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a b s t r a c t 

Chitosan nanoparticles are exhalation prone and agglomerative to pulmonary inhalation. 

Blending nanoparticles with lactose microparticles ( ∼5 μm) could mutually reduce their 

agglomeration through surface adsorption phenomenon. The chitosan nanoparticles of 

varying size, size distribution, zeta potential, crystallinity, shape and surface roughness were 

prepared by spray drying technique as a function of chitosan, surfactant and processing 

conditions. Lactose-polyethylene glycol 3000 (PEG3000) microparticles were similarly 

prepared. The chitosan nanoparticles, physically blended with fine lactose-PEG3000 

microparticles, exhibited a comparable inhalation performance with the commercial 

dry powder inhaler products (fine particle fraction between 20% and 30%). Cascade 

impactor analysis indicated that the aerosolization and inhalation performance of chitosan 

nanoparticles was promoted by their higher zeta potential and circularity, and larger 

size attributes of which led to reduced inter-nanoparticulate aggregation and favored 

nanoparticles interacting with lactose-PEG3000 micropaticles that aided their delivery into 

deep and peripheral lungs. 
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1. Introduction 

The lung offers an ideal way for local and systemic drug
delivery because of its large surface area, high permeability
attribute, and reduced first pass metabolism level [1] . Further,
drug administration via the lung is a non-invasive approach
and possible for self-administration. 

Nanoparticulate delivery system has received a
widespread interest for use to deliver therapeutics for
different diseases such as cancer and infection [2,3] .
Nanoparticles enable therapeutic agents to be delivered
in a targeted fashion. They also improve drug solubility,
extend drug half-life, improve therapeutic index, and reduce
drug immunogenicity [4,5] . The nanoparticles ( ∼600 nm) can
penetrate the mucus barrier of biological interface thereby
raising the drug bioavailability [6,7] . 

Delivering nanoparticles via the lung gains much
interests for several reasons. First, nano-size particles
can cross the cellular barrier independent of the energy
supply. Second, these nanoparticles can be designed to
be taken up by macrophages for delivery of drugs directly
to bacteria and thus treat diseases such as tuberculosis.
The nanoparticles can be used to deliver macromolecular
drugs such as peptide and protein through the lung for
the treatment of systemic or local diseases [8] . They
are deemed to be effective for lung cancer treatment
in association with improved drug accumulation inside
the tumors due to nanoparticulation of the therapeutics
facilitating their passive as well as active delivery [5] .
Nanoparticles are also used to treat mucus hypersecretion
and severe inflammatory lung diseases namely asthma,
cystic fibrosis and chronic obstructive pulmonary disease.
This is ascribed to their ability to provide sustained drug
release, overcome airway hyper-secretion and target diseased
cells or tissues through matrix decoration with homing
device [9] . 

However, nanoparticles have the disadvantages of being
exhaled from lungs after pulmonary administration. The
inhaled particles should have an aerodynamic diameter
( D ae ) between 1 and 5 μm in order to enable the drugs being
deposited in the deep lungs. The particles with D ae > 5 μm
will be impacted on the large airway whereas particles
with D ae < 0.5 μm will be exhaled [10] . Several approaches
have been developed to form nanoparticles with suitable
aerodynamic diameters for lung delivery. The first approach
involves the process of nanoagglomeration where the
nanoparticles are agglomerated into larger and relatively
porous Trojan particles or nanocomposites to improve the
aerodynamic characteristics for lung deposition. The Trojan
particles are hollow microparticles in which the shell is made
of layers of nanoparticles agglomerations [11,12] . Unlike
Trojan particles, the internal core of nanocomposites is
occupied with nanoparticles in a loose packing geometry
[13,14] . The ability of nanoagglomerate systems to have
the nanoparticles released and redispersed in vivo remains
uncertain [15,16] . To resolve this problem, a second approach
is developed. 

In the second approach, the nanoparticles are spray-
dried with carbohydrate to form inhalable nanoparticles
loaded microparticles. Following particle deposition onto the
targeted surface of pulmonary epithelium, the carbohydrate
will dissolve and facilitate the dispersion of nanoparticles
[17–22] . Nonetheless, such dosage forms run the risks
of inadequate nanoparticle release as a function of
microcarrier/nanoparticle material property and processing
condition [23,24] . Further, nanoparticle size can change
during the microencapsulation process [22] , suggesting the
size-dependent biological performances of nanoparticles
can be affected by nano-to-micro scale transformation. With
reference to thermolabile substances, spray-freeze-drying is
used as the substitute technique to improve the stability of
both the polymer and the drug [25] . However, the process of
freezing is accompanied by risks of phase separation into ice
and cryoconcentrate. The cryoconcentrate phase contains
nanoparticles and they are prone to agglomeration making
the redispersion of nanoparticles difficult [26,27] . 

The current approaches of producing inhalable
nanoparticles have several drawbacks. Firstly, they require
meticulous efforts in the formulation steps. This problem is
intensified by the fact that each formulation is only likely
to be applicable to a specific nanoparticle type. Further,
the microscale particles are known to face issues of poor
flowability and dispersibility in association with their
cohesive nature. The coarse carriers are required as a part of
externally added formulation. The attachment force between
small microscale and coarse carrier particles is difficult to be
modulated for deep lung deposition of drugs since it depends
on a myriad of parameters belonging to both particles [28] .
This increases the risk of losing drugs in the upper airway. 

