C. elegans genome encodes three Snail-type C2H2
TFs: CES-1, K02D7.2 and SCRT-1 (6) (Figure la). A
gain-of-function (gf) in ces-1 (cell death specification-1)
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was first discovered in a genetic screen to identify genes
involved in programmed cell death (20). The ces-1 gene
product was found to be most homologous to the Scratch
members of the Snail superfamily (2). Like other Snail-
type TFs, CES-1 has been reported to function as a tran-
scriptional repressor. Specifically, in ces-1(gf) animals,
CES-1 is overexpressed and represses its only known
target gene, egl-1, by preventing binding of activating
HLH-2/HLH-3 heterodimers to the multiple E/Snail-
boxes that are located in or around this target gene (15).
So far no transcriptional effect has been reported in ces-1
loss-of-function (If) animals.

Surprisingly, we find that CES-1 can function as a tran-
scriptional activator in vivo, by binding to a single Snail-
box in the promoter of B0507.1. We find that CES-1 binds
an extended Snail-box that is comprised of nine nucleo-
tides and which we refer to as a ‘CES-box’. Finally,
our findings strongly suggest that CES-1 shares rather
than antagonizes the target B0507./ promoter with
HLH-6, another bHLH family member, although each
TF utilizes the site in different tissues. Thus, there are
at least two types of CES-1 target genes: those that are
repressed by CES-1 through a bHLH occlusion mecha-
nism and those that are activated by both types of TFs,
but in different tissues. Taken together, the transcriptional
function of Snail-type TFs as well as their functional inter-
actions with other TFs may be more flexible than pre-
viously thought.

MATERIALS AND METHODS
Yeast one-hybrid assays

Yeast one-hybrid (Y1H) assays were performed as
described previously (21-23).

Mutant promoter and binding site constructs

Mutant promoter constructs were generated by PCR using
plasmid templates and primers listed in Table S1. Mutant
Promoter::GFP constructs were generated by mutating the
promoter Entry vector construct and transferring the
changed insert to pDD04 (24) by a Gateway LR recom-
bination reaction (25). pENTRY::PB0507.1(ACES-box)
was created wusing overlapping primers and the
QuickChange Site Directed Mutagenesis Kit (Stratagene)
that generates a mutant circular plasmid. All other mutant
constructs were created using non-overlapping primers
and PCR amplification with Platinum Pfx (Invitrogen)
generating linear PCR products that require excision
and extraction from agarose gel (Qiagen kit), treatment
with PNK (New England Biolabs) and ligation using T4
Ligase (New England Biolabs). Binding site constructs
were generated by cloning a DNA fragment containing a
single copy of the putative binding site into BamHI/
HindIII-digested Gateway-compatible Entry vector
pMW#4 that we created for binding site cloning. These
DNA fragments were created by annealing comple-
mentary primers (Table S1) with restriction enzyme-
compatible overhangs. All constructs were confirmed by
sequencing (Agencourt).

Caenorhabditis elegans transgenesis and mutant crosses

Transgenic animals were created by ballistic transforma-
tion in unc-119(ed3) animals as described (26,27). For
each GFP construct we obtained multiple (up to eight)
independent lines that all exhibited identical GFP expres-
sion patterns. Frozen stocks were generated for a maxi-
mum of three of these lines, and the best transmitting
line was used for all experiments. For PB0507.1::GFP
the strain VL456 was used because it contains the trans-
gene integrated in the genome. For PB0507.1(ACES-
box)::GFP and PB0507.1(A+ 1C)::GFP, the non-inte-
grated strains VL457 and VL708 were used respectively.
Both VL457 and VL708 exhibited a >90% transmittal
rate. The loss-of-function mutant strains ces-/
(n703,;n1434) (2), K02D7.2(bc366), scrt-1(tm509) and
hih-6(tm299) (28) were crossed into VL456.

