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ABSTRACT

The discovery of roles for arginine methylation
in intracellular transport and mRNA splicing has
focused attention on the methylated arginine–
glycine (RG)-rich domains found in many eukaryotic
RNA-binding proteins. Sequence similarity among
these highly repetitive RG domains, combined with
interactions between RG-rich proteins, raises the
question of whether these regions are general inter-
action motifs or whether there is specificity within
these domains. Using the essential Saccharomyces
cerevisiae mRNA-binding protein Npl3 (ScNpl3) as a
model system, we first tested the importance of the
RG domain for protein function. While Npl3 lacking
the RG domain could not support growth of cells
lacking Npl3, surprisingly, expression of the RG
domain alone supported partial growth of these
cells. To address the specificity of this domain, we
created chimeric forms of ScNpl3 with RG-rich
domains of S. cerevisiae nucleolar proteins, Gar1
and Nop1 (ScGar1, ScNop1), or of the Candida albi-
cans Npl3 ortholog (CaNpl3). Whereas the CaNpl3
RG chimeric protein retained nearly wild-type func-
tion in S. cerevisiae, the ScGar1 and ScNop1 RG
domains significantly reduced Npl3 function and
self-association, indicating RG domain specificity.
Nuclear localization of Npl3 also requires specific
RG sequences, yet heterologous RG domains
allow similar modulation of Npl3 transport by argi-
nine methylation.

INTRODUCTION

Eukaryotic gene expression requires the coordination of
a complex array of messenger RNA-binding proteins,
which chaperone and modify mRNAs from the time
they are transcribed in the nucleus until they are translated
and eventually degraded in the cytoplasm. While individ-
ual RNA-binding proteins perform specific tasks within

the cell, many RNA-binding proteins share similar
sequence modules, including RNA-recognition motifs
(RRMs), hnRNP K-homology (KH) domains, zinc fingers
and arginine–glycine (RG)-rich regions (1,2). Such RNA-
binding domains (RBDs) are not limited to mRNA-
binding proteins, but are also shared by proteins involved
in ribosome assembly. In addition, multiple RBDs
have been implicated in protein-protein as well as
protein–RNA interactions (1,3–5).

Most RNA-binding domains are defined by specific
amino-acid sequences and structures that interact with
the phosphodiester backbone and specific nucleobases of
RNA ligands (1,6). In contrast, arginine–glycine-rich
regions [which are also referred to as glycine–arginine-
rich (GAR) motifs and RG or RGG domains] are char-
acterized by the presence of multiple RG and RGG
peptides, but vary widely in overall domain length and
spacing between these short motifs (7). No 3D structure
has been determined for any RG-rich domain, potentially
due to the high glycine content of these regions. The
RG-rich domain of Fragile X mental retardation protein
FMRP binds to specific G-quartet-containing mRNAs
(8), but many RG domains may confer non-specific
RNA-binding activity to proteins with additional RBD
modules, or mediate protein–protein interactions (2,4).
RG-rich proteins are also frequent targets for arginine
methylation; this modification can impact protein func-
tion through altering molecular interactions (4,9). The
ubiquity of RG-rich domains, combined with the lack of
a clear consensus sequence even among some likely ortho-
logous proteins, raises the question of whether these
regions are general interaction motifs or whether there is
any specificity inherent to these domains.

The Saccharomyces cerevisiae mRNA-binding protein
Npl3 serves as an excellent model to address this question.
This protein has been implicated in multiple aspects of
gene expression including transcription elongation and
termination, 30 end formation, splicing, mRNA export
and translation (10–15). Whereas mutations in the two
RRMs of Npl3 affect mRNA 30 end processing and
nuclear export (10,14), mutations in the extensive RG
domain and methylation of this domain influence Npl3
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transport (16,17). The effects of the RG domain on trans-
port correlate with protein–protein interactions. Arginine
methylation or arginine-to-lysine mutations in the RG
domain decrease nuclear export of Npl3, Npl3 self-
association and the interaction of Npl3 with Tho2, a pro-
tein involved in transcription elongation and mRNA
export (16,18–20). A two-hybrid screen for proteins
that interact with the RG-rich region of Npl3 revealed
five RG-rich proteins (21); this result suggests that RG-
rich domains might act as general interaction motifs
among RNA-binding proteins. To test this hypothesis,
we have replaced the long RG-rich domain of the
S. cerevisiae mRNA-binding protein Npl3 with extensive
RG domains from three other yeast proteins and have
tested these chimeric proteins for function in S. cerevisiae.