In this study, we aim to develop a new delivery approach
of nanoparticles via the pulmonary route possibly for
use in lung cancer treatment. A physical mixture of solid
nanoparticles with small microscale carrier particles is
produced as the model of dosage form. The nanoparticles
will spread on the surfaces of the microparticles. This
nano-on-microparticle distribution is hypothesized to
have dual effects. First, it will prevent nanoparticles from
agglomeration. Second, the nanoparticles will work as a
spacer between the microparticles and prevent microparticles
from agglomeration as well. Achieving our goal will provide a
dissolvable small vehicle that carries the nanoparticles deep
down in the lung. The microscale carrier will be suited for
use with different types of nanoparticles, and the concept of
nano-on-microparticle distribution will eliminate the need of
coarse carrier. In the present investigation, we have prepared
six types of chitosan nanoparticles and one microscale
lactose-PEG3000 carrier with volume median diameter of
5 μm (mass median aerodynamic diameter ∼2.5 μm). The
physicochemical characteristics of nanoparticles namely
size, size distribution, zeta potential, roughness, circularity,
and crystallinity were determined. The respective mixtures of
nanoparticles-lactose-PEG microscale carrier were produced.
The aerosolization and inhalation performance of the
nanoparticles in each physical mixture was determined. The
physicochemical characteristics of nanoparticles that are
critical to succeed their deep lung deposition were identified.
The study intends to seek fundamental understanding on
nanoparticle characteristics essential for pulmonary drug
delivery. 
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Table 1 – Formulation and processing variables in the preparation of chitosan nanoparticles. 

Sample F1 F2 F3 F4 F5 F6 

Acetic acid concentration (%, v/v) 0.5 0.5 0.5 0.5 0.5 1 
Chitosan grade LMW LMW LMW LMW LMW HMW 

Chitosan concentration (%, w/w) 0.1 0.1 0.1 0.1 0.1 0.05 
Excipient – – Tween80 a 

(0.025%) 
Span 80 a 

(0.025%) 
Ethanol 70 % 

a 

(75%) 
–

Solution feeding rate (ml/min) 1.8 3 1.8 1.8 1.8 1.8 
Feeding line number 1 2 1 1 1 1 
Inlet temperature ( °C) 70 70 70 70 70 70 
Outlet temperature ( °C) 24.9 24.8 24.4 25.2 26.6 26 
Atomizing air pressure (bar) 6 6 6 6 6 6 

LMW: low molecular weight chitosan; HMW: high molecular weight chitosan. 
a The liquid surface tension was determined by K-6 surface tensiometer (KR ̋USS GmbH Germany) equipped with a wire ring made of a 
platinum-iridium at 25 ± 1 °C. At least triplicates were carried out for each sample and the results averaged. 
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. Materials and methods 

.1. Materials 

ow-molecular-weight chitosan (molecular weight: 20 000–
0 000 Da, degree of deacetylation ≥ 90%; Zhejiang Aoxing 
iotechnology Co. Ltd., China) and high-molecular-weight 
hitosan (molecular weight: 310 000–375 000 Da, degree of 
eacetylation ≥ 75.0%; Sigma-Aldrich, Ireland) were used 

s the matrix material of nanoparticles with glacial acetic 
cid as the solvent of chitosan (Merck, Germany). Tween 

0 (Fisher Scientific, UK), span 80 (Merck, Germany) and 

thanol absolute for analysis (Merck, Germany) were used 

s additives. Lithium acetate anhydrous (ACROS Organics TM ,
SA), ninhydrin and hydrindantin (Sigma-Aldrich, USA) 
ere used in quantification assay of chitosan. Lactose 
onohydrate (Sorbolac 400; Meggle, Germany) was used as 

he microparticulate carrier with polyethylene glycol 3000 
PEG3000; Merck, Germany) as the stabilizer. 

.2. Preparation of chitosan nanoparticles 

ix different chitosan nanoparticle variants were prepared 

amely F1, F2, F3, F4, F5, and F6 by spray drying method.
he chitosan solutions were first prepared by dissolving the 
hitosan in acetic acid solution at 25 ± 1 °C under continuous 
agnetic stirring for 5 h. They were then spray-dried using 

 nanospray dryer (TwinNanoSpray, UiTM, Malaysia) as a 
unction of variables such as concentration of acetic acid 

olution, concentration and grade of chitosan, excipients, and 

rocessing procedure as summarized in Table 1 [29,30] . The 
pray drying process was accompanied by atomization of 
olution into fine droplets followed by hot air evaporation of 
olvent to produce dried powders. The spray-dried powders 
ere accumulated at the collecting electrode and retrieved 

sing rubber spatula into a 10 ml amber diagnostic vial. The 
ample was conditioned in a silica gel desiccator and kept at 
5 ± 1 °C. 
.3. Preparation of lactose-PEG3000 microparticles 

actose was added to distilled water, in which 2.5% (w/w) 
EG3000 expressed with reference to lactose mass was 
resent, to give a concentration of 2% (w/w) at 25 ± 1 °C.
he solution was spray-dried using a nanospray dryer 

TwinNanoSpray, UiTM, Malaysia) of which gave rise to the 
ormation of microparticles as a function of the formulation 

nd by means of the following operating parameters: inlet 
emperature = 70 °C, outlet temperature = 24.5 °C, solution 

eed rate = 2 ml/min using one feeding line, atomizing air 
ressure = 5.5 bar. The spray-dried powder was accumulated 

t the collecting electrode and retrieved using a rubber 
patula into a 30 ml clear glass powder jar. The sample was 
onditioned in a silica gel desiccator and kept at 25 ± 1 °C. 