Caenorhabditis elegans imaging and GFP
expression scoring

Immobilized worms were viewed using a Zeiss Axioscope
2 and images were acquired using a Hamamatsu Orca-ER
Digital Camera. GFP expression was scored for each
genotype in least 100 worms (50 L1 to L3 larval stages,
and 50 L4 to adult).

Bioinformatics

The sequence logo for the CES-1 binding site was created
using http://weblogo.berkeley.edu/ (29). To search for
promoters containing the CES-1-binding site we created
a position weight matrix (PWM) using sequences from
-5 to +7 (Figure 2a) from the five promoters initially
found to bind CES-1 in our Y1H assays. We searched
all C. elegans promoter sequences (24) (WS93) using
Improbizer motif matcher (30) with this PWM. We con-
sidered promoters with an Improbizer score of 10.4
or higher as having a putative CES-1-binding site; this
cut-off was defined by looking at the scores of the five
Y1H positive promoters. For Y1H assays we selected 24
promoters for which a clone was available in the
Promoterome (24).

RESULTS
CES-1 binds a single Snail-type DNA element

Interactions between TFs and their target genes can be
modeled into transcription regulatory networks that pro-
vide insights into gene expression at a systems level (31).
We have previously used Y1H assays to map transcription
regulatory networks that pertain to the C. elegans diges-
tive tract, nervous system and microRNA regulation
(32-34). In each of these networks, we retrieved the
Snail-type TF CES-1 with one or more promoters. These
promoters include PB0507.1, Plin-32, Pmir-235 and Pmir-
231. We recently also mapped a transcription regulatory
network pertaining to fat biology and, in that study,
have retrieved CES-1 with the promoter of C30FI2.1
(H.E.A. and AJ.M.W., in preparation). We obtained
clones encoding CES-1 and its homologs K02D7.2 and
SCRT-1 from our TF array resource (23) to examine the
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Figure 1. A single site is necessary and sufficient for CES-1 DNA binding. (a
and SCRT-1. The C2H2 zinc fingers are indicated by purple boxes. Number
CES-1 zinc finger. (b) CES-1 binds PB0507.1, Pmir-235, Plin-32, PC30F12.1

CAACAGGTGTGC CAACAGGTTATT

) The C. elegans Snail family contains three members: CES-1, K02D7.2
in each of the boxes indicates percentage identity to the corresponding
and Pmir-231 in Y1H assays, whereas its closest homologs, K02D7.2

and SCRT-1 do not. P—permissive media; H—selective media lacking histidine, 20 mM 3-aminotriazole; Z—colorimetric assay for LacZ activity;
AD-—Gal4p activation domain. (¢) Each of the five promoters that bind CES-1 possesses a Snail-box or Snail-box-like motif. Promoter length is
indicated at the left; position, strand (+) or (-), and sequence are indicated at the right. Red—conventional Snail-box sequence (ACAGGTG),
blue—Snail-box-like sequence (ACAGGTT). (d) YIH assays showing that CES-1 cannot bind promoters in which the Snail-box or Snail-box-like
motif is deleted. ZTF-2 binding to PB0507.1 and TBX-8 binding to Plin-32 are shown as positive controls for the functionality of mutant promoter

constructs. The mutant yeast strains contain a wild-type promoter::LacZ co

nstruct to ensure functionality of AD-CES-1. (e) Y1H assays showing

that a single copy of a CES-box is sufficient for CES-1 binding. Both the PB0507.1 and Plin-32 CES-box variants are shown.

specificity of CES-1 DNA binding. We found that
neither K02D7.2 nor SCRT-1 (Figure 1b) was capable
of binding these promoters in YI1H assays, indicating
that the interaction between CES-1 and the five promoters
is specific.

Like its evolutionary counterparts, CES-1 has been
reported to interact with the E/Snail-box, (A)CAGGTG
(2). We examined the sequence of each of the promoters
that interact with CES-1 and found that four of these
indeed contain a Snail-box (Figure Ic). Plin-32 does not
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possess a perfect Snail-box but does contain a sequence
that differs from a Snail-box only in a single nucleotide
(Snail-box-like sequence, ACAGGTT) (Figure 1c).