Initially we demonstrate that the RG-rich domain of
Npl3 is not only necessary for in vivo function, but that
this domain alone can partially replace Npl3 function.
Whereas replacement of the Npl3 RG-rich domain
with that of the C. albicans Npl3 ortholog maintains
Npl3 function, the extensive RG-rich domains of two
nucleolar proteins, Gar1 and Nop1, only partially support
Npl3 function. This result correlates with the ability of the
chimeric Npl3 proteins to bind to endogenous Npl3. This
RG-domain specificity is not due to differences in domain
length, since S. cerevisiae Npl3 with a deletion in its RG-
rich domain allows better growth of npl3D cells than a
chimeric Npl3 protein bearing the slightly longer Nop1
RG domain. Gar1 and Nop1 RG domains increase the
cytoplasmic steady-state localization of GFP-Npl3, sug-
gesting the importance of specific sequences within the
Npl3 RG-rich domain for transport. Whereas deletion
of Hmt1 slows nuclear export of Npl3 (17), it does not
affect nucleolar localization of Gar1 and Nop1 (22). We
demonstrate that all chimeric GFP-Npl3 proteins are sub-
strates for Hmt1 and that Hmt1 deletion results in
increased nuclear localization of chimeric GFP-Npl3 bear-
ing Gar1 and Nop1 RG domains. Therefore, although
these heterologous RG domains do not confer full
function on Npl3, arginine methylation can modulate
transport of Npl3 proteins bearing alternative RG
domains.

MATERIALS AND METHODS

Plasmid construction

Oligonucleotides were synthesized at Integrated DNA
Technologies, Inc. (Table 1). Plasmids used in this study
are summarized in Table 2. To construct N-terminal
domain deletions in Protein A (PrA)-Npl3, C-terminal
domains were amplified from pPS811 (14) with the follow-
ing oligo pairs: RRM1-RRM2-RG (codons R126-R414)
with AM159/AM166, RRM2-RG (codons P196-R414)
with AM162/AM166 and RG (codons P276-R414) with
AM165/AM166. PCR fragments were digested with NdeI
and BamHI and inserted into pNOPPATA (23) to create
pAM369, pAM367 and pAM368. The first three domains
of Npl3 (codons M1-N275) were amplified from pPS811
with oligos AM156 and AM164. This fragment and the
PrA-Npl3 plasmid pPS2389 (18) were digested with NdeI

and NsiI and ligated to create pAM372, in which the
first three domains of Npl3 are fused to the conserved
C-terminus after the RG domain (R398-R414).
Construction of plasmids expressing chimeric Npl3

proteins was performed as described for pAM362, which
expresses a Protein A (PrA)-tagged S. cerevisiae Npl3 pro-
tein bearing the C. albicans Npl3 RG domain (24). Briefly,
the coding region for the longest RG-rich domain of
S. cerevisiae Gar1 or Nop1 was amplified from wild-type
(FY23) genomic DNA using oligos AM137/AM138
(Gar1) or AM139/AM140 (Nop1). This fragment was
co-transformed into wild-type cells with ApaI-linearized
pAM463 (24) and plasmids were rescued from Leu+
cells. Plasmids were sequenced at the University of
Maine, Orono DNA sequencing facility to verify proper
fusion. Heterologous RG domains were removed from
plasmids pAM362 (CaNpl3), pAM363 (ScGar1) and

Table 1. Oligonucleotides used in this study

Oligo Sequence (50–30)