.4. Physicochemical characterization of chitosan 

anoparticles 

.4.1. Size 
he size of nanoparticles was determined using the photon 

orrelation spectroscopy by means of a Zetasizer (Nano ZS 
0, Malvern Instruments Ltd, UK) at 25 ± 1 °C and a scattering 
ngle of 90 °. Five milligram nanoparticles were dispersed in 

0 ml deionized water under continuous magnetic stirring 
rior test. The mean diameter of the nanoparticulate 
opulation and its polydispersity index were measured.
eans and standard deviations (mean ± SD) were calculated 

rom three determinations. 

.4.2. Zeta potential 
he zeta potential of nanoparticles was measured by means 
f a Zetasizer (Nano ZS 90, Malvern Instruments Ltd, UK) 
t 25 ± 1 °C. Five milligram nanoparticles were dispersed in 

0 ml deionized water under continuous magnetic stirring.
he dispersion was loaded in a folded capillary zeta cell 

or test. Its electrostatic mobility was converted into zeta- 
otential using the Helmholtz–Smoluchowski equation [31] .
ean ± SD were calculated from three measurements. 
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2.4.3. Scanning electron microscopy 
Scanning electron microscopy (SEM) technique was used
to examine the surface morphology of nanoparticles. The
images of particles were taken by using Quanta 450 FEG
scanning electron microscope (FEI, Netherlands). The sample
was first adhered onto a carbon tape and then sputter-coated
by platinum (JFC-1600 Auto Fine Coater, JEOL, Japan) with a
thickness of 5 nm. The surface roughness and circularity of
nanoparticles were analyzed with image processing software
ImageJ (NiH, USA). The original SEM image was first converted
to grey-scale (8-bit) image and subsequently to binary image.
The plugin “Analyze Particle” and ‘Roughness Calculation”
were run to measure the circularity and roughness. Mean ± SD
of arithmetic mean roughness ( R a ) and circularity (Circ) were
calculated from nine measurements of three images. 

2.4.4. X-ray powder diffraction (XRPD) 
The crystallinity of nanoparticles was determined using the X-
ray diffractometer (Ultima IV, Rigaku Coperation, Japan) with
diffraction angle (2 θ ) ranging from 3 ° to 60 ° and a scanning
speed of 5 °/min. Cu–K α radiation was used as the x-ray
resource at 40 kV and 30 mA. Mean ± SD were calculated from
three measurements. The chitosan crystallinity index (cCI; %)
was determined using the following equation: 

cCI % = 

( I 110 − I amor ) × 100 
I 110 

(1)

where I 110 is the maximum intensity at 20 ° and I amor is the
intensity of amorphous diffraction at 16 ° [32,33] . 

2.5. Physicochemical characterization of lactose-PEG3000 

microparticles 

The SEM and XRPD techniques were similarly adopted to
assess the surface morphology and crystallinity of lactose-
PEG3000 microparticles. Other characterizations such as
density and size were conducted. 

2.5.1. Density 
Bulk and tapped density were measured by using a 5 ml
measuring cylinder. The cylinder was filled with a known
weight of powder and the bulk volume was recorded. The
cylinder was tapped 200 times, where no further reduction in
powder bed volume, at a rate of 4 times per second and the
new volume was recorded (tapped volume). The bulk density
( ρb ) and tapped density ( ρt ) were calculated, and mean ± SD
were determined from three measurements. 

Carr’s index and Hausner ratio were derived from the
bulk density and tapped density values of powder using the
following equations: 

Carr ’ s index (%) = ( 1 − ρb/ρt ) × 100% (2)

Hausner ratio = ρt/ρb (3)

2.5.2. Size 
Lactose-PEG3000 microparticle size distribution was
determined using the laser diffraction method (Mastersizer
2000, Malvern Instruments Ltd, UK) equipped with a Scirocco
2000 dry powder dispersing system operated at a pressure
of 1 bar. The particle size distribution was characterized
by the volume median diameter d 50 , d 10 and d 90 values
corresponding to 50%, 10% and 90% of microparticles with
size lying below the specified diameter. Measurement was
run in triplicate and results averaged. 

2.6. In vitro aerosolization and inhalation performance 

The Andersen Cascade Impactor (ACI; Copley Scientific Ltd,
UK) was used according to the compendial procedures [34] .
All parts of the ACI were first washed with deionized water
and allowed to dry. Then the ACI was assembled from stage
F up to stage 0. A Glass fiber filter (Copley Scientific Ltd, UK)
was inserted after stage 7 to collect small particles that might
escape from the stage 7. The stages were clamped together
and sealed with FDA approved silicone rubber O-rings in order
to prevent inter-stage leak. A pre-separator was fixed onto
stage 0 and connected to an induction port. The induction
port was connected into a mouthpiece adapter to provide an
airtight seal between the induction port and the Handihaler R ©
device (Boehringer Ingelheim, Germany). ACI was connected
to a vacuum source (Low Capacity Pumps Models LCP5, Copley
Scientific Ltd, UK) through a critical flow controller (TPK 2000,
Copley Scientific Ltd, UK). The connection was made via
vacuum PVC tubing (10 mm internal diameter). 

The chitosan nanoparticles and lactose-PEG3000
microparticles were mixed at a weight ratio of 1:9 through
vortex-blending at 40 Hz for 30 min (VelpScientifica, Italy).
A size-2 capsule (Capsules halal clear, San Tronic Medical
Devices, Malaysia) was packed with 30 mg of the premixed
nano/micro powder. The capsule was placed in the centre
chamber of a breath-activated dry powder inhaler device.
The powder was actuated to anderson cascade impactor via
inhaler under an air flow rate of 48 l/min for 5 s corresponding
to a pressure drop of 4 kPa which represented the normal
pressure drop in human lung. Cut-off diameter of each stage
was recalculated at a flow rate 48 l/min according to Eq. (4) and
was as follows: Stage 0, 6.91 μm; Stage 1, 4.45 μm; Stage 2,
3.61 μm; Stage 3, 2.53 μm; Stage 4, 1.61 μm; Stage 5, 0.84 μm;
Stage 6, 0.54 μm; and Stage 7, 0.31 μm. 