To test whether the Snail-box and Snail-box-like
sequences function as CES-1-binding sites we deleted
them from each promoter and examined CES-1 binding
by Y1H assays. We deleted the putative CES-1-binding
sites only in the context of the Promoter:: HIS3 constructs
and used wild-type Promoter::LacZ constructs. This
enabled us to verify the functionality of CES-1 in yeast.
As expected, we found that CES-1 failed to bind pro-
moters in which the Snail-box was deleted, demonstrating
that this sequence is required for CES-1 binding
(Figure 1d, left panel, Figure SI and data not shown).
When we deleted the CAGGTT Snail-box-like sequence
from Plin-32, we found that CES-1 binding is similarly
abolished (Figure 1d, right panel, see also below).
Importantly, interactions with other TFs were not affected
upon the deletion of the putative CES-1-binding sites,
which demonstrates that each mutated promoter was
functional in Y1H assays (Figure 1d and Figure S1).

Each of the CES-l-interacting promoters contains a
single putative CES-1-binding site, suggesting that one
site may be sufficient for CES-1 binding. To test this, we
cloned each of the two different sites into our Y1H vectors
and generated Y1H bait strains (21,22). We found that
CES-1 is indeed capable of binding a single site, and can
bind both Snail-box variants (Figure le). This demon-
strates that a single site is sufficient for CES-1 binding.
Additionally, the CES-binding site can occur on either
strand (Figure 1c), which indicates that CES-1 binding
is independent of binding site orientation.

CES-1 binds an extended Snail-box

Our finding that CES-1 can bind two different sites, CAG
GTG and CAGGTT, suggests that CES-1 may have a
broader DNA-binding specificity than previously
reported. However, specificity of binding may also be
influenced by sequences outside the core Snail-box, as
CES-1 contains five C2H2 zinc fingers, each of which
may contact up to three nucleotides upon binding of the
protein to DNA (Figure la) (35). We used the CES-
1-binding site sequences and flanking nucleotides from
each of the five promoters that were bound by CES-1 to
derive a CES-1-binding-site logo (Figure 2a). We identi-
fied two additional positions that were identical or highly
similar in these promoters, all flanking the 5" end of the
Snail-box or Snail-like-box. The —3 position was a C in all
cases and the —2 position was either a C or an A. We refer
to this longer CES-1-binding site as the ‘CES-box’
(Figure 2a).

To test the contribution of each nucleotide to CES-1
binding, we created mutant CES-box constructs, all in
the context of the B0507.1 promoter. We verified the
integrity and functionality of each construct by sequenc-
ing, and by ensuring that the interaction with a non-
related TF (ZTF-2) was unaffected (Figure 2b). We
found that all positions in the CES-box are important
for CES-1 binding, including positions -3 and -2.
Surprisingly, changing the G in position +6 to a T also

abolished CES-1 binding in the context of PB0507.1, even
though that site now exactly matched that found in
Plin-32 (Figure 2b). This suggests that promoter context
may influence either the specificity or the affinity of CES-1
DNA binding. For example, nucleotides at the —4, +7
and +8 positions could influence the affinity of CES-1
for the Plin-32 site. Taken together, our DNA-binding
specificity analysis revealed an extended CES-1-binding
site that is composed of nine nucleotides and that contains
a Snail box or Snail-box-like sequence.