AM61 GGCTGCAGGAATTCGATATCCC
AM137 CAGAGGTTCTGTCATTACTGTTGAAAGAGATGACA

ATCCTCCACCAagaagtggtgccccaggtggccgtgg
AM138 GGCTTACCTGGTTGGTGATCTTTCACGTG

GAGCATCTCTGGTtcttctacctcctctgaaaccaccacg
AM139 CAGAGGTTCTGTCATTACTGTTGAAAGAG

ATGACAATCCTCCACCAagaccaggtagcagaggtggttcccg
AM140 GGCTTACCTGGTTGGTGATCTTTCACGTG

GAGCATCTCTGGtaacgaccttggcaccaccacgggcacc
AM156 cccccatATGTCTGAAGCTCAAGAAACTCACG
AM159 cccccatatgAGATTGTTTGTTAGACCTTTCCC
AM162 cccccatatgCCTGCCAAGAGATACCGTATCACC
AM164 cccatgcatcATTGTCATCTCTTTCAACAGTAATGAC
AM165 cccccatatgCCTCCACCAATCAGAAGATC
AM166 cccggatccTTACCTGGTTGGTGATCTTTCACG
AM219 cccccgagctcTACGGTGGCTATTCCAGAGG
AM220 ACCTCgagctcCACCTCTATTTGATCTTCTG
AM221 CCAGAgagctcTATGGTGGTCCAAGAAATG
AM223 GCCACgagctcCACCTCTGGAATAGCCAC
AM225 CGCCCGGAATTAGCTTGGCTGC

Lowercase indicates nucleotide differences from endogenous genes.

Table 2. Plasmids used in this study

Plasmid Features Source

pAM362 CEN LEU pNop-PrA-ScNPL3-CaNplRGG AmpR (24)
pAM363 CEN LEU pNop-PrA-ScNPL3-ScGarRGG AmpR This study
pAM364 CEN LEU pNop-PrA-ScNPL3-ScNopRGG AmpR This study
pAM367 CEN LEU pNop-PrA-RRM2-RGG AmpR This study
pAM368 CEN LEU pNop-PrA-RGG AmpR This study
pAM369 CEN LEU pNop-PrA-RRM1-RRM2-RGG AmpR This study
pAM372 CEN LEU pNop-PrA-APQE-RRM1-RRM2 AmpR This study
pAM382 2 m URA3 pGal GFP-ScNPL3-CaNplRGG AmpR (24)
pAM383 2 m URA3 pGal GFP-ScNPL3-ScGarRGG AmpR This study
pAM384 2 m URA3 pGal GFP-ScNPL3-ScNopRGG AmpR This study
pAM447 CEN LEU pNop-PrA-ScNPL3-DRGG2-8 AmpR This study
pAM449 CEN LEU pNop-PrA-ScNPL3-DRGG8-14 AmpR This study
pAM463 CEN LEU pNop-PrA-ScNPL3-ApaI AmpR (24)
pNOPPATA CEN LEU pNop-PrA AmpR vector (23)
pPS811 2 m URA3 pGal GFP-NPL3 AmpR (14)
pPS1872 CEN LEU2 ScHMT1 AmpR (25)
pPS2389 CEN LEU pNop-PrA-ScNPL3 AmpR (18)
pRS315 CEN LEU2 AmpR vector (28)
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pAM364 (ScNop1) with HindIII and inserted into pPS811
to create chimeric GFP-Npl3 plasmids pAM382, pAM383
and pAM384.
To create an N-terminal deletion within the RG domain

of PrA-Npl3, nucleotides 860–970, encoding F287–G323
near the N-terminus of the ScNpl3 RG domain, were
removed from the PrA-Npl3 plasmid pPS2389 as follows:
a 50 fragment was amplified by PCR from pPS2389 with
oligos AM61 and AM220 and cleaved with NdeI and SacI;
a 30 fragment was amplified with oligos AM219 and
AM225 and cleaved with Sac I and SalI. These fragments
were inserted into NdeI/SalI-cut pPS2389, which was
linearized with Sac I, treated with T4 DNA polymerase
and religated to create an in-frame deletion within the
RG domain (pAM447=�287–323). Fragments for the
removal of C-terminal RG-rich sequences were generated
by amplification with AM61/AM223 (50) and AM221/
AM225 (30) and treated similarly. The resulting plasmid,
pAM449 (�317–365), contained an in-frame deletion
including nucleotides 948–1094.

Npl3 function, self-association and methylation studies

Saccharomyces cerevisiae strains were manipulated as
previously described (16,24,25). Growth assays were
performed by transforming npl3D (PSY814) (26) or
npl3Dcbp80D (YAM505) (16) cells with LEU2 plasmids
that express PrA-tagged proteins then plating mid-log-
phase cells on media lacking leucine and containing
5-fluoro-orotic acid, to select for loss of a URA3 NPL3
maintenance plasmid. This assay therefore tested the func-
tion of the PrA-tagged Npl3 proteins as the sole copy of
the essential Npl3 protein.
Protein A (PrA) pulldown assays were performed

