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Abstract

Hox genes encode transcription factors, which regulate skeletal patterning and chondrocyte differentiation during the
development of cartilage, the precursor to mature bone. Overexpression of the homeobox transcription factors Hoxc8 and
Hoxd4 causes severe cartilage defects due to delay in cartilage maturation. Matrix metalloproteinases (MMPs), bone
morphogenetic proteins (BMPs) and fibroblastic growth factors (FGFs) are known to play important roles in skeletal
development and endochondral bone formation and remodeling. In order to investigate whether these molecules are
aberrantly expressed in Hoxc8- and/or Hoxd4-transgenic cartilage, we performed quantitative RT-PCR on chondrocytes from
Hox-transgenic mice. Gene expression levels of Bmp4, Fgf8, Fgf10, Mmp9, Mmp13, Nos3, Timp3, Wnt3a and Wnt5a were
altered in Hoxc8-transgenic chondrocytes, and Fgfr3, Ihh, Mmp8, and Wnt3a expression levels were altered in Hoxd4-
transgenic chondrocytes, respectively. Notably, Wnt3a expression was elevated in Hoxc8- and reduced in Hoxd4-transgenic
cartilage. These results suggest that both transcription factors affect cartilage maturation through different molecular
mechanisms, and provide the basis for future studies into the role of these genes and possible interactions in pathogenesis
of cartilage defects in Hoxc8- and Hoxd4-transgenic mice.

Citation: Kruger C, Kappen C (2010) Expression of Cartilage Developmental Genes in Hoxc8- and Hoxd4-Transgenic Mice. PLoS ONE 5(2): e8978. doi:10.1371/
journal.pone.0008978

Editor: Frank Beier, University of Western Ontario, Canada

Received September 16, 2009; Accepted January 4, 2010; Published February 2, 2010

Copyright: � 2010 Kruger, Kappen. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded in part by R21 DE14523 (to Claudia Kappen), a Dean’s indirect cost award from the University of Nebraska Medical Center, and a
grant from the Phillip Morris External Research Program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Claudia.Kappen@pbrc.edu

¤ Current address: Department of Maternal Biology, Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, Louisiana, United
States of America

Introduction

Hox genes encode transcription factors that are involved in

patterning the individual elements of the developing skeleton

during the development of cartilage, the precursor to mature bone.

Studies on animals provide evidence that patterning, growth and

differentiation of skeletal elements are affected by mutations in

Hox genes. Later in the process of endochondral ossification, as

cartilage is replaced by bone, patterning defects and abnormal

differentiation manifest in skeletal anomalies and growth defects

[1].

Using a binary transgenic system [2], we have previously shown

that overexpression of the homeobox transcription factors Hoxc8

and Hoxd4 results in severe cartilage defects [3,4], characterized

by delayed maturation, reduced proteoglycan content, accumula-

tion of immature chondrocytes and decreased maturation to

hypertrophy. Vertebral and rib cartilages contain accumulation of

proliferating chondrocytes, indicating that cartilage maturation is

affected by overexpression of Hoxc8 and Hoxd4, respectively. The

cartilage of the ribs is weak and structurally insufficient, resulting

in pulmonary failure and perinatal death [3,4].

Earlier results demonstrated that the cartilage defects induced

by overexpression of Hoxd4 could be rescued by supplementation

of the micronutrient folate during pregnancy. When maternal diets

were supplemented with folic acid, transgenic offspring were found

to have less severe Hoxd4-induced skeletal defects. Alcian Blue

staining of cartilage in ribs and vertebral column was restored by

folate supplementation, and rigidity of the skeleton was improved

[3]. Since folate is required for growth and differentiation of

chondrocytes, the beneficial effect of folate in Hoxd4-transgenic

mice might indicate a local deficiency in folate utilization that

would result from deregulated expression of genes encoding folate

transport proteins or folate metabolic enzymes. Our extensive

qRT-PCR analyses on Hoxc8- and Hoxd4- transgenic animals

revealed no changes in mRNA expression pattern of genes and

enzymes involved in nucleotide synthesis, protein methylation and

DNA methylation related to the folate metabolic pathway [5].

These findings suggested that mechanisms other than the folate

pathway genes themselves are altered in the transgenic cartilage,

and that other cellular or molecular pathways respond to folate

supplementation during cartilage formation.