Predictive power of the CES-1-binding site

To determine the predictive power of the different
CES-1-binding sites, we searched all predicted C. elegans
gene promoters (24) for the previously reported Snail-
binding sites: the CAGGTG E-box and the ACAGGTG
Snail-box, as well as the newly defined CES-box that is
longer and that can tolerate a T at the +6 position
(Figure 2a). Out of 20441 promoters examined, we
found the CAGGTG E-box in 5250 (26%), the Snail-
box in 1896 (9%) and the CES-box in 406 (2%) promoters
(Table 1). Next, we examined the promoters that we had
previously tested for binding to CES-1 in Y1H assays
(32-34); H.E.A. and AJM.W., in preparation). We
found that, of the Y1H positives that interact with
CES-1, 80% contained an E-box, 80% contained a
Snail-box and 100% contained a CES box sites, compared
to 35%, 11% and 2% of the Y1H negatives (Table 1).
Conversely, we found that 4 out of 87 (5%) of the pro-
moters harboring a CAGGTG E-box tested interacted
with CES-1, compared to 4 out of 29 (14%) of the pro-
moters with a Snail-box and 5 out of 10 (50%) of the
promoters with a CES-box (Table 1). Using a Fisher
exact test we determined that the association between
the presence of a site and the binding of CES-1 in Y1H
assays is more significant for the CES-box (P < 107) than
either the E-box (P =0.057) or Snail-box (P<107)
(Table 1). This demonstrates that the CES-box is a
better predictor of CES-1 binding than either of the
shorter sequences. As a control we used the reverse (but
not complement) sequences that have similar nucleotide
composition, and did not observe an increase in observed
over expected occurrence in promoters that bind CES-1
(Table 1).

We have previously created a C. elegans ‘Promoterome’
resource that consists of ~6000 Gateway-cloned protein-
coding gene promoters, complemented by ~75 microRNA
promoters (24,36). We identified which of the cloned pro-
moters contain CES-box, and selected 24 to test for CES-1
binding in Y1H assays. Of these 24, eight possess CAACA
GGTG, five have CCACAGGTG, six have CAACAGGT
T and five have CCACAGGTT (Figure 2c). We created
Y1H DNA bait strains for all 24 promoters and trans-
formed in AD-CES-1 plasmid and an AD-alone plasmid
(negative control). Surprisingly, only six of these promo-
ters were capable of interacting with CES-1 (Figure 2c,
Figure S2). This suggests that additional nucleotides sur-
rounding the extended CES-box may influence CES-1
binding. However, by examining the nucleotides flanking
the 5 and 3’ end of the CES-box, we could not find
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Figure 2. CES-1 binds an extended Snail-box. (a) Logo of the CES-box, an extended Snail-box, based on CES-1/promoter interactions identified by
Y1H assays. (b) YIH assays examining CES-1 binding to PB0507.1 variants that carry point mutations in the CES-box. AD—negative control with
only the Galdp activation domain; AD-ZTF-2—positive control demonstrating the functionality of the mutant baits. (¢) Six out of 24 promoters that

contain a CES-box interact with CES-1 in Y1H assays (indicated in red).

obvious candidates. Alternatively, not all CES-boxes may
be accessible due to nucleosome positioning. The latter
may be more likely since YIH baits are integrated into
the yeast genome at a fixed location and copy number,
and are therefore embedded into chromatin (21).
Interestingly, CES-1 bound to 50% of the tested promo-
ters with a PB0507.1-like CAACAGGTG motif.
However, CES-1 bound only one of five promoters with
a Plin-32-like CAACAGGTT motif, one of six with a
Pmir-235-like CCACAGGTG motif, and none of five
with the CCACAGGTT sequence that we did not observe
in any of our original Y1H positive promoters (Figure 1lc,
Figure S2). This suggests that the latter may not constitute

a functional CES-1-binding site and reflects the loss of
information in binding site logos that compile multiple
data points into a single model, but that do not reflect
combinations of nucleotides that are avoided. Although
the differences observed between the sites are based on
small samples, these results indicate that the various
CES-box variants may provide different degrees of predic-
tive power.

