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ABSTRACT
In the present study, the complete chloroplast genome of Hordeum vulgare L. var. trifurcatum was
sequenced, assembled and compared with closely related species. The chloroplast genome of Hordeum
vulgare L. var. trifurcatum was composed of 84 protein-coding genes (PCG), 8 ribosomal RNA (rRNA)
genes, and 38 transfer RNA (tRNA) genes. The Hordeum vulgare L. var. trifurcatum chloroplast genome
is 136,485bp in size, with the GC content of 38.32%. Phylogenetic analysis based on the combined
chloroplast gene dataset indicated that the Hordeum vulgare L. var. trifurcatum exhibited a close rela-
tionship with Hordeum vulgare subsp. spontaneum and Hordeum vulgare subsp. vulgare.

ARTICLE HISTORY
Received 26 January 2021
Accepted 23 May 2021

KEYWORDS
Tibetan hulless barley;
Hordeum; chloroplast
genome; phylogenetic
analysis; molecular marker

Hordeum vulgare L. var. trifurcatum, belonging to the Poaceae
family (Soreng et al. 2015; Saarela et al. 2018), is one of the
staple foods for Tibetans and an important livestock feed in
the Tibetan Plateau (Zeng et al. 2015; Huang et al. 2020). The
highland barley (Hordeum vulgare L. var. trifurcatum) shows
good environmental tolerance, which can be successfully
planted in high altitude, low temperature, and high salinity
places (Walia et al. 2006; El-Esawi et al. 2018; Elsawy et al.
2018). In addition, the highland barley also showed good
antioxidant activity (Asif et al. 2020). Thus, Hordeum vulgare
L. var. trifurcatum is a promising nutritious food source and
traditional Chinese medicine grows widely in plateau, which
concerning by more and more researchers, just like the
Fagopyrum tataricum (L.) Gaertn (Song et al. 2016; Xiang
et al. 2016; Xiang, Ma, et al. 2019; Xiang, Song, et al. 2019)
and Stellera chamaejasme L. (Ren et al. 2019, 2021a, 2021b).
The genus Hordeum comprises more than 30 species. Some
varieties are also found in this genus (Malysheva-Otto et al.
2006; Forsberg et al. 2019; Hagenblad and Morales 2020;
Kumar et al. 2020). Organelle genomes have been widely
used in study of taxonomy, evolution and genetics (Wang
et al. 2016; Yang et al. 2019; Wang et al. 2020; Li, He, et al.
2020). However, no complete chloroplast genome of
Hordeum vulgare L. var. trifurcatum was reported to date,
which limits its breeding and application (Su et al. 2020).

The specimen (Hordeum vulgare L. var. trifurcatum) used
for chloroplast genome assembly was collected from Qinghai,
China (101.97 E; 53.70 N). A specimen was deposited at
Collection Center of Chengdu University (Y. Ren, renyuan-
hang@cdu.edu.cn) under the voucher number ZQK_R1. The
chloroplast genome of Hordeum vulgare L. var. trifurcatum

was sequenced and assembled according to methods previ-
ously described (Li, Ren, et al. 2020). First, we extracted the
total genomic DNA of Hordeum vulgare L. var. trifurcatum
using a Plant DNA Kit (D3485-00, Omega Bio-Tek, Norcross,
GA, USA). Then we purified the genomic DNA using a Gel
Extraction Kit (Omega Bio-Tek, Norcross, GA, USA). The puri-
fied DNA was stored in Chengdu University (No. DNA_
ZQK_R1). Sequencing libraries of Hordeum vulgare L. var. tri-
furcatum was constructed using a NEBNextVR UltraTM II DNA
Library Prep Kit (NEB, Beijing, China). We conducted the
whole genomic sequencing (WGS) of Hordeum vulgare L. var.
trifurcatum using the Illumina HiSeq 2500 Platform (Illumina,
SanDiego, CA). The chloroplast genome of Hordeum vulgare
L. var. trifurcatum was initially assembled using SPAdes
v3.11.0 (Bankevich et al. 2012). The chloroplast sequences
obtained in the above steps were used as seed sequences to
assemble the complete chloroplast genome of Hordeum vul-
gare L. var. trifurcatum using NOVOPlasty v4.3.1 with a k-mer
size of 35 (Dierckxsens et al. 2017). Approximately 1.10 mil-
lion reads were assembled into a complete circular chloro-
plast genome. The average chloroplast sequence coverage
was 2,168 �. The complete chloroplast genome of Hordeum
vulgare L. var. trifurcatum was annotated by GeSeq (Tillich
et al. 2017) using the chloroplast genome of Hordeum vulgare
subsp. spontaneum as the reference (Bdolach et al. 2019).

The complete chloroplast genome of Hordeum vulgare L.
var. trifurcatum is 136,485 bp in length, which was larger than
Hordeum vulgare subsp. vulgare (136,462 bp) (Zeng et al.
2017) and smaller than Hordeum vulgare subsp. spontaneum
(136,536 bp) (Bdolach et al. 2019). The GC content of the
Hordeum vulgare L. var. trifurcatum chloroplast genome is
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38.32%, which is larger than that of Hordeum vulgare
subsp. spontaneum (38.30%). The base compositions of the
Hordeum vulgare L. var. trifurcatum chloroplast genome
were as follows: A (30.93%), T (30.76%), G (19.22%) and C
(19.10%). The complete chloroplast genome of Hordeum
vulgare L. var. trifurcatum contains 84 protein-coding genes,
8 ribosomal RNA genes, and 38 transfer RNA (tRNA) genes.
The number of protein-coding genes in Hordeum vulgare L.
var. trifurcatum chloroplast genome was more than that in
two subspecies (Hordeum vulgare L. var. trifurcatum and
Hordeum vulgare subsp. vulgare), while the number of
tRNA was less than that in the two subspecies. To investi-
gate the phylogenetic status of Hordeum vulgare L. var. tri-
furcatum, we constructed a phylogenetic tree for 15
species. The protein-coding region of 13 genes conserved
in the 15 species was used to construct combined a
chloroplast gene set according to previous methods (Li,
Xiang, et al. 2019; Wu et al. 2021). Bayesian (BI) analysis
method (Li, Wu, et al. 2021) was used to construct the
phylogenetic tree based on combined protein-coding genes
of chloroplast genome as described by previous methods
(Li, Yang, et al. 2020; Cheng et al. 2021; Li, Li, et al. 2021).
MrBayes v3.2.6 (Ronquist et al. 2012) was used to construct
the phylogenetic tree using Bayesian inference (BI) method.
Two independent runs with four chains (three heated and
one cold) each were conducted simultaneously for 2� 106

generations. Each run was sampled every 100 generations.
We assumed that stationarity had been reached when

estimated sample size (ESS) was greater than 100, and the
potential scale reduction factor (PSRF) approached 1.0. The
first 25% samples were discarded as burn-in, and the
remaining trees were used to calculate Bayesian posterior
probabilities (BPP) in a 50% majority-rule consensus tree
(Li, Ren, et al. 2019). According to the phylogenetic tree
(Figure 1), the Hordeum vulgare L. var. trifurcatum exhibited
a close relationship with Hordeum vulgare subsp. sponta-
neum (Bdolach et al. 2019) and Hordeum vulgare subsp.
vulgare (Zeng et al. 2017).
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Figure 1. Bayesian phylogenetic analysis and comparative chloroplast genomic analysis of 15 species based on the combined protein-coding gene sets. Support val-
ues are Bayesian posterior probabilities (BPP). Accession numbers of chloroplast sequences used in the phylogenetic analysis are listed after the species names.
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