Our current understanding of chondrogenesis, the earliest phase

of skeletal development, is based on studies in chicken and mice, as

well as knockouts. The formation of most bones in the trunk

skeleton of a vertebrate embryo occurs through endochondral

ossification. In this process, a cartilage model is formed that is then

converted into bone through the action of osteoblasts. This process

involves mesenchymal cell condensation and chondrogenic

differentiation. Chondrocytes undergo stages of proliferation,

prehypertrophy and finally mature to hypertrophy. Blood vessels
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and osteoprogenitor cells invade the cartilage model, which leads

to the formation of trabecular bone. The sequence of this well-

defined order of steps is very important for proper cartilage and

bone formation. Any disruption of this process, such as through

overexpression of the Hoxc8- or Hoxd4-transgenes in our

experimental paradigms, is expected to involve genes that control

the progression of chondrocyte differentiation or the cellular

phenotype of chondrocytes.

This hypothesis led us to further investigate the expression of

genes known to be involved in skeletal development, such as the

transcription factors Sox9, Sox5 and Sox6 [6,7], local regulators of

cartilage differentiation like fibroblast growth factors, hedgehog

proteins, bone morphogenetic proteins, and their respective

receptors [8], as well as Wnt signaling pathway components. We

also included Prl1, a molecule that we had previously identified in

a differential display screen as potentially regulated by Hoxc8 [9]

and effectors in cartilage development, such as the Metalloprotei-

nases and Inhibitors. Our choices were further guided by finding

that the majority of the 37 genes were either not represented or

not consistently detectable in DNA microarray assays of Hox

transgenic cartilage (Kruger et al., manuscript in preparation).

Methods

Transgenic Mice
Transgenic mice were created by the VP16-dependent binary

system [2]; phenotypes and similarities of defects in Hoxd4- and

Hoxc8-transgenic mice have been characterized and published

[3,4]. The binary transgenic system is based on the potent

transcriptional activator VP16 of Herpes Simplex Virus. One line,

the transactivator (TA), harbors the transgene encoding VP16

under the control of a developmentally regulated promoter from

the Hoxc8 gene. The other line, the transresponder (TR), harbors

a Hox transgene under the control of an immediate early

promoter of HSV. Activation of the immediate early promoter

of the transresponder transgene requires the presence of VP16

protein. Crosses of TA and TR for the Hoxd4-transgene result in

two genotypes (TA/+ +/+ and TA/+ TR/+), while the Hoxc8-

transgene crosses produce four genotypes (TA/+ +/+, TA/TA

+/+, TA/+ TR/+, and TA/TA TR/+). In the results presented

here, we identify only two genotypes: the control genotype (TA)

containing at least one TA and no TR, and the experimental

genotype (TA+TR) containing at least one TA and one TR. DNA

isolated from tails of individual animals was used for genotyping by

semi-quantitative PCR [4,10].

Preparation of Primary Chondrocytes from Transgenic
Mice

The dissection of rib cages, at 18.5 days of gestation, and

purification of chondrocytes were done exactly as described earlier

[5,11]. Cells were transferred into Trizol reagent (Invitrogen,

Carlsbad, CA, USA) and RNA was extracted as described in

Kruger et al. (2006) [5]. Complementary DNA was obtained by

reverse transcription (1st Strand Synthesis System for RT-PCR,

Invitrogen) from maximally 5 mg RNA of each sample, following

the supplier’s instructions. Purification of cDNA was carried out

using QIAquickH PCR purification columns (Qiagen, Valencia,

CA, USA). RNA as well as cDNA concentrations were measured

with a NanoDropH ND-1000 Spectrophotometer (NanoDrop

Technologies, Inc., Rockland, DE, USA).

Primers
Primers for amplification were designed according to the

parameters described in Kruger et al. (2006) [5]. Primers for the

gene encoding Glyceraldehyde phosphate dehydrogenase (Gapdh)

were used as provided by Applied Biosystems (Foster City, CA).

The locations and sequences of primers are listed in Table 1.

Where possible, the expected product amplicon was designed to

span an exon/exon junction to avoid amplification from

potentially contaminating genomic DNA. The ENSEMBLE

genome browser contains the transcript and exon information

for the genes investigated here (accession numbers are given in

Table 1).

