Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hydrogen-bond interactions in morpholinium bromide

Kamentheren Padayachy, Zolani Mgcima, Manuel A. Fernandes, Helder M. Marques and Alvaro S. de Sousa*

School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
Correspondence e-mail: Alvaro.DeSousa@wits.ac.za

Received 11 August 2011; accepted 1 September 2011
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.039 ; w R$ factor $=0.100 ;$ data-to-parameter ratio $=23.7$.

In the title compound, $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}^{+} \cdot \mathrm{Br}^{-}$, which was synthesized by dehydration of diethanolamine with HBr , morpholinium and bromide ions are linked into chains by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds describing a $C_{2}^{1}(4)$ graph-set motif. Weaker bifurcated $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ interactions join centrosymmetrically related chains through alternating binary graph-set $R_{4}^{2}(8)$ and $R_{2}^{2}(4)$ motifs, to form ladders along [100]. In addition, $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ interactions between centrosymmetric morpholinium cations link ladders, via $R_{2}^{2}(8)$ motifs, to yield sheets parallel to (101), which in turn are crosslinked by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, related across a glide plane, to form a threedimensional network.

Related literature

For the structures of related morpholinium salts, see: Loehlin \& Okasako (2007); Mafud et al. (2011); Swaminathan et al. (1976); Koroniak et al. (2000); Turnbull (1997); Mazur et al. (2007); Yao (2010); Christensen et al. (1993). For the synthesis, see: Pettit et al. (1964). For the graph-set analysis, see: Bernstein et al. (1995).

Experimental

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}^{+} \cdot \mathrm{Br}^{-} & V=628.12(3) \AA^{3} \\
M_{r}=168.04 & Z=4 \\
\text { Monoclinic, } P 2_{1} / c & \mathrm{Mo} K \alpha \text { radiation } \\
a=6.1247(2) \AA & \mu=6.44 \mathrm{~mm}^{-1} \\
b=10.3063(3) \AA & T=173 \mathrm{~K} \\
c=10.1141(3) \AA & 0.40 \times 0.20 \times 0.09 \mathrm{~mm} \\
\beta=100.312(2)^{\circ} &
\end{array}
$$

Data collection
Bruker APEXII CCD area-detector diffractometer
Absorption correction: integration (face indexed absorption corrections carried out with $X P R E P$;

Sheldrick, 2008)
$T_{\text {min }}=0.183, T_{\text {max }}=0.595$
11662 measured reflections
1516 independent reflections 1314 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.210$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039 \quad 64$ parameters
$w R\left(F^{2}\right)=0.100$
$S=1.03$
H -atom parameters constrained
$\Delta \rho_{\text {max }}=1.07 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.38 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Br} 1^{\mathrm{i}}$	0.92	2.52	$3.331(2)$	148
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Br}^{\mathrm{i}}$	0.92	2.89	$3.389(2)$	115
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{Br}^{\mathrm{ii}}$	0.92	2.40	$3.292(2)$	164
$\mathrm{C} 4-\mathrm{H} 4 A \cdots 1^{\mathrm{iii}}$	0.99	2.52	$3.366(4)$	143
$\mathrm{C} 1-\mathrm{H} 1 C \cdots \mathrm{O}^{\mathrm{iv}}$	0.99	2.59	$3.498(4)$	152

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $x-1, y, z$; (iii) $-x+1,-y,-z+1$; (iv) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1997); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.

This work was supported by the National Research Foundation (South Africa).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2027).

References

Bernstein, J., Davis, R. E., Shinoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Christensen, A. N., Hazell, R. G., Lehmann, M. S. \& Neilsen, M. (1993). Acta Chem. Scand. 47, 753-756.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Koroniak, H., Modzelewska, A. \& Kosturkiewicz, Z. (2000). Pol. J. Chem. 74, 1031-1034.
Loehlin, J. H. \& Okasako, E. L. N. (2007). Acta Cryst. B63, 132-141.
Mafud, A. C., Sanches, E. A. \& Gambardella, M. T. (2011). Acta Cryst. E67, o2008.
Mazur, L., Pitucha, M. \& Rzaczynska, Z. (2007). Acta Cryst. E63, 04576.
Pettit, G. R., Chamberland, M. R., Blonda, D. S. \& Vickers, M. A. (1964). Can. J. Chem. 42, 1699-1706.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Swaminathan, S., Murthy, G. S. \& Lessinger, L. (1976). Acta Cryst. B32, 31403142.