as described (16). Briefly, cells expressing Npl3-myc
(YAM533) and PrA fusion proteins were grown at 308C
to mid-log-phase and lysed using a FastPrep cell disruptor
(Bio101) in lysis buffer (150mM KCl, 5mM MgCl2,
20mM Tris–HCl, pH 8.0) containing protease inhibitors
and 0.5% Triton X-100. PrA fusion proteins and interact-
ing proteins were precipitated with IgG-Sepharose
(Pharmacia) and analyzed by immunoblotting with
polyclonal anti-myc antiserum (sc-789, Santa Cruz
Biotechnology; 1:2000 dilution) (16). GFP-Npl3 proteins
were expressed from plasmids pPS811, pAM382,
pAM383, and pAM384 in hmt1D cells (PSY865) that
either expressed Hmt1 from pPS1872 or contained the
vector plasmid pRS315, which lacks HMT1. GFP-Npl3
methylation was tested by inducing GFP-Npl3 expression
in mid-log-phase cells grown at 308C with 2% galactose
for 1.5 h prior to lysis in RIPA buffer (150mM NaCl, 1%
NP-40, 0.5% DOC, 0.1% SDS, 50mM Tris–HCl, pH 8.0)
supplemented with protease inhibitors (25). Protein
expression and arginine methylation were detected by
resolving these whole cell lysates by SDS-10% PAGE
(4mg total protein for anti-GFP immunoblots and 40 mg
total protein for anti-dimethylarginine immunoblots),
followed by immunoblotting with monoclonal anti-GFP
(Roche; 1:1000) and anti-dimethylarginine (Ab412,
Abcam; 1:500) antibodies.

Fluorescence microscopy

Cells lacking Hmt1 (PSY865) (27) bearing either a vector
(pRS315) (28) or an HMT1 expression plasmid (pPS1872)
(25) and different GFP-expression plasmids were grown
at 308C to mid-log phase in synthetic dropout medium
lacking uridine. After induction of GFP-Npl3 fusion pro-
teins as above, cells were washed with phosphate-buffered
saline (PBS), and visualized by fluorescence microscopy
as described (24). Exposure times were equivalent for all
experiments.

RESULTS

The RG-rich domain is essential for Npl3 function and
self-association

The mRNA-binding protein Npl3 comprises four regions:
an N-terminal region, two RNA-recognition motifs
(RRMs), and a C-terminal RG-rich domain (Figure 1A).
We created domain deletions within Npl3 proteins fused
to Protein A to determine the importance of the RG
domain for Npl3 function (Figure 1B). Intriguingly,
the PrA fusions that contain either both RRMs and the
RG domain or the RG domain alone partially support
growth of an npl3D strain (Figure 1B). Whereas domain
deletions have been used to define determinants for cellu-
lar localization (29,30), this is the first evidence that the
RG domain on its own can provide some Npl3 function
in vivo.

The finding that either arginine methylation or
mutations in the RG region of Npl3 disrupt Npl3 self-
association (16,18) suggests that the RG domain plays a
role in Npl3–Npl3 interactions. To test this possibility, the
PrA-Npl3 fusion proteins were co-expressed in cells
expressing full-length Npl3-myc and lacking the major
arginine methyltransferase Hmt1. The PrA-Npl3 was pre-
cipitated with IgG sepharose beads and co-purifying
Npl3-myc was detected by immunoblot analysis (beads;
Figure 1C). Whereas Npl3-myc co-purified with all
fusion proteins containing the RG-rich C-terminal
domain (Figure 1C upper panel, lanes 4–6), it did not
co-purify with a protein containing only the first three
domains of Npl3 (lane 7). Thus the RG domain is required
for Npl3 self-association.

Heterologous RG domains and Npl3 function

Multiple eukaryotic RNA-binding proteins contain
methylated RG domains of varying lengths (7). The
RG-rich C-terminus of Npl3 can bind to at least five
RG-domain containing proteins in a two-hybrid assay
(21). This assay also suggested that the interaction
between the Npl3 RG-rich domain and the other RG-
rich proteins was the same or greater in cells lacking the
arginine methyltransferase Hmt1 than in wild-type cells
(21). This result indicates that arginine methylation may
decrease these putative RG–RG interactions, similar to
its disruption of Npl3 self-association (18). These results
raise the question of whether RG-rich domains can serve a
general purpose in directing binding to other RG-rich
proteins.
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To test this possibility, the first three domains of
S. cerevisiae Npl3 were fused to three extensive RG-rich
regions from other yeast proteins: two nucleolar
S. cerevisiae proteins (ScGar1 and ScNop1) and the
Candida albicans Npl3 ortholog [CaNpl3 (24)]. Given
that phosphorylation of a serine within a conserved
heptapeptide at the C-terminus influences Npl3 nuclear
transport and autoregulation (31–34) and also affects tran-
scription elongation (12), this region was included in all
chimeric proteins (Figure 2A). These chimeric proteins