Quantitative Real-Time PCR
Using the ABI Prism 7000 Instrument (Applied Biosystems,

Foster City, CA, USA), gene expression was evaluated in

chondrocyte preparations from individual mice belonging to

several independent families of Hoxc8- and Hoxd4-transgenic

mice and their non-transgenic littermates. Each PCR reaction

(25 ml) was performed on 4 ng of cDNA template in 12 ml of

water, 0.25 ml of each primer solution (10 mM) and 12.5 ml of

SYBR Green Master Mix (Applied Biosystems). The thermal

cycling reaction starts with 2 minutes at 50uC and 10 minutes at

95uC for optimal DNA polymerase activation. The PCR reactions

consisted of a denaturation step of 15 seconds at 95uC, annealing

and extension for one minute at 60uC, for a total of 40 cycles.

Analysis was performed with ABI Prism 7000 SDS Software

Version 1.0. Measurements were done in triplicates and obtained

values were averaged. The Gapdh gene was chosen as a reference

gene for normalization, since its expression levels are comparable

between control and transgenic samples; comparisons to other

commonly used reference genes, such a cyclophilin or Pole4

confirmed the uniformity of expression levels in different

experimental groups for the Gapdh reference. Applying the

formula CTgene2CTGapdh =DCT normalized each gene to mea-

surements for Gapdh cDNA in the same sample. Comparison of

transgenic samples to non-transgenic littermate controls was

achieved in a second subtraction, which yielded the DDCT values:

DDCT =DCTtransgenic2DCTcontrol. Amplification efficiencies were

determined for each gene-specific reaction from the slope of the

linear portion of the amplification reaction. The efficiencies and

amplification rates shown in Table 1 were calculated as previously

described [5] from at least 11 independent samples for each gene.

The amplification of the target gene and the endogenous control

occurred in separate tubes. To use the comparative CT method,

we ascertained that the efficiencies of the target and endogenous

control amplifications were approximately equal. To calculate the

fold-change of expression levels, we averaged DCT values for

transgenic and control groups, respectively (6 SEM). Thus, graphs

representing fold-change data do not contain standard deviations.

To estimate the ‘‘relative fold-change’’, we used the formula

f = rDDCT (absolute DDCT value), with r representing amplification

rate (r = amplification efficiency e+1).

Statistical Evaluation
For statistical analyses, we used the Data Analysis Pack module

implemented in Microsoft Excel X as well as GraphPad PRISMH
(GraphPad Software, San Diego, USA). Two-tailed Student’s T-

tests with 95% confidence intervals were performed to analyze

differences in gene expression between the controls and TR-

containing transgenic mice. Coefficients for the correlation

between Hox gene expression levels and expression levels of

investigated genes (Table S1) were calculated based on DCT

values. The correlation coefficient r is dimensionless and ranges

from 21.0 to 1.0, with 21.0 representing a strong negative, and

1.0 a strong positive linear relationship. We set an arbitrary cut-off

at |0.6| for considering an r-value as correlated.

Cartilage Gene Expression

PLoS ONE | www.plosone.org 2 February 2010 | Volume 5 | Issue 2 | e8978



T
a

b
le

1
.

G
e

n
e

s
in

ve
st

ig
at

e
d

in
th

is
st

u
d

y:
p

ri
m

e
r

lo
ca

ti
o

n
,

se
q

u
e

n
ce

s
an

d
am

p
lif

ic
at

io
n

e
ff

ic
ie

n
cy

.