D 50 , 48 = D 50 , 28 . 3 

(
28 . 3 
48 

) 1 
2 

(4)

where D 50,48 and D 50,28.3 are the cut-off diameter of a stage at
flow rate 48 and 28.3 l/min, respectively. 

Five capsules were emptied, one in each run. The powder
emitted from each capsule was deposited on ACI stages.
Then ACI apparatus was dismantled. The powder was
carefully collected by using 0.5% (v/v) acetic acid solution
from mouthpiece, induction port, pre-separator, the inner
walls and collection plate of each stage, and filter into
separate glass scintillation vials. Vials were shaken at
25 ± 1 °C for 5 h in a shaker bath (ST402, Nuve, Turkey) before
quantifying for chitosan. The respective chitosan content
was then assessed using the ninhydrin assay method [35] .
Samples were subjected to spectrophotometric assay using
UV-VIS spectrophotometer (Cary 50 Conc, Varian Australia
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ty. Ltd., Australia) at a wavelength maximal of 570 nm for 
hitosan. The limit of detection is 0.048 mg/ml. The limit 
f quantification is 0.160 mg/ml. Linearity ranges are 0.025–
.000 mg/ml. Triplicates were conducted and the results 
veraged. 

The emitted dose (ED) was determined as the sum of 
hitosan mass collected from mouthpiece, induction port, pre- 
eparator, and all stages. Deposited dose (DD) is the sum of 
hitosan mass deposited on stages 0 to F. Percent dispersed 

PD) was used to express the percentage of ED based on the 
otal dose (TD) using Eq. (5) . Percent inhaled (PI) was used to 
xpress the percentage of DD based on the TD using Eq. (6) .
he fine particle doses (FPD) were calculated at three levels 
amely, FPD < 4.5 μm 

, FPD < 3.6 μm 

, and 0.5 μm < FPD < 3.6 μm 

as the 
ose deposited on stages 2 to F, stages 3 to F, and stages 3–
, respectively. The first level exhibited particles deposited 

n deep lung generally. Second level represented particles 
eposited on peripheral lung. Second level with particles 
rone to be exhaled ( < 500 nm) excluded was presented as 

evel three. 
The fine particle fraction (FPF) was expressed as the 

ercentage of FPD to ED using Eq. (7) . The respirable fraction 

RF) was expressed as the percentage of FPD to the DD using 
q. (8) . 

ercent dispersed ( PD ) % = 

ED 

TD 

× 100 (5) 

ercent inhaled ( PI ) % = 

DD 

TD 

× 100 (6) 

ine particle fraction ( FPF ) % = 

FPD 

ED 

× 100 (7) 

espirable fraction ( RF ) = 

FPD 

DD 

× 100 (8) 

The cumulative particle size distribution functions 
btained from the ACI was plotted on log probability 
raph. The mass median aerodynamic diameter (MMAD) 
as calculated as the particle size at the 50th percentile 
n the graph. The geometric standard deviation (GSD) was 
alculated as the square root of the ratio of particle size at the 
4.13th percentile to the 15.87th percentile. All aerosolization 

nd inhalation parameters were expressed in means and 

tandard deviations obtained from triplicates of experiments.

.7. Fourier transform infrared (FTIR) spectroscopy 

2 and F4 powders collected from stages 0–7 were analyzed 

y FTIR spectrometer (Spectrum 100, PerkinElmer, USA) 
ver a scanning range between 400 and 4000 cm 

−1 at a 
esolution of 4 cm 

−1 . The powder sample was blended with 

otassium bromide at 1:99 weight ratio and ground into fine 
owder. This mixture was then transferred into a pellet die 

diameter 13 mm), which was placed inside a 15 ton hydraulic 
ellet press (Specac Ltd., UK). An axial load was applied and 

ncreased slowly to a value of 10 tons, and held at a constant 
ressure for 2 min. The formed thin disc was subjected to 
TIR spectroscopy analysis following the aforementioned 

reatment. Three reference powders namely chitosan 

anoparticles, lactose-PEG3000 microparticles and their 
ixture at a weight ratio of 1:9 were similarly characterized.
he absorbance spectra of powder samples from ACI 

ests were compared and correlated against the reference 
amples using PerkinElmer Spectrum Version 10.3.6 software 
PerkinElmer Inc, USA). All correlations were expressed in 

ean ± SD from triplicates of experiment. The correlation 

oefficient was calculated using the following equation [36] : 

orrelation coefficient = 

∑ 

w i A i B i 
( 
∑ 

w i A i A i ) 
0 . 5 × ( 

∑ 

w i B i B i ) 
0 . 5 

(9) 

here A i and B i were the absorbance values in spectra of 
est powder and reference powder at frequency i , and w i is a
tatistical weighting factor. 

.8. Statistical analysis 

esults were expressed as a mean of at least three 
xperiments with the corresponding standard deviation.
earson correlation was carried out using SPSS software 18.0 
hen applicable. A statistically significance was denoted by 
 < 0.05 unless otherwise stated. 

. Results and discussion 

.1. Chitosan nanoparticles 

ix chitosan nanoparticle variants were produced in 

ccordance to the formulation and processing parameters 
utlined in Table 1 . Table 2 summarizes the physicochemical 
ttributes of these chitosan nanoparticles. 