CES-1 activates promoter activity in vivo

To examine the effect of CES-1 on C. elegans promoter
activity in vivo, we focused on the 300bp promoter of
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Table 1. Occurrence of CES-1-binding sites

E-box Snail-box CES-box Reverse E-box Reverse Snail-box Reverse CES-box
Promoters with hits (20441) 5250 (26%) 1896 (9%) 406 (2%) 3543 (17%) 1420 (7%) 457 (2%)
Y1H neg promoters (238) 83 (35%) 25 (11%) 5 (2%) 53 (22%) 27 (11%) 6 (3%)
Y1H pos promoters (5) 4 (80%) 4 (80%) 5 (100%) 1 (20%) 0 0
P-value (Fisher exact test) 0.057 <1073 <10’ 1 0.624 1
(b)
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Figure 3. CES-1 and its binding site activate PB0507.1 in vivo. (a) Images of GFP expression in PB0507.1::GFP animals. The 300 bp promoter of
B0507.1 drives GFP expression in the pharyngeal glands (PG), pharyngeal-intestinal valve (PIV), spermatheca (SPT), rectal gland (RG) and distal tip
cell (DTC) (indicated by arrow heads). Left—GFP expression; center—DIC image; right—merge. (b) Loss of CES-1 results in a proportion of
animals showing no PB0507.1 activity in SPT, RG and PIV, but no change in PG. Loss of K02D7.2 has no effect on PB0507.1 activity. (¢) Deletion
or point mutations in the CES-box in PB0507.1 result in different changes in expression in the PG. Top—GFP expression; center—DIC image;
bottom—merge. (d) Quantification of GFP expression data in TF or TF binding site mutants. PPGC—posterior pharyngeal gland cells; APGC—

anterior pharyngeal gland cells.

B0507.1. We used Gateway cloning (25,38) to create
a transcriptional fusion with PB0507.1 upstream of an
open reading frame (ORF) encoding the green fluorescent
protein (GFP), and used the resulting construct to create
transgenic C. elegans that carry the transgene integrated
into the genome (27,36). Subsequently, we analyzed
spatiotemporal promoter activity by examining where
and when GFP is expressed in these animals. We found
that PB0507.1 drives GFP expression in all develop-
mental stages and in multiple tissues, including the ante-
rior and posterior pharyngeal gland cells, pharyngeal-
intestinal valve, rectal gland, spermatheca and distal tip

cells (Figure 3a). This expression pattern was identical in
multiple independent transgenic lines (data not shown).
To test whether CES-1 and/or its closest homologs regu-
late the activity of PB0507.1 in vivo, we crossed the
PB0507::GFP animals with animals carrying a deletion
in ces-1, K02D7.2 or scrt-1. Surprisingly, we found that
part of the expression pattern disappears upon removal of
CES-1; while expression was maintained in the pharyngeal
glands, expression in the pharyngeal-intestinal valve,
spermatheca, distal tip cell and rectal gland was greatly
reduced (Figure 3a, quantification in Figure 3d). This sug-
gests that CES-1 functions as an activator of B0507.1



promoter activity. The activity of PB0507.1 was
unchanged in K02D7.2(bc366) (Figure 3b and d) and
sert-1(ok1228) mutants (data not shown), which is in
agreement with the observation that these CES-1 homo-
logs cannot interact with this promoter in Y1H assays
(Figure 1b).