S
y

m
b

o
l

F
u

ll
n

a
m

e
(A

lt
e

rn
a

ti
v

e
a

b
b

re
v

ia
ti

o
n

)
A

cc
e

ss
io

n
#

F
o

rw
a

rd
p

ri
m

e
r

P
o

si
ti

o
n

R
e

v
e

rs
e

p
ri

m
e

r
P

o
si

ti
o

n
E

x
o

n
-E

x
o

n
B

o
u

n
d

a
ry

?
F

o
rw

a
rd

p
ri

m
e

r
-

S
e

q
u

e
n

ce
R

e
v

e
rs

e
p

ri
m

e
r

-
S

e
q

u
e

n
ce

A
m

p
li

fi
ca

ti
o

n
ra

te
N

u
m

b
e

r
o

f
sa

m
p

le
s

B
m

p
4

B
o

n
e

m
o

rp
h

o
g

e
n

e
ti

c
p

ro
te

in
4

N
M

_
0

0
7

5
5

4
7

3
8

–
7

5
8

8
1

0
–

8
3

2
ye

s
C

G
A

G
C

C
A

A
C

A
C

T
G

T
G

A
G

G
A

G
T

A
G

G
T

T
G

A
A

G
A

G
G

A
A

A
C

G
A

A
A

A
G

C
1

.8
1

4
4

B
m

p
r1

a
B

m
p

re
ce

p
to

r,
ty

p
e

1
A

N
M

_
0

0
9

7
5

8
1

7
2

0
–

1
7

4
3

1
8

4
8

–
1

8
3

3
ye

s
G

G
A

A
A

T
G

G
C

T
C

G
T

C
G

T
T

G
T

A
T

T
A

C
G

G
C

C
G

C
A

A
G

C
G

T
T

T
C

A
1

.9
4

2
2

B
m

p
r1

b
B

m
p

re
ce

p
to

r,
ty

p
e

1
B

N
M

_
0

0
7

5
6

0
1

3
6

9
–

1
3

9
2

1
4

5
2

–
1

4
3

3
ye

s
A

A
G

A
A

A
A

A
T

G
G

A
A

C
T

T
G

C
T

G
C

A
T

A
G

G
G

T
G

G
G

A
T

G
T

C
A

A
C

C
T

C
A

T
1

.8
6

2
2

B
m

p
r2

B
m

p
re

ce
p

to
r,

ty
p

e
2

N
M

_
0

0
7

5
6

1
1

3
6

8
–

1
3

9
1

1
5

0
9

–
1

4
8

8
ye

s
C

A
G

A
G

A
G

A
A

G
C

A
G

A
G

A
C

C
C

A
A

G
T

T
C

A
T

C
C

T
C

T
C

C
T

C
A

G
C

A
C

A
C

T
G

T
1

.9
4

2
2

C
tn

n
b

1
C

at
e

n
in

b
e

ta
1

,
ß

-c
at

e
n

in
N

M
_

0
0

7
6

1
4

1
8

5
1

–
1

8
6

6
1

9
5

8
–

1
9

4
0

ye
s

A
C

C
C

A
A

C
G

G
C

G
C

A
C

C
T

C
C

G
A

G
C

A
A

G
G

A
T

G
T

G
G

A
G

A
2

.0
7

2
2

C
b

f-
C

o
re

b
in

d
in

g
fa

ct
o

r
b

e
ta

N
M

_
0

2
2

3
0

9
5

4
4

–
5

6
5

6
2

7
–

6
0

2
ye

s
C

T
A

G
C

C
G

G
G

A
A

T
A

T
G

T
C

G
A

C
T

T
T

A
A

C
A

C
A

C
A

C
T

C
C

A
T

T
C

A
G

A
A

T
C

A
T

G
1

.4
9

2
1

C
o

l2
a1

P
ro

co
lla

g
e

n
,

ty
p

e
II,

al
p

h
a

1
N

M
_

0
3

1
1

6
3

2
7

3
–

2
9

8
3

4
8

–
3

2
7

n
o

A
A

TG
G

G
C

A
G

A
G

G
TA

TA
A

A
G

A
TA

A
G

G
A

C
A

T
T

C
C

C
A

G
T

G
T

C
A

C
A

C
A

C
A

C
A

1
.5

7
4

4

Ex
t1

Ex
o

st
o

se
s

(m
u

lt
ip

le
)