.1.1. Size 
he nanoparticle variants were characterized by sizes ranged 

etween 275.67 ± 15.22 nm (F3) and 684.00 ± 17.61 nm (F2) 
 Table 2 ). With reference to F2 and F1, an increase in
anoparticle size was observed with the use of two liquid 

eeding lines during the course of nanospray drying. Double 
eeding lines increased the amount of chitosan solution 

ntering the nozzle at a time thus rendering the formation of 
arger droplets and nanoparticles thereafter. 

A reduction in surface tension of liquid droplets tends 
o be accompanied by reduced droplet and particle sizes 
37] . Using the hydrophilic surfactant (Tween 80) in F3, it 
as anticipated that the liquid droplets’ surface tension 

as reduced (0.5% acetic acid solution = 73 ± 5 mN/m; 
.025% tween 80 solution = 46 ± 1 mN/m). Small liquid 

roplets were formed during the atomization step and small 
olid nanoparticles were thereby collected ( Table 2 ). A more 
ydrophobic surfactant (Span 80) was used in F4. Span 80 
rought about reduced surface tension and helped to produce 
mall liquid droplets and solid nanoparticles as in the case of 
ween 80 (0.025% Span 80 solution = 35 ± 1 mN/m), though 

ot as small as those in F3 ( Table 2 ). 
The nanoparticle size was also reducible by dissolving 

he chitosan in ethanol-water mixture prior spray drying (F5) 
 Table 2 ). Ethanol is a popular polar solvent which acts as
 surface active agent (31 ± 1 mN/m) [38] . Using ethanol,
he surface tension of liquid droplets decreased. Small liquid 
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Table 2 – Physicochemical characteristics of chitosan nanoparticles and lactose-PEG3000 microparticles. 

(a) Physicochemical characteristics of chitosan nanoparticles 

F1 F2 F3 F4 F5 F6 

Z-average size (nm) 610.03 ± 29.97 684.00 ± 17.61 275.67 ± 15.22 465.17 ± 58.74 338.70 ± 7.50 347.27 ± 19.39 
Zeta potential (mV) 27.47 ± 1.87 27.86 ± 1.27 13.60 ± 2.36 13.10 ± 1.49 14.47 ± 0.23 20.17 ± 2.62 
Polydispersity index 0.63 ± 0.12 0.57 ± 0.01 0.58 ± 0.01 0.80 ± 0.21 0.81 ± 0.12 0.42 ± 0.05 
Circularity 0.90 ± 0.21 0.90 ± 0.23 0.82 ± 0.28 0.82 ± 0.26 0.87 ± 0.23 0.88 ± 0.23 
Roughness (nm) 0.208 ± 0.004 0.379 ± 0.008 0.249 ± 0.004 0.301 ± 0.001 0.184 ± 0.003 0.211 ± 0.001 
Crystallinity (%) 24.71 ± 1.85 19.40 ± 2.23 25.34 ± 0.69 27.02 ± 1.59 18.56 ± 1.01 18.72 ± 2.12 

(b) Physicochemical characteristics of lactose-PEG3000 microparticles 

d 10 (μm) 1.58 ± 0.01 Circularity 0.16 ± 0.06 Tapped density (g/cm 

3 ) 0.2125 ± 0.0038 
d 50 (μm) 5.43 ± 0.10 Roughness (nm) 127.21 ± 1.11 Carr’s index (%) 51.91 ± 0.13 
d 90 (μm) 54.60 ± 1.7 Bulk density (g/cm 

3 ) 0.1022 ± 0.0018 Hausner ratio 2.08 ± 0.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 – Scanning electron microscopic images of 
spray-dried chitosan nanoparticles. 

 

 

 

 

 

 

 

 

 

 

 

droplets and solid nanoparticles with sizes ranging between
F3 and F4 were obtainable. 

High molecular weight chitosan was used in F6
preparation. Unexpectedly, the nanoparticle size of F6 was
small ( Table 2 ). This might be due to two reasons. First, the
chitosan was used at a lower concentration of 0.05% instead
of 0.1% (w/w). Second, the high molecular weight chitosan has
long chains which were able to entangle between each other
into more compacted particles than those of F1 and F2. Earlier
study by Mohd Chachuli et al. [39] indicated that the lower
molecular weight chitosan might not be translated to smaller
nanoparticles due to reduced chain entanglement tendency.
The F6 also demonstrated a relatively low polydispersity index
( Table 2 ), when compared to nanoparticles prepared from
other formulation and processing conditions. Apparently,
the entangled chains of high molecular weight chitosan in a
diluted liquid medium could translate to less risks of chain
disentanglement, and formation of populations with diverse
sizes. 

3.1.2. Zeta potential 
Chitosan nanoparticles of F3, F4, and F5 were characterized
by lower zeta potential values than F1 and F2 ( Table 2 ). The
reduction in the surface charge of the nanoparticles was
attributed to the non-ionic surfactant molecules decorated
onto the surfaces of nanoparticles and/or reorientation of
chitosan chains in nanomatrices due to the surrounding
organic solvent in the course of spray drying which could take
place following polymer-additive interaction [40] . Using high
molecular weight chitosan in F6, the nanoparticulate surface
charges were similarly reduced. Such observation was also
noted in the study of Kouchak et al. [41] . The reduction in zeta
potential of solid nanoparticles prepared from high molecular
weight chitosan might be an attribute of reduced degree of
deacetylation when compared to that of low molecular weight
chitosan. 

3.1.3. Morphology 
Fig. 1 shows the typical morphology of nanoparticles.
Nanoparticles of all formulations were spherical in shape
with some variations. F1 and F2 had the most uniform
spherical shape with circularity values of 0.90 ± 0.21 and
0.90 ± 0.23, respectively ( Table 2 ). F3 and F4 had the
lowest circularity values of 0.82 ± 0.28 and 0.82 ± 0.26,
respectively. 