partially support growth of an npl3D strain (Figure 2B).
The major arginine methyltransferase Hmt1, which
methylates Npl3, is not essential in otherwise wild-type
cells, yet this gene becomes essential in a strain lacking
the 80 kDa mRNA cap-binding protein, Cbp80 (17),
potentially due to the increased importance of Npl3
methylation (16). In this sensitized strain background
(npl3Dcbp80D), the chimeric proteins bearing the Gar1
and Nop1 RG domains are not functional (Figure 2B).
In contrast, the RG domain of C. albicans Npl3, which
shares more sequence similarity with that of S. cerevisiae
Npl3, promotes greater Npl3 function than the RG
domains of ScGar1 and ScNop1 (Figure 2B). These results
support the idea that specific sequences within the RG
domain are important for Npl3 function. When the chi-
meric proteins were tested for binding to wild-type
Npl3-myc, the chimeric protein containing the CaNpl3
RG domain co-precipitated ScNpl3-myc whereas those
Npl3 proteins with Gar1 and Nop1 RG domains
showed severely reduced binding to Npl3-myc
(Figure 2C). Therefore an Npl3 RG domain is required
both for overall function of Npl3 and for Npl3 self-
association.
The inability of Gar1 and Nop1 RG-rich domains to

support full function of Npl3 could be due to differences in
either sequence or length. To address the importance of
length and sequence context, N-terminal or C-terminal
sequences within the RG domain were deleted from
PrA-Npl3 (Figure 2A) and the deletion mutants were
tested for function (Figure 3A). Deletion of 49 amino
acids in the C-terminal half of the ScNpl3 RG domain,
which results in a shorter protein than the Nop1 chimeric
protein, had little effect on growth of npl3D cells (C�,
Figure 3A). While this C-terminal deletion supported par-
tial growth of npl3Dcbp80D cells at 258C, deletion of 37
amino acids at the N-terminus of the domain (N�)
decreased growth of this strain to levels observed in the
absence of Npl3 (vector, Figure 3A). These growth pat-
terns of the N-terminal RG deletion therefore mirror the
growth of cells expressing the Gar1 and Nop1 chimeric
proteins. In contrast, both deletion mutant proteins
show reduced interaction with wild-type Npl3-myc
(Figure 3B). In combination, the growth and interaction
results indicate that the N-terminal sequences in the RG
domain are more important than the length of the domain
for overall Npl3 function, whereas both the N and
C-terminal portions of the RG domain play a role in
stabilizing binding to a full-length Npl3 RG domain in
the absence of methylation.
One defined role for the RG domain of Npl3 is in direct-

ing Npl3 localization (30). Methylation within this domain
facilitates nuclear export of Npl3 (16,17,35). In contrast,
methylation does not affect nucleolar localization of either
Gar1 or Nop1 (22). Therefore we tested whether the het-
erologous RG domains affect localization of GFP-Npl3
in the presence or absence of Hmt1 (Figure 4A).
Whereas the chimeric protein containing the C. albicans
Npl3 RG domain was predominantly nuclear, the proteins
with Gar1 and Nop1 RG domains localized throughout
cells expressing Hmt1 (Figure 4A; +Hmt1). This result
indicates the importance of Npl3-specific RG domain