1
N

M
_

0
1

0
1

6
2

1
6

4
5

–
1

6
6

5
1

6
4

7
–

1
6

2
9

ye
s

C
G

G
T

T
T

C
T

G
C

C
C

T
A

T
G

A
C

A
A

C
G

C
C

A
T

A
C

G
G

T
G

A
A

G
G

C
A

A
A

1
.8

9
2

1

Fg
f8

Fi
b

ro
b

la
st

g
ro

w
th

fa
ct

o
r

8
N

M
_

0
1

0
2

0
5

7
0

1
–

7
1

8
7

7
2

–
7

5
2

ye
s

G
C

C
A

A
G

A
G

C
A

A
C

G
G

C
A

A
A

C
A

G
C

G
C

C
G

T
G

T
A

G
T

T
G

T
T

C
T

C
1

.9
0

2
2

Fg
f1

0
Fi

b
ro

b
la

st
g

ro
w

th
fa

ct
o

r
1

0
N

M
_

0
0

8
0

0
2

6
7

2
–

6
9

6
7

5
5

–
7

2
9

ye
s

C
C

G
T

A
C

A
G

T
G

T
C

C
T

G
G

A
G

A
T

A
A

C
A

T
C

A
T

G
G

C
T

A
A

G
T

A
A

T
A

G
T

T
G

C
T

G
T

T
G

A
T

1
.8

2
2

2

Fg
f1

8
Fi

b
ro

b
la

st
g

ro
w

th
fa

ct
o

r
1

8
N

M
_

0
0

8
0

0
5

4
0

7
–

4
2

6
5

1
5

–
4

9
2

ye
s

G
G

G
A

G
T

C
A

A
G

T
C

C
G

G
A

T
C

A
A

T
G

A
A

C
A

C
G

C
A

C
T

C
C

T
T

G
C

T
A

G
T

A
C

1
.6

6
2

2

Fg
fr

1
Fi

b
ro

b
la

st
g

ro
w

th
fa

ct
o

r
re

ce
p

to
r

1
N

M
_

0
1

0
2

0
6

2
1

0
4

–
2

1
2

6
2

2
0

5
–

2
1

8
6

ye
s

G
T

G
T

G
G

T
C

T
T

T
T

G
G

A
G

T
G

C
T

C
T

T
A

C
C

C
T

C
C

T
T

C
A

G
C

A
G

C
T

T
G

A
1

.8
1

3
3

Fg
fr

2
Fi

b
ro

b
la

st
g

ro
w

th
fa

ct
o

r
re

ce
p

to
r

2
N

M
_

0
1

0
2

0
7

2
8

3
4

–
2

8
5

7
2

9
1

9
–

2
8

9
8

ye
s

A
C

T
G

C
A

C
C

A
A

T
G

A
A

C
T

G
T

A
C

A
T

G
A

T
T

C
G

A
C

C
A

A
C

T
G

C
T

T
G

A
A

T
G

T
G

1
.6

3
2

2

Fg
fr

3
Fi

b
ro

b
la

st
g

ro
w

th
fa

ct
o

r
re

ce
p

to
r

3
N

M
_

0
0

8
0

1
0

1
8

1
5

–
1

8
3

6
1

9
1

0
–

1
8

9
2

ye
s

A
C

C
G

A
G

G
A

C
A

A
T

G
T

G
A

T
G

A
A

G
A

A
G

G
T

A
G

C
C

G
G

C
C

A
T

T
T

G
T

G
1

.6
5

3
3

Fg
fr

4
Fi

b
ro

b
la

st
g

ro
w

th
fa

ct
o

r
re

ce
p

to
r

4
N

M
_

0
0

8
0

1
1

2
4

6
7

–
2

4
8

8
2

6
0

6
–

2
5

8
6

ye
s

A
A

A
C

T
G

C
C

C
C

T
C

A
G

A
G

C
T

G
T

A
T

G
G

C
G

G
A

G
G

T
C

A
A

G
G

T
A

C
T

C
T

T
1

.9
0

2
2

G
ap

d
h

G
ly

ce
ra

ld
e

h
yd

e
-3

-p
h

o
sp

h
at

as
e

d
e

h
yd

ro
g

e
n

as
e

N
M

_
0

0
8

0
8

4
6

4
9

–
6

6
9

7
5

1
–

7
3

3
n

o
C

C
A

G
A

A
C

A
T

C
A

T
C

C
C

T
G

C
A

T
C

G
G

T
A

G
G

A
A

C
A

C
G

G
A

A
G

G
C

C
1

.8
3

1
0

7

H
o

xc
8

H
o

m
e

o
b

o
x

c8
N

M
_

0
1

0
4

6
6

6
1

0
–

6
3

1
7

2
5

–
7

0
2

ye
s

C
G

A
A

G
G

A
C

A
A

G
G

C
C

A
C

T
T

A
A

A
T

A
G

G
T

C
T

G
A

T
A

C
C

G
G

C
T

G
T

A
A

G
T

T
T

1
.8

4
6

2

H
o

xd
4

H
o

m
e

o
b

o
x

d
4

N
M

_
0

1
0

4
6

9
1

6
5

8
–

1
6

7
8

1
7

4
8

–
1

7
2

2
ye

s
T

T
C

G
G

T
G

A
A

C
C

C
C

A
A

C
T

A
C

A
C

A
A

A
T

T
C

C
T

T
T

T
C

C
A

G
T

T
C

T
A

G
G

A
C

T
T

G
1

.3
3

4
5

Ih
h

In
d

ia
n

h
ed

g
eh

o
g

p
ro

te
in

p
re

cu
rs

o