3.1.4. Crystallinity 
Overall, the crystallinity of F1 to F6 nanoparticles was lower
than chitosan (cCI = 51.65% ± 1.49%) ( Table 2 ; Fig. 2 ). Among
all formulations, low molecular weight chitosan nanoparticles
formulated with span 80 and tween 80 exhibited a relatively
high level of matrix crystallinity ( Table 2 ). The short chains of
chitosan, in the presence of surfactants, appeared to be able to
rearrange into a more systematic domain during the process
of spray drying. 

3.2. Lactose-PEG3000 microparticles 

The lactose-PEG3000 microparticles were characterized by a
non-spherical shape with a circularity value of 0.16 ± 0.06,
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Fig. 2 – X-ray powder diffractograms of chitosan and 

chitosan nanoparticles. 
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Fig. 3 – (A) Scanning electron microscopic image of 
spray-dried lactose-PEG3000 microparticles. (B) X-ray 

powder diffractograms of unprocessed lactose, spray-dried 

lactose, and spray-dried lactose-PEG3000 microparticles. 
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nlike lactose particles as reported by Majid and Wong 
42] due to the presence of PEG3000 ( Fig. 3 A; Table 2 ). They were
haracterized by a surface roughness R a of 127.21 ± 1.11 nm 

 Fig. 3 A; Table 2 ). Lactose-PEG3000 powder had d 10 , d 50 and d 90 

f 1.58 ± 0.01, 5.43 ± 0.10 and 54.60 ± 1.7 μm, respectively.
actose-PEG3000 powder bulk and tapped density were 
.1022 ± 0.0018 and 0.2125 ± 0.0038 g/cm 

3 , respectively. Their 
arr’s index and Hausner ratio were 51.91% ± 0.13% and 

.08 ± 0.01, respectively. 
The lactose microparticles, being small in dimension, have 

een met with hygroscopic issues. PEG3000 was reported 

o be able to convert the lactose into a more crystalline 
atrix [43,44] thereby reducing lactose hygroscopicity via 

ts affinity to form hydrogen bonds with water during 
pray drying process and slow down the lactose drying 
ate. Analysis of XRD patterns for lactose before and 

fter spray drying with and without PEG3000 indicated 

hat the spray-dried lactose without PEG3000 underwent 
 great reduction in magnitude of XRD peaks compared 

ith spray-dried lactose-PEG3000 microparticles ( Fig. 3 B).
he level of crystallinity of lactose-PEG3000 microparticles 
as higher than that of spray-dried lactose without the 

EG3000 ( Fig. 3 B). The α-lactose monohydrate had its 
rimary XRD peak at 2 θ = 19.98 °. A tremendous decrease 

n peak areas from unprocessed lactose toward spray- 
ried lactose without PEG3000 was observed with peak 
lightly shifted from 19.98 ° to 19.60 ° ( Fig. 3 B). A less drastic 
hange was, however, noted in the case of lactose-PEG3000 
icroparticles. 

.3. Aerosolization and inhalation performance of 
hitosan nanoparticles 

ix chitosan nanoparticles/lactose-PEG3000 microparticles 
ixtures in the weight ratio of 1:9 were prepared and 
ubjected to cascade impaction analysis. The fine particles 
nd respirable fractions were taken at three particle size 
evels namely particles with MMAD less than 4.5 μm, less than 

.6 μm and between 3.6 and 0.5 μm. The first level represented 

articles suitable for deep lung deposition. The second level 
xhibited particles with the best aerodynamic diameter for 
eripheral lung delivery. Excluding particles with diameter 

ess than 0.5 μm, which are prone to be exhaled from the 
econd level, was represented by level three. 

All formulations were well dispersed and emitted from 

he inhaler device ( Table 3 ) in comparison to chitosan 

anoparticles tested without blending with lactose- 
EG3000 microparticles (F2 only: PD = 58.12% ± 23.30%; 
I = 27.27% ± 12.62%). F3 had the lowest emitted dose 
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Table 3 – Aerosolization and inhalation profiles of chitosan nanoparticles in lactose-PEG3000 microparticles. 

F1 F2 F3 F4 F5 F6 

MMAD (μm) 4.13 ± 0.59 4.25 ± 0.85 4.40 ± 0.85 4.70 ± 0.16 7.65 ± 0.90 3.85 ± 0.47 
GSD 4.27 ± 1.41 5.14 ± 0.35 1.76 ± 0.12 2.11 ± 0.65 4.23 ± 0.47 3.71 ± 0.95 
TD (mg) 15 15 15 15 15 15 
ED (mg) 12.34 ± 1.18 12.41 ± 1.79 10.11 ± 1.69 12.81 ± 0.84 12.33 ± 1.97 11.78 ± 0.37 
DD (mg) 5.46 ± 0.93 6.66 ± 1.33 4,38 ± 0.58 4.45 ± 1.25 5.85 ± 1.10 4.84 ± 0.59 
PD (%) 82.29 ± 7.87 82.74 ± 11.99 67.45 ± 11.29 85.37 ± 5.64 82.18 ± 13.11 78.52 ± 2.47 
PI (%) 36.42 ± 6.22 44.43 ± 8.84 29.22 ± 3.88 29.69 ± 8.39 38.98 ± 7.36 32.29 ± 3.95 
Particles < 4.5 μm 