Figure 1. Role of the RG-rich domain in Npl3 self-association and func-
tion. (A) Schematic diagram of Npl3 protein primary structure including
two RRMs and the arginine–glycine (RG)-rich C-terminal domain (total
length=414 amino acids, scale bar=50 amino acids). (B) The RG
domain alone can support partial growth of cells lacking Npl3. PSY814
(npl3D) bearing the plasmids described in (C) below was grown to
mid-log-phase, plated on medium containing 5-FOA and lacking leucine,
and grown for 4 days at 258C, 3 days at 308C or 3 days at 378C. (C) The
RG-rich domain is required for Npl3 self-association. YAM533
(hmt1DNPL3-myc) was transformed with plasmids expressing Protein
A (PrA) fused to: full-length Npl3p (WT; lanes 1 and 2), the RG
domain of Npl3 (RG; lane 4), the second RRM and the RG domain
(R2RG; lane 5), both RRMs and the RG domain (R1R2RG; lane 6),
or Npl3 lacking the RG domain (NR1R2; lane 7). Mid-log-phase
cells were lysed, the PrA fusion protein isolated with IgG-sepharose,
and co-precipitated Npl3-myc was detected (beads) by immunoblotting
with a polyclonal anti-myc antibody (which also recognizes the PrA fusion
protein). Controls included cells lacking Npl3-myc (lanes 3 and 8) and
cells expressing only PrA (vect; lane 9). Expression of PrA fusion proteins
and Npl3-myc was verified by anti-myc immunoblot analysis of the whole
cell lysates used for purification (lysates).
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sequences for steady-state nuclear localization. Notably,
these chimeric proteins were predominantly nuclear in
cells lacking the arginine methyltransferase (Figure 4A;
�Hmt1), suggesting that methylation facilitates export
of these proteins as well as of wild-type Npl3. Thus,
although these heterologous RG domains do not support
full Npl3 function, they do allow Npl3 transport to be
modulated by methylation.
To test whether the effect of Hmt1 on chimera localiza-

tion could be due to methylation of the chimeric

proteins, whole cell lysates from the cells in Figure 4A
were probed with anti-GFP and anti-dimethylarginine
antibodies (Figure 4B). Both anti-GFP and anti-dimethyl-
arginine antibodies recognized all RG-rich proteins in the
presence of Hmt1, but the anti-dimethylarginine antibody
did not bind to any of the GFP-fusion proteins in the
absence of Hmt1 (Figure 4B). This result indicates that
Hmt1 methylates GFP-ScNpl and all three chimeric
GFP-fusion proteins. Therefore, the decreased function
of Gar1 and Nop1 chimeric proteins is not due to an

Figure 2. Specificity of the RG-rich domain in Npl3 function. (A) Comparison of RG domains of four yeast RNA-binding proteins. C-terminal
sequences of chimeric Npl3 proteins containing RG domains from the C. albicans Npl3 ortholog and S. cerevisiae nucleolar proteins Gar1 and Nop 1
were aligned with ClustalW. Lines indicate the regions removed from the ScNpl3 RG domain in the N-terminal (N�) and C-terminal (C�) deletion
mutants used in Figure 3. Note the presence of the C-terminal 11 amino acids of S. cerevisiae Npl3 on each chimeric protein (double underline). In
ScNpl3, arginines that were previously found to be exclusively dimethylated are noted in bold and arginines with variable levels of methylation are
italicized (16). (B) Heterologous RG domains can partially support growth of cells lacking Npl3. PSY814 (npl3D) and YAM505 (npl3Dcbp80D) were
transformed with plasmids expressing chimeric Npl3 proteins containing the RG regions described in (A). Cells were tested for chimera function as
described for Figure 1, with growth for 3 days (npl3D, 378C) or 4 days (npl3D, 258C; npl3Dcbp80D, 258C, 378C). (C) RG-domain specificity in Npl3
self-association. Plasmids in (B) were transformed into YAM533 and the ability of Npl3-myc to co-precipitate with PrA-tagged chimeric proteins was
tested as in Figure 1.
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inability to function as substrates for Hmt1. In addition,
methylation of Gar1 and Nop1 RG domains within chi-
meric proteins may facilitate their export from the
nucleus.

DISCUSSION

The goal of this work was to determine whether RG-rich
regions act as general interaction motifs or whether spe-
cific sequences within the RG domain of RNA-binding
proteins influence their function. Our results clearly indi-
cate that RG domains contribute specifically to protein
function. Saccharomyces Npl3 can support growth of an
npl3D strain with its own RG domain or with the RG
domain of the Candida Npl3 ortholog, whereas the RG
domains of nucleolar proteins Nop1 and Gar1 only sup-
port partial Npl3 function. This assay reflects a complex
combination of in vivo roles of Npl3, as this protein has
been implicated in almost all aspects of gene expres-
sion from transcription elongation and termination, to 30

end processing, splicing, mRNA export and translation

(10–15). To explore how RG domain specificity affects
Npl3 function, we therefore tested the effect of heterolo-
gous RG domains on two specific characteristics of Npl3
that are linked to its RG domain, self-association and
intracellular localization.
The presence of the CaNpl3 RG domain conferred