r

N
M

_
0

1
0

5
4

4
6

8
3

–
7

0
2

7
4

7
–

7
3

2
n

o
C

C
C

C
A

A
C

T
A

C
A

A
T

C
C

C
G

A
C

A
T

C
A

T
G

A
G

G
C

G
G

T
C

G
G

C
1

.5
8

2
2

Lr
p

5
Lo

w
d

e
n

si
ty

lip
o

p
ro

te
in

re
ce

p
to

r-
re

la
te

d
p

ro
te

in
5

N
M

_
0

0
8

5
1

3
4

0
4

9
–

4
0

6
4

4
1

7
5

–
4

1
5

3
ye

s
C

T
G

C
G

A
C

G
G

T
G

A
G

G
C

C
G

A
A

G
G

A
G

T
C

A
C

A
C

T
G

T
T

G
C

T
T

G
A

1
.8

8
1

1

Lr
p

6
Lo

w
d

e
n

si
ty

lip
o

p
ro

te
in

re
ce

p
to

r-
re

la
te

d
p

ro
te

in
6

N
M

_
0

0
8

5
1

4
4

4
6

1
–

4
4

8
2

4
5

7
8

–
4

5
5

4
ye

s
T

T
C

C
A

A
C

A
G

T
C

C
T

T
C

C
A

C
A

C
A

T
G

C
T

A
G

G
A

G
C

A
T

A
G

T
C

A
C

T
G

T
C

A
C

A
G

1
.5

6
3

3

M
m

p
3

M
at

ri
x

m
e

ta
llo

p
ro

te
in

as
e

3
N

M
_

0
1

0
8

0
9

1
3

0
8

–
1

3
3

2
1

4
2

6
–

1
4

0
1

ye
s

G
G

A
G

G
T

T
T

G
A

T
G

A
G

A
A

G
A

A
A

C
A

A
T

C
G

T
A

G
A

G
A

A
A

C
C

C
A

A
A

T
G

C
T

T
C

A
A

A
G

A
1

.3
4

3
3

M
m

p
8

M
at

ri
x

m
e

ta
llo

p
ro

te
in

as
e

8
N

M
_

0
0

8
6

1
1

9
0

1
–

9
1

9
1

0
0

5
–

9
8

6
ye

s
G

C
A

C
A

C
C

C
A

A
A

G
C

C
T

G
T

G
A

G
A

G
G

A
T

G
C

C
G

T
C

T
C

C
A

G
A

A
G

1
.7

2
5

2

M
m

p
9

M
at

ri
x

m
e

ta
llo

p
ro

te
in

as
e

9
N

M
_

0
1

3
5

9
9

1
1

9
5

–
1

2
1

5
1

2
6

8
–

1
2

4
8

ye
s

C
C

A
A

G
G

G
T

A
C

A
G

C
C

T
G

T
T

C
C

T
G

C
A

C
G

C
T

G
G

A
A

T
G

A
T

C
T

A
A

G
C

1
.8

6
6

3

M
m

p
1

3
M

at
ri

x
m

e
ta

llo
p

ro
te

in
as

e
1

3
N

M
_

0
0

8
6

0
7

4
7

8
–

5
0

1
5

9
5

–
5

7
5

ye
s

A
A

T
C

T
A

T
G

A
T

G
G

C
A

C
T

G
C

T
G

A
C

A
T

G
T

T
T

G
G

T
C

C
A

G
G

A
G

G
A

A
A

A
G

C
1

.7
3

5
0

N
o

s3
N

it
ri

c-
o

xi
d

e
sy

n
th

as
e

3,
en

d
o

th
el

ia
l

N
M

_
0

0
8

7
1

3
3

4
2

5
–

3
4

4
3

3
4

8
9

–
3

4
7

1
ye

s
A

T
G

G
A

G
C

T
G

G
A

T
G

A
A

G
C

C
G

T
C

C
T

C
G

T
G

G
T

A
G

C
G

T
T

G
C

T
1

.8
1

2
2

P
fn

1
P

ro
fi

lin
1

N
M

_
0

1
1

0
7

2
2

8
2

–
3

0
2

3
8

2
–

3
6

2
ye

s
A

T
T

A
C

G
C

C
A

G
C

T
G

A
G

G
T

T
G

G
T

T
C

C
C

G
G

A
T

C
A

C
A

G
A

A
C

A
T

T
T

C
1

.5
1

3
2

P
rl

1
P

ro
te

in
ty

ro
si

n
e

p
h

o
sp

h
at

as
e

4
a1

(P
tp

4
a1

)
N

M
_

0
1

1
2

0
0

1
2

2
2

–
1

2
3

9
1

2
9

5
–

1
2

7
2

n
o

G
G

G
T

G
C

C
T

G
A

T
G

C
C

A
T

T
G

C
A

C
A

T
T

G
G

G
T

A
A

T
A

T
G

C
A

T
G

A
C

A
A

1
.8

1
3

5

P
th

lh
P

ar
at

h
yr

o
id

h
o

rm
o

n
e

-l
ik

e
p

e
p

ti
d

e
(P

th
rp

)
N

M
_

0
0

8
9

7
0

2
7

7
–

2
9

9
3

6
2

–
3

4
1

ye
s

A
G

T
T

A
G

A
G

G
C

G
C

T
G

A
T

T
C

C
T

A
C

A
G

G
A

C
A

C
T

C
C

A
C

T
G

C
T

G
A

A
C

C
A

1
.6

9
3

1

R
u

n
x2

R
u

n
t

re
la

te
d