We examined whether we could detect an overlap in
Pces-1 and PB0507.1 activity but did not observe a clear
overlap in later stages of development (38; data not
shown). However, the promoter fragments used may be
missing the regulatory elements required for such expres-
sion, or do not drive robust enough expression for the
overlap to be observed. We did observed broad ces-1 pro-
moter activity in embryos (38; data not shown). However,
it is difficult to assess whether this activity overlaps with
that of PB0507.1. Thus, it is formally possible that CES-1
activates the B0507.1 promoter indirectly, for instance by
repressing a transcriptional repressor. To test this, we
examined the function of the PB0507.1 CES-box in vivo.
We fused B0507.1 promoter variants that carry a CES-box
deletion or point mutation (Figures 1d and 2b) to the
GFP-encoding ORF by Gateway cloning and created
transgenic worms. Interestingly, we found different GFP
expression patterns with the CES-box deletion construct
compared to the CES-box point mutant (-1A to C)
(Figure Ic), neither of which can interact with CES-1
(Figures 1d and 2b). When the CES-box was completely
removed, GFP expression disappeared in all tissues/cells,
but remained unchanged in the posterior pharyngeal
gland cells (Figure 3¢ and d). With the CES-box point
mutant, however, we only observed a partial reduction
of GFP expression in the anterior pharyngeal glands and
spermatheca, and lack of expression in the pharyngeal-
intestinal valve and rectal gland (Figure 3c and d). The
expression in the posterior pharyngeal glands was unaf-
fected in the substitution mutant, similar to that observed
in the CES-box deletion mutant. Together these observa-
tions indicate that CES-1 activates PB0507.1 by binding
the CES-box. Additionally, the observation that the
CES-box deletion mutant has a broader and stronger
effect on PB0507.1 activity, and that expression of GFP
in the anterior pharyngeal glands is (partially) reduced
in the CES-box mutants, but not in ces-/(/f) animals
indicates that at least one additional factor activates
PB0507.1 through the CES-box. Finally, the fact that
expression in the posterior pharyngeal glands is unaffected
in either ces-1(lf) or CES-box mutants suggests that
another regulator independently activates PB0507.1 in
this tissue by binding to another cis-regulator element in
the promoter.

HLH-6 activates PB0507.1 in the anterior
pharyngeal glands

Snail-type TFs have been reported to antagonize tran-
scriptional activation by bHLH TFs by binding to the
same cis-regulatory DNA elements (3,13,15,19). bHLH
TFs are known to bind CANNTG E-box sequences.
The promoter of hlh-6 specifically drives expression in
the pharyngeal glands (27,28,39), and the HLH-6 protein
is involved in transcriptional regulation in this tissue (28).
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Therefore, we hypothesized that HLH-6 may activate
PB0507.1 in the pharyngeal glands. We crossed
PB0507.1::GFP worms with animals that carry a deletion
in the hlh-6 gene [hlh-6(1m299)] (28), and found that GFP
expression was reduced in the anterior pharyngeal glands,
but unaffected in one of the three posterior pharyngeal
glands (glP) in a subset of the animals. The other two
posterior glands (g2R and g2L) are absent in ~80% of
hih-6 (tm299) mutants (Figure 4a and b). HLH-6 specifi-
cally dimerizes with HLH-2, the ortholog of E12/E47 and
Daughterless (C. Grove and A.J.M.W., in preparation).
However, since hlh-2 loss-of-function leads to lethality
(40), we could not examine the effect of HLH-2 on
PB0507.1 activity. Taken together, our data suggest that
HLH-6 may share its DNA target with CES-1 in different
tissues rather than antagonizing CES-1 activity in the
same tissue.

DISCUSSION

In this study we report the first example of transcriptional
activation by a Snail-type TF in vivo, as well as the first
example of target sharing between Snail-type and bHLH
TFs, as opposed to the widely reported Snail-type occlu-
sion of bHLH DNA binding. Our data suggest that there
are at least two types of CES-1 target genes (Figure 4c).
First, there are the classical target genes that, within one
cell or tissue, are either repressed by CES-1 or activated by
bHLH-type TFs. In this case, these TFs compete for bind-
ing to their DNA recognition sequence. Second, there are
targets that are activated by CES-1 and by bHLH-type
TFs, but within different cells or tissues. In this case,
these TFs do not compete for their DNA recognition
sequence in the same tissue. To date, only two in vivo
targets of any C. elegans Snail-type TF have been identi-
fied: egl-1 (15) and the promoter of B0507.1 (this study).
CES-1 represses the first target, at least in ces-1(gf) ani-
mals that overexpress CES-1, but activates the second.
The regulation by CES-1 of both egl-1 and PB0507.1 is
highly tissue-specific; eg/-1 is repressed in the NSM sister
cells in ces-1(gf) animals and PB0507.1 is activated by
CES-1 in the rectal gland, pharyngeal-intestinal valve,
distal tip cells and spermatheca in wild-type animals.
Although CES-1 expression is tissue-restricted in larvae
and adults, it is broadly expressed in embryos (38; data
not shown), suggesting that the expression patterns may
be established early in development. No phenotype is
known for ces-1(lf) mutants. Likewise, genome-scale
RNAI studies have not yet revealed a biological function
for either ces-1 or B0507.1 (WormBase). Thus, it is not yet
conceivable to understand the transcriptional activation of
PB0507.1 by CES-1 in a phenotypic, or biological, con-
text. Future studies are required to shed light on the mech-
anism of tissue-specific transcription activation and
repression by CES-1; for instance, it may interact with
tissue-specific transcriptional cofactors that either activate
or repress expression, or may function in a combinatorial
manner with other TFs.