PrA-Npl3 binding to wild-type ScNpl3-myc, but this inter-
action was significantly decreased by the substitution of
RG domains from nucleolar proteins. Similarly, the
CaNpl3 RG domain directed nuclear localization of
GFP-ScNpl3 whereas the presence of nucleolar RG
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HMT1. PSY865 (hmt1D) cells bearing either pPS1872 (+Hmt1) or
pRS315 (�Hmt1) were transformed with plasmids expressing GFP-
tagged chimeric Npl3 proteins. Localization of GFP-Npl3 was visua-
lized after induction of expression for 1.5 h in mid-log-phase cells
grown at 308C. (B) Chimeric Npl3 proteins are methylated. Aliquots
of the cultures shown in (A) were lysed in RIPA buffer, then proteins
from these whole cell lysates were resolved by SDS-10% PAGE and
analyzed by immunoblotting with monoclonal antibodies. Gels used for
anti-GFP immunoblots contained 4mg total protein in each lane; gels
used for anti-dimethylarginine immunoblots contained 40 mg total pro-
tein in each lane.
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decrease growth of a strain lacking Npl3 to a greater extent than
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containing the full-length RG domain (WT), a domain lacking amino
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(A) were transformed into YAM533 and the ability of Npl3-myc to co-
precipitate with PrA-tagged Npl3 proteins with deletions within the RG
domain was tested as in Figure 1.
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domains in GFP-ScNpl3 led to mislocalization within the
cytoplasm. In contrast, the nucleolar RG domains did
confer one key role of the Npl3 RG domain: the modula-
tion of Npl3 localization through methylation. Nuclear
export of GFP-ScNpl3 is decreased in the absence of the
major arginine methyltransferase, Hmt1 (17), whereas
nucleolar localization of Gar1 and Nop1 is not influenced
by methylation (22). Although chimeras with RG domains
from Gar1 and Nop1 are distributed throughout the cell
at steady state, in the absence of methylation they become
increasingly nuclear. This effect may be direct, through
methylation of the heterologous RG domain, or indirect,
through methylation of another protein (35). These results
indicate that, while RG domains do not act as inter-
changeable general interaction motifs, some functions of
RG domains can be transferred between proteins.

Partial function of an RG domain in isolation

Before testing ScNpl3 proteins with heterologous RG
domains in our assays, we wished to confirm that the
RG domain was required for Npl3 self-association, as
suggested by earlier mutational analysis (16). We have
demonstrated not only that the RG domain is required
for Npl3 self-association and growth of npl3D cells, but
that expression of the RG domain alone can support par-
tial growth of npl3D cells (Figure 1B). Given the effects of
point mutations within the RRMs on multiple steps in
gene expression (10,12–14), it is unlikely that the ability
of PrA-RG to support growth is due to facilitating any
of these processes through direct binding to mRNA.
Alternatively, the C-terminal RG-rich domain alone may
help direct essential protein–protein interactions: RG
domains play roles in many protein–protein interactions
(4) and physical interactions have been detected between
Npl3 and over 70 other proteins in S. cerevisiae, which
likely reflect both direct interactions and association as
members of macromolecular complexes (Saccharomyces
Genome Database, http://www.yeastgenome.org).

Significance of sequence versus length among RG domains

Many RG-rich proteins contain similar subsets of other
amino acids within their RG domains including phenyla-
lanine, tyrosine, proline, serine and alanine and aspartate
(7). In spite of these similarities, both the arrangement of
these amino acids within RG domains and the length
of the domains vary among proteins. In testing whether
the Npl3 RG domain contains specific sequences that are
crucial for function, we therefore considered the length
and sequences of heterologous RG domains used to
make chimeric Npl3 proteins. Only three S. cerevisiae pro-
teins contain single RG domains longer than 50 amino
acids (aa): Npl3 (109 aa), Gar1 (59 aa) and Nop1 (76
aa). Npl3 and these nucleolar proteins share similar spac-
ing between arginines in these domains (Npl3=5.2� 2.6
aa, Gar1=3.4� 1.3 aa, Nop1=3.6� 0.3 aa) and all
three of these RG domains contain eight or more serine
residues, many within SR dipeptides (Figure 2A). The RG
domain of the C. albicans Npl3 ortholog, while sharing
similar RG spacing (3.0� 1.8 aa), only contains one
serine residue, but has nine aspartate–arginine dipeptides.