Turnbull, M. M. (1997). Acta Cryst. C53, 818-820.
Yao, J.-Y. (2010). Acta Cryst. E66, o1375.

supplementary materials

Acta Cryst. (2011). E67, o2594 [doi:10.1107/S1600536811035598]

Hydrogen-bond interactions in morpholinium bromide

K. Padayachy, Z. Mgcima, M. A. Fernandes, H. M. Marques and A. S. de Sousa

Comment

The structures and hydrogen bonding of several salts of morpholinium and its derivatives have been reported (Loehlin \& Okasako, 2007; Mafud et al., 2011; Swaminathan et al., 1976; Koroniak et al., 2000 ; Turnbull, 1997; Mazur et al., 2007; Yao, 2010; Christensen et al., 1993). The title compound, morpholinium bromide, contains a single quaternary nitrogen donor (Figure1) and weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ interactions are observable in the crystal structure. The morpholinium and bromide ions are joined into chains along the a-axis through $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds in a motif of graph set $C_{2}{ }^{1}(4)$. Chains are joined to form ladders by weak, bifurcated $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ interactions at ammonium hydrogen, H1A, (Figure 2). Alternating ring motifs $R_{4}{ }^{2}(8)$ and $R_{2}{ }^{2}(4)$ describe the binary graph-set for ladders along [100]. Weak C4-H4A $\cdots \mathrm{O} 1$ interactions between centrosymmetric morpholinium cations link ladders, via $R_{2}{ }^{2}(8)$ motifs, to yield sheets parallel to the $a c$ plane, which in turn are weakly joined by $\mathrm{C} 1-\mathrm{H} 1 \mathrm{C} \cdots \mathrm{O} 1$ interactions (Figure 3) across a glide plane perpendicular to [010], glide component (0 , $0,0.5$), to form a three dimensional network.

Experimental

Morpholinium Bromide was obtained as the minor product of the synthesis reported by Pettit et al. (1964). Diethanolamine $(12 \mathrm{~g}, 0.114 \mathrm{~mol})$ was added, with cooling, to 100 mL of $48 \% \mathrm{HBr}$. The reaction vessel was fitted with a Vigreaux column and Dean-Stark apparatus and the solution heated collecting approximately 70 mL of water through azeotropic distillation. The remaining HBr was removed under reduced pressure to yield viscous orange oil that crystallized upon cooling. The pure crystalline sample product was obtained by several recrystallisations from an ethanol-diethyl ether solution.

$$
{ }^{1} \mathrm{H}^{\left(\mathrm{D}_{2} \mathrm{O}, 300 \mathrm{MHz}\right) 3.667\left(4 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.779\left(4 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right) .}
$$

Refinement

Hydrogen atoms were visible in the difference map and those bonded to carbon atoms were positioned geometrically and allowed for as riding atoms with $\mathrm{C}-\mathrm{H}=0.99 \AA\left(\mathrm{CH}_{2}\right)$ and $\mathrm{N}-\mathrm{H}=0.92 \AA\left(\mathrm{NH}_{2}\right)$. The coordinates of hydrogen atoms involved in hydrogen bonding were refined freely. During the refinements the $U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{e q}$ of the parent atom.

Figures

Fig. 1. Molecular structure of (1), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50\% probability level.

supplementary materials

morpholinium bromide

Crystal data

$$
\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{NO}^{+} \cdot \mathrm{Br}^{-}
$$

$M_{r}=168.04$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=6.1247$ (2) \AA
$b=10.3063$ (3) \AA
$c=10.1141(3) \AA$
$\beta=100.312$ (2) ${ }^{\circ}$
$V=628.12(3) \AA^{3}$
$Z=4$
$F(000)=336$
$D_{\mathrm{x}}=1.777 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5677 reflections
$\theta=2.9-28.3^{\circ}$
$\mu=6.44 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Needle, colourless
$0.40 \times 0.20 \times 0.09 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube graphite
φ and ω scans

1516 independent reflections
1314 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.210$
$\theta_{\text {max }}=28.0^{\circ}, \theta_{\text {min }}=2.9^{\circ}$

Absorption correction: integration
(face indexed absorption corrections carried out with $h=-8 \rightarrow 8$
XPREP; Sheldrick, 2008)
$T_{\text {min }}=0.183, T_{\text {max }}=0.595$
11662 measured reflections

Refinement

Refinement on F^{2}

Primary atom site location: structure-invariant direct methods

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.100$
$S=1.03$
1516 reflections
64 parameters
0 restraints

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring
sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0518 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\max }=1.07 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.38$ e \AA^{-3}

Special details

Experimental. Intensity data were collected on a Bruker APEX II CCD area detector diffractometer with graphite monochromated Mo $\mathrm{K} \alpha$ radiation $(50 \mathrm{kV}, 30 \mathrm{~mA})$ using the APEX 2 (Bruker, 2005) data collection software. The collection method involved ω-scans of width 0.5° and 512×512 bit data frames. Data reduction was carried out using the program SAINT-Plus (Bruker, 2005). The crystal structure was solved by direct methods using SHELXTL (Sheldrick, 2008). Non-hydrogen atoms were first refined isotropically followed by anisotropic refinement by full matrix least-squares calculations based on F^{2} using SHELXTL.