tr
an

sc
ri

p
ti

o
n

fa
ct

o
r

2
N

M
_

0
0

9
8

2
0

4
9

6
–

5
1

8
5

7
3

–
5

4
7

ye
s

C
A

A
G

T
A

G
C

C
A

G
G

T
T

C
A

A
C

G
A

T
C

T
G

A
C

TG
TT

A
TG

G
TC

A
A

G
G

TG
A

A
A

C
TC

TT
1

.8
2

3
3

Cartilage Gene Expression

PLoS ONE | www.plosone.org 3 February 2010 | Volume 5 | Issue 2 | e8978



Results

In order to determine whether expression of genes in the

chondrocyte differentiation and maturation pathways was altered

in Hoxc8- or Hoxd4-transgenic mice, we assayed the prevalence of

transcripts for genes known to participate in regulation of the

chondrocyte differentiation pathway. Quantitative real-time PCR

was performed on cDNA samples derived from RNA isolated from

primary chondrocytes of individual rib cartilages from Hoxc8- and

Hoxd4-transgenic mice, respectively. In earlier published work

[3,4,10], we demonstrated that the Hoxc8- and Hoxd4-transgenes

are specifically activated in chondrocytes in our transgenic mice.

Both transgenes are reproducibly overexpressed in respective

transgenic cells prior to birth [5]. In the samples used for the

present study, Hoxc8 expression levels were 5.29-fold higher in

Hoxc8-transgenic primary rib chondrocytes compared to their

littermate controls, and Hoxd4 expression levels were 17.22-fold

higher in Hoxd4-transgenic cartilage, compared to their littermate

controls. The magnitude of Hoxd4 transgene expression appears

higher than for the Hoxc8 transgene because there is virtually no

Hoxd4 expressed in non-transgenic rib chondrocytes, while Hoxc8

is normally expressed in ribs.

We investigated gene expression levels in at least 5 individual

control and 5 TR-containing samples (from at least 3 families each)

of our Hoxc8- and Hoxd4-transgenic lines, respectively (Table 2).

The results are plotted as DCT (expression level for each gene

normalized to Gapdh) relative to the corresponding DCT values for

Hoxc8 or Hoxd4 gene expression the same sample. Each data point

represents the average of triplicate measurements for an individual

animal. Lower DCT values indicate higher gene expression level;

higher DCT values correspond to lower expression level. TR

containing animals (Figure 1A, 1B: red filled rectangles) always had

a lower DCT value for the expression of the Hoxc8- or Hoxd4-

transgene compared to the respective littermate controls (Figure 1A,

1B: open white rectangles), clearly indicating higher levels of Hox

gene expression in the respective transgenic samples. Low DCT

values, such as for Prl1, Sox9, Pfn1 and ß-Catenin indicate high

overall expression levels, and conversely, high DCT values for Fgf8,

Fgf10, Mmp3, Tcfap2a, or Wnt3a indicate that expression of these

genes is very low in primary chondrocytes under normal conditions.