FPD (mg) 3.82 ± 0.72 4.63 ± 1.16 2.81 ± 0.69 2.71 ± 0.99 3.40 ± 0.87 3.82 ± 0.32 
FPF (%) 30.83 ± 3.89 36.96 ± 4.64 27.54 ± 2.48 20.92 ± 6.69 27.31 ± 3.01 32.42 ± 2.07 
RF (%) 69.79 ± 1.24 69.01 ± 3.98 63.45 ± 7.47 59.98 ± 7.15 57.69 ± 5.19 79.14 ± 3.17 
Particles < 3.6 μm 

FPD (mg) 1.98 ± 0.39 2.78 ± 0.85 1.12 ± 0.45 1.16 ± 0.54 1.29 ± 0.34 1.70 ± 0.28 
FPF (%) 15.94 ± 1.63 22.15 ± 4.25 10.90 ± 3.02 9.04 ± 3.91 10.31 ± 1.24 14.33 ± 2.05 
RF (%) 36.26 ± 3.37 41.23 ± 5.05 25.01 ± 6.94 26.68 ± 10.07 21.76 ± 2.01 34.80 ± 1.50 
0.5 μm < Particles < 3.6 μm 

FPD (mg) 1.38 ± 0.68 1.98 ± 0.61 0.99 ± 0.42 1.04 ± 0.47 1.07 ± 0.24 1.17 ± 0.56 
FPF (%) 12.93 ± 4.39 15.75 ± 3.08 9.73 ± 3.25 8.09 ± 3.49 9.59 ± 0.66 10.92 ± 4.59 
RF (%) 26.99 ± 9.83 29.31 ± 3.70 22.25 ± 7.13 24.25 ± 10.57 19.16 ± 1.08 25.77 ± 9.17 

Table 4 – Relationship of fine particle fraction of chitosan nanoparticles with their physicochemical characteristics. 

FPF < 4.5 FPF < 3.6 0.5 < FPF < 3.6 

r p r p r p 

Z-average size 0.475 0.341 0.770 a 0.073 0.778 a 0.068 
Zeta potential 0.817 b 0.047 0.916 b 0.010 0.932 b 0.007 
Polydispersity index −0.692 0.127 −0.527 0.283 −0.465 0.353 
Roughness 0.262 0.616 0.547 0.261 0.481 0.627 
Circularity 0.815 b 0.048 0.788 a 0.062 0.815 b 0.048 
Crystallinity −0.648 0.164 −0.425 0.401 −0.402 0.430 

Correlation is significant at a 0.10 level, b 0.05 level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and percent dispersibility. This can be ascribed to strong
attachment force between the powder particles and the wall
of the gelatin capsule as a result of binding affinity of tween
80 available on the surfaces of nanoparticles. Generally, F1
and F2 exhibited higher DD, PD, PI, FPD, FPF and RF, whereas F3
and F4 provided the otherwise aerosolization and inhalation
performances. 

FPF at all levels was strongly correlated with
nanoparticle surface charges ( Table 4 ). The higher
the surface charges of nanoparticles, the tendency of
them to agglomerate was lower. More nanoparticles
can then be attached onto the lactose-PEG3000
microparticles and available for lung deposition at
lower stages. Fig. 4 demonstrated the morphological
images of chitosan nanoparticles interacting with
lactose-PEG3000 microparticles (Supp. 1 with lower
magnification). With reference to F3 and F4, these
nanoparticles tend to cluster around the lactose-PEG3000
microparticles instead of spreading over the microparticulate
surfaces. They were less free flow and this could be due
to reduced surface charges and inter-particulate repulsion
as well as additional binding affinity conferred by tween
80 and span 80 that were available on the nanoparticles’
surfaces. Overall, the chitosan nanoparticles (F1–F6) were
adhered on the surfaces of lactose-PEG3000 microparticles.
The adherence of chitosan nanoparticles formulated with
span 80 appeared weak ( Fig. 4 ). This was likely due to
hydrophilicity-hydrophobicity mismatch between the
hydrophobic surfactant and polar lactose-PEG3000 presented
at the interface of nanoparticles and microparticles. 

Spherical nanoparticles had the lowest specific surface
area for attachment onto other surfaces. Decreasing the
shape uniformity of a sphere led to more areas of one surface
that can be attached to another surfaces. Increasing the
attachment surface area between carrier and nanoparticles
or between nanoparticles will increase the attachment
force between them. In the present study, the less spherical
nanoparticles brought about lower FPFs ( Table 4 ). The inter-
nanoparticle attachment could negate the attachment
of nanoparticles onto the surfaces of lactose-PEG3000
microparticles. This could then reduce the availability of
nanoparticles for deposition at the lower lung regions. The
inter-nanoparticle attachment was expected to proceed
at a greater propensity than nanoparticles-microparticles
attachment. This was aptly explained by the latter involving
lactose-PEG3000 matrices which were larger in size and had
a lower specific surface area to interact with the surrounding
nanoparticles. Under the influence of nanoparticle shape,
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Fig. 4 – Scanning electron microscopic images of spray-dried chitosan nanoparticles/lactose-PEG3000 microparticles 
mixtures. 
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he attachment affinity between nanoparticles exerted a 
redominating effect on FPF over the attachment tendency 
etween the nanoparticles and microparticles. 

The size of nanoparticles brought about similar influences 
n FPF as in the case of their shape and zeta potential 
ttributes ( Table 4 ), where larger nanoparticles were deemed 

o exhibit a smaller specific surface area with reduced 

nclination of inter-nanoparticulate attachment. The larger 
anoparticles were largely interacted with the lactose 
EG3000 microparticles and aided by them to reach the lower 
ung regions. 

Carrier particle crystallinity is known to affect the 
erosolization and pulmonary inhalation profiles of 
dsorbates. The creation of highly crystalline carrier particles 
ith lower surface energy is envisaged to facilitate pulmonary 

dsorbate deposition [45] . The influences of adsorbate 
rystallinity on pulmonary inhalation however has yet 
o be studied. The present investigation indicated that the 
rystallinity profiles of chitosan nanoparticles (adsorbate) had 

o significant bearing on the fine particle fraction ( Table 4 ). 