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Br1	$0.74904(4)$	$0.11971(3)$	$0.07284(3)$	$0.02454(16)$
O1	$0.2489(4)$	$0.10940(17)$	$0.4694(3)$	$0.0263(5)$
N1	$0.2813(4)$	$0.0830(2)$	$0.1937(2)$	$0.0199(5)$
H1A	0.3739	0.0758	0.1318	0.024^{*}
H1B	0.1372	0.0808	0.1480	0.024^{*}
C1	$0.3228(5)$	$0.2082(3)$	$0.2657(3)$	$0.0243(6)$
H1C	0.2788	0.2807	0.2024	0.029^{*}
H1D	0.4831	0.2170	0.3026	0.029^{*}
C4	$0.3199(5)$	$-0.0280(3)$	$0.2893(3)$	$0.0246(6)$
H4A	0.4801	-0.0347	0.3272	0.029^{*}
H4B	0.2732	-0.1098	0.2410	0.029^{*}
C2	$0.1926(5)$	$0.2149(3)$	$0.3781(3)$	$0.0273(6)$
H2A	0.2241	0.2980	0.4268	0.033^{*}
H2B	0.0319	0.2119	0.3404	0.033^{*}
C3	$0.1915(5)$	$-0.0094(3)$	$0.4004(3)$	$0.0272(6)$
H3A	0.0308	-0.0095	0.3628	0.033^{*}
H3B	0.2221	-0.0824	0.4646	0.033^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0153(2)$	$0.0332(2)$	$0.0242(2)$	$-0.00109(9)$	$0.00118(14)$	$-0.00764(10)$
O1	$0.0358(13)$	$0.0301(11)$	$0.0127(10)$	$0.0010(8)$	$0.0031(9)$	$0.0004(7)$
N 1	$0.0159(11)$	$0.0289(11)$	$0.0147(11)$	$0.0018(8)$	$0.0021(9)$	$-0.0013(8)$
C1	$0.0259(14)$	$0.0220(13)$	$0.0238(14)$	$-0.0055(10)$	$0.0014(11)$	$0.0010(10)$
C4	$0.0274(14)$	$0.0238(14)$	$0.0213(14)$	$0.0042(10)$	$0.0014(11)$	$-0.0004(10)$
C2	$0.0336(16)$	$0.0246(14)$	$0.0225(15)$	$0.0050(11)$	$0.0018(13)$	$-0.0047(11)$
C3	$0.0340(15)$	$0.0245(14)$	$0.0230(14)$	$-0.0033(11)$	$0.0053(12)$	$0.0037(11)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 3$	$1.422(3)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.428(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.481(3)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.490(3)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	0.9200
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~B}$	0.9200
$\mathrm{C} 1-\mathrm{C} 2$	$1.502(4)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9900
$\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 2$	$109.1(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$110.9(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	108.1
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2$	$110.1(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.6
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.6
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{D}$	109.6
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{D}$	109.6
$\mathrm{H} 1 \mathrm{C}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{D}$	108.1
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{C} 3$	$110.2(2)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.6
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.6
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-52.4(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	$52.1(3)$
$\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$-62.4(3)$

$\mathrm{C} 1-\mathrm{H} 1 \mathrm{D}$	0.9900
$\mathrm{C} 4-\mathrm{C} 3$	$1.495(4)$
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9900
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9900
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9900
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9900
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9900
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.6
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.6
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	108.1
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$110.8(2)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.1
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	$111.3(2)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.4
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.4
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.4
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.4
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.0
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	$57.9(3)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3-\mathrm{O} 1$	$62.3(3)$
	$-57.4(3)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Br} 1$	0.92	2.52	$3.331(2)$	148
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Br}^{\mathrm{i}}$	0.92	2.89	$3.389(2)$	115
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{Br}^{\mathrm{ii}}$	0.92	2.40	$3.292(2)$	164

sup-4

supplementary materials

$\mathrm{C} 4 — \mathrm{H} 4 \mathrm{~A} \cdots \mathrm{O} 1^{\mathrm{iii}}$	0.99	2.52	$3.366(4)$	143
$\mathrm{C} 1 — \mathrm{H} 1 \mathrm{C} \cdots 1^{\text {iv }}$	0.99	2.59	$3.498(4)$	152

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $x-1, y, z$; (iii) $-x+1,-y,-z+1$; (iv) $x,-y+1 / 2, z-1 / 2$.

supplementary materials

Fig. 1

Fig. 2

Fig. 3