At least two additional TFs contribute to the complex
tissue-specific expression pattern conferred by the 300 bp
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Figure 4. HLH-6 activates B0507.1 promoter activity in the anterior pharyngeal gland cells. (a) Image of GFP expression in PB0507.1::GFP,hih-
6(tm299) animals. Left—GFP expression; center—DIC image; right—merge. (b) Quantification of GFP expression in PB0507.1::GFP;hlh-6(tm299)
animals. (¢) There are at least two types of CES-1 target genes. The first (target 1) are targets such as eg/-/ that contain one or more E-boxes (or
CES-boxes) that are bound either by CES-1 or by a bHLH protein in the same cell (indicated by the gray rectangle), leading to gene repression or
activation, respectively. The second (target 2) are targets like PB0507.1 that contain one or more E-boxes (or CES-boxes) that are bound by both
CES-1 and bHLH TFs, but in different cells (indicated by the green oval and blue hexagon). In the latter case, both TFs contribute to establishing a

complex, multi-tissue expression pattern.

promoter of B0507.1. First, HLH-6 activates PB0507.1 in
the anterior pharyngeal gland cells. Although HLH-6
itself is expressed in both the anterior and posterior
pharyngeal gland cells, it only regulates PB0507.1 in the
anterior pharyngeal gland cells. However, upon loss of
HLH-6, the activity of PB0507.1 was only partially
reduced in this tissue. Both of these observations may
result from hlh-6(tm299) not being a complete loss-
of-function, or null allele. Expression in the anterior
pharyngeal gland cells is reduced both in hlh-6 mutants
and in PB0507.1 variants that carry mutations in the
CES-box. In addition, it has previously been shown that
HLH-6 regulates pharyngeal gland expression through an
E-box sequence (28,41). These observations indicate
that HLH-6 most likely activates PB0507.1 by binding
to the CES-box. Second, at least one as yet unidentified
TF activates PB0507.1 in the posterior pharyngeal gland
cells. This TF has to act through a cis-regulatory ele-
ment that is distinct from the CES-box because none
of the PB0507.1 mutants that we tested exhibited changes
in GFP expression in these cells. We have previously
identified another pharyngeal TF, ZTF-2, binding to
PB0507.1 (32). However, mutations in the zzf-2 gene do
not affect PB0507.1 activity in vivo (data not shown).
Thus, the remaining TF(s) that activate(s) PB0507.1
may either be one of the two additional factors we identi-
fied by Y1H assays (ETS-5 and LIN-48) (32). However,
these TFs are expressed in different tissues (WormBase).
More likely, it is a TF that we have not retrieved in Y1H
assays, for instance because the clone was not available
(23), or because the TF binds DNA as an obligate

heterodimer (detection of which is not yet feasible in
Y1H assays).

In sum, CES-1 can activate transcription in vivo and
share a DNA target with bHLH proteins, albeit in differ-
ent tissues. Future studies will determine whether these
molecular functions are a common feature of Snail-type
TFs and whether these TFs exhibit flexible functions in
other systems as well. In addition, it will be interesting
to see if binding site sharing in different tissues is a
common feature of metazoan TFs.
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Supplementary Data are available at NAR Online.
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