In contrast, the RG domains of both Npl3 proteins are
significantly longer than those of the nucleolar proteins
and contain many more aromatic (F/Y) residues.

The greater ability of the CaNpl3 RG domain than
those of Gar1 and Nop1 to confer Npl3 function in
S. cerevisiae suggests a key role for aromatic residues in
Npl3 function in vivo as well as in Npl3 self-association
(Figure 2). In previous work we showed that accumulation
of arginine-to-lysine substitutions within the RG domain
decreased Npl3 function. Similarly, it is likely that multi-
ple aromatic residues can support Npl3 function (16),
since simultaneous substitution of alanine for aromatic
residues at four of nineteen positions (293, 301, 310,
340) did not affect growth of strains that require Npl3
or binding to Npl3-myc (unpublished data). In addition,
our results indicate that, if serines within the RG domain
play a role in Npl3 function, non-phosphorylatable acidic
residues such as the asparates in CaNpl3 can also support
Npl3 function.

Since the Gar1 and Nop1 RG domain chimeric Npl3
proteins also differed from ScNpl3 and CaNpl3 in length,
we tested whether this difference could explain our results.
A C-terminal deletion within the ScNpl3 RG domain,
decreasing its length to shorter than the Nop1 chimeric
protein, had minimal effects on overall Npl3 function
(Figure 3A), indicating the greater importance of sequence
than overall length. The reduced growth of npl3D cells
expressing ScNpl3 with a deletion within the N-terminus
of the RG domain, which results in a longer protein than
the C-terminal deletion, points to the importance of resi-
dues in this part of the RG domain. Similarly, we have
shown previously that N-terminal arginine-to-lysine (RK)
substitutions decrease Npl3 function more than sub-
stitutions in the C-terminus of the RG domain (16).
In addition, Lukasiewicz and colleagues demonstrated
that an N-terminal deletion, but not a C-terminal deletion,
within the RG domain altered the kinetics of Npl3 phos-
phorylation by Sky1 (36), a post–translational modifica-
tion that has been implicated in transcription,
autoregulation and Npl3 transport (12,31–34). In contrast
to the different effects on overall Npl3 function, both dele-
tion mutants show reduced binding to full-length Npl3
(Figure 3B). This result suggests that full self-association
is not required for the essential functions of Npl3.

Therefore, although deletions within the RG domain
may decrease Npl3 function by altering overall protein
structure, these studies, combined with the RK-mutagen-
esis results (16), suggest that N-terminal and C-terminal
sequences within the long Npl3 RG domain differentially
affect overall protein function, while both regions help
mediate Npl3 self-association. Interestingly, seven of the
ten arginines that we previously identified as being exclu-
sively dimethylated in Npl3 are within the N-terminal
region that was deleted, which suggests that methylation
of this region may positively influence Npl3 function.

RG-rich proteins and eukaryotic RNA metabolism

RG-rich RNA-binding proteins participate in complex
processes that require the coordination of many proteins
and RNAs. Just as Npl3 interacts with a plethora of
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proteins as it aids in mRNA transcription, processing and
transport in yeast, RG-rich heterogeneous nuclear ribonu-
cleoprotein particle proteins hnRNPA1 and hnRNPK
play roles in mammalian mRNA processing and trans-
port. Ribosome assembly also relies on a complex
series of events involving multiple proteins, including
nucleolin and fibrillarin in mammals and Nop1 and
Gar1 in S. cerevisiae. Given the flexibility of extensive
RG domains, as suggested by the abundance of glycine
residues, the structure of these domains is likely influenced
by their dynamic interactions with other proteins and
RNAs. RG domains may promote remodeling of com-
plexes as their interactions with different binding partners
change over time and subtle differences in the sequences
within long RG-rich domains may help modulate these
transitions.

Thus, in contrast to the repetitive nature and similar
amino-acid contents of RG-rich domains, our work
highlights the importance of specific sequences within
the RG-rich domain for function of the major mRNA-
binding protein, Npl3. In particular, N-terminal sequences
and the presence of multiple aromatic residues within
this domain are likely to influence protein function.
Interestingly, while many arginines within the RG
domain are fully dimethylated in vivo, several arginines
are variably methylated, including two arginines at the
N-terminus of the domain (16). In combination, these
results suggest that differential methylation of specific
sequences within RG domains may modulate function of
RNA-binding proteins.
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