.4. FTIR study 

anoparticles’ shape and zeta potential exerted the strongest 
nfluences on their lung deposition manner ( Table 4 ). Among 
ll batches of nanoparticles, F2 were characterized by the 
ighest circularity and positive zeta potential values whereas 
4 had the lowest values. Both F2 and F4 were selected in 

xamination of attachment/detachment manner of chitosan 

anoparticles against the lactose-PEG3000 microparticles 
uring the processes of aerosolization and inhalation using 
he FTIR spectra correlation approach (Supp. 2). 

The correlation between the FTIR spectra of the collected 

owder of F2 or F4 at each stage of cascade impactor and the
eference powder did not necessarily reflect the amount of its 
omponents. The correlation instead reflected the changes in 

he component ratio of the powder. A marked change in the 
pectra correlation took place after stage 3 in F2 where the 
owder collected in stage 4 and thereafter possessed stronger 
haracteristics of chitosan nanopaticles with reduced features 
f lactose-PEG3000 microparticles ( Table 5 ). The stage 3 
ad a cut-off diameter of 2.53 μm while the MMAD of the 
icrocarrier was 2.50 μm. The powders collected from stages 

ubsequent to stage 3 were anticipated to show a reduction in 

he lactose-PEG3000 microparticles to chitosan nanoparticles 
eight ratio ( Table 5 ). 

With reference to F2, the spectra of powder collected at 
tage 0–3 were highly correlated to the spectra of the original 
owder mixture and lactose-PEG3000 microparticles of which 

epresented to main component in the mixture. The chitosan 

anoparticles were attached to lactose-PEG3000 particles and 

eposited together at stages 0–3. Powders at stages 4, 5 
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Table 5 – FTIR spectra correlation values of F2 and F4 against chitosan nanoparticles, lactose-PEG3000 microparticles and 

their mixture (1.000 denotes 100% correlation). 

Stage F2 F4 

Chitosan 
nanoparticles 

Lactose-PEG3000 
microparticles Mixture 

Chitosan 
nanoparticles 

Lactose-PEG3000 
microparticles Mixture 

0 0.532 ± 0.013 0.982 ± 0.007 0.989 ± 0.005 0.564 ± 0.027 0.896 ± 0.020 0.993 ± 0.003 
1 0.534 ± 0.009 0.958 ± 0.006 0.984 ± 0.007 0.442 ± 0.053 0.838 ± 0.009 0.882 ± 0.029 
2 0.528 ± 0.008 0.948 ± 0.008 0.988 ± 0.004 0.424 ± 0.047 0.871 ± 0.059 0.768 ± 0.066 
3 0.576 ± 0.010 0.955 ± 0.003 0.983 ± 0.001 0.418 ± 0.042 0.811 ± 0.058 0.711 ± 0.060 
4 0.701 ± 0.046 0.841 ± 0.031 0.823 ± 0.030 0.477 ± 0.049 0.765 ± 0.047 0.822 ± 0.067 
5 0.709 ± 0.012 0.911 ± 0.001 0.886 ± 0.004 0.653 ± 0.028 0.805 ± 0.019 0.935 ± 0.021 
6 0.653 ± 0.007 0.919 ± 0.004 0.893 ± 0.005 0.177 ± 0.038 0.363 ± 0.060 0.424 ± 0.075 
7 0.928 ± 0.005 0.497 ± 0.010 0.555 ± 0.011 0.069 ± 0.096 0.047 ± 0.068 0.051 ± 0.068 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and 6 seemed to have different weight ratios of chitosan
nanoparticles to lactose-PEG3000 microparticles from those
at stages 0–3. Spectra correlation analysis indicated that an
increase in weight ratio of chitosan nanoparticles in relation
to lactose-PEG3000 microparticles took place after the first
filter point of stage 3. At stage 7, chitosan nanoparticles
became the predominant component in the collected powder.
A sharp drop in the lactose-PEG3000 microparticle fraction
was noted in powder collected at stage 7. Similar observations
were however not found in the case of F4. This was probably
due to loss of surfactant from the chitosan nanoparticles onto
the impactor surfaces at lower stages that rendered the FTIR
characteristics of nanoparticles altered and less detectable. 

Chitosan nanoparticles, apart from having their
aerosolization and inhalation facilitated by lactose-PEG3000
microparticles as highlighted in Section 3.3 , their addition into
lactose-PEG3000 microparticles had also improved the flow
properties of the latter ( Table 2 b; Chitosan nanoparticles
F2/lactose-PEG3000 microparticles mix: Hausner ratio
= 1.56 ± 0.13; Carr’s index = 35.61% ± 5.19%). 

4. Conclusions 

The chitosan nanoparticles, physically mixed with fine
lactose-PEG3000 microparticles, exhibit a comparable
inhalation performance with the commercially available dry
powder inhaler products where the FPF lies between 20% and
30% [46] . Both aerosolization and inhalation performances
of chitosan nanoparticles are primarily governed by their
zeta potential, circularity and size. Chitosan nanoparticles
characterized by a larger magnitude of zeta potential, higher
levels of circularity and sizes are envisaged to undergo a
lower extent of inter-nanoparticulate aggregation, and have
largely interacted with fine lactose-PEG3000 microparticles
that aid their delivery to the lower lung regions. The present
fundamental findings can serve as a guide to nanoparticle
design and help to explain the pulmonary delivery outcomes
of the drug in the future developments. 
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