Genes with intermediate level of expression are Bmpr1a, Bmpr2,

Ihh, Runx2, Runx3, Sox6 and Wdr5. Close clustering of data points

for each gene along the X-axis dimension demonstrates low

variability of measurements between individual animals.

Gene Expression in Hoxc8-Transgenic Chondrocytes
The comparison of chondrocyte pathway gene expression between

Hoxc8-transgenic and control animals revealed significant differences

(p,0.05) for the DCT values of Bmp4, Fgf8, Fgf10, Mmp9, Mmp13,

Nos3, Timp3, Wnt3a and Wnt5a (bold in Figure 1A). Except for

Wnt3a, all these genes show decreased expression levels in transgenic

chondrocytes compared to their littermate controls (Figure 2A). After

normalizing to Gapdh, our endogenous reference gene, the fold-

change was calculated using the comparative CT method including

the correction for amplification rate (Figure 2B). An increased level

was found for Wnt3a with overall 5.6-fold (after amplification rate

correction) elevated expression in transgenic samples compared to

controls. The expression levels of Mmp13 and Fgf10 were more than

2-times lower in Hoxc8-transgenic animals compared to controls.

Decreased expression levels of around 1.8-fold were found for Mmp9,

Nos3 and Fgf8, and 1.5-fold lower expression for Bmp4 and Wnt5a

(Figure 2B). A significant decrease of expression by 1.4-fold was

observed for Timp3 in chondrocytes from Hoxc8-transgenic animals

compared to controls. Thus, expression levels of Bmp4, Fgf8, Fgf10,

S
y

m
b

o
l

F
u

ll
n

a
m

e
(A

lt
e

rn
a

ti
v

e
a

b
b

re
v

ia
ti

o
n

)
A

cc
e

ss
io

n
#

F
o

rw
a

rd
p

ri
m

e
r

P
o

si
ti

o
n

R
e

v
e

rs
e

p
ri

m
e

r
P

o
si

ti
o

n
E

x
o

n
-E

x
o

n
B

o
u

n
d

a
ry

?
F

o
rw

a
rd

p
ri

m
e

r
-

S
e

q
u

e
n

ce
R

e
v

e
rs

e
p

ri
m

e
r

-
S

e
q

u
e

n
ce

A
m

p
li

fi
ca

ti
o

n
ra

te
N

u
m

b
e

r
o

f
sa

m
p

le
s

R
u

n
x3

R
u

n
t

re
la

te
d

tr
an

sc
ri

p
ti

o
n

fa
ct

o
r

3
N

M
_

0
1

9
7

3
2

9
5

8
–

9
7

7
1

0
8

3
–

1
0

5
9

ye
s

C
G

C
T

C
A

C
A

A
T

C
A

C
C

G
T

G
T

T
C

C
C

T
T

G
G

T
C

T
G

G
T

C
T

T
C

T
A

T
C

T
T

C
T

G
1

.8
6

3
2

So
x5

SR
Y

-b
o

x
co

n
ta

in
in

g
g

e
n

e
5

N
M

_
0

1
1

4
4

4
1

6
5

4
–

1
6

7
3

1
7

9
8

–
1

7
8

4
ye

s
A

T
G

G
T

G
T

G
G

G
C

G
A

A
A

G
A

T
G

A
G

G
C

G
G

G
C

C
T

G
C

T
C

C
T

1
.4

9
1

9

So
x6

SR
Y

-b
o

x
co

n
ta

in
in

g
g

e
n

e
6

N
M

_
0

1
1

4
4

5
2

0
8

3
–

2
1

0
4

2
2

0
2

–
2

1
8

3
ye

s
A

A
T

T
C

T
T

C
A

G
G

C
C

T
T

C
C

C
T

G
A

C
C

T
T

A
G

C
C

G
G

G
C

C
T

G
T

T
C

T
T

C
1

.4
7

1
9

So
x8

SR
Y

-b
o

x
co

n
ta

in
in

g
g

e
n

e
8

N
M

_
0

1
1

4
4

7
4

7
7

–
5

9
8

6
7

9
–

6
5

8
ye

s
G

C
T

T
G

C
T

G
A

G
T

G
A

A
A

G
C

G
A

G
A

A
C

G
C

C
T

T
G

G
C

T
G

G
T

A
T

T
T

G
T

A
A

T
1

.9
4

4
3

So
x9

SR
Y

-b
o

x
co

n
ta

in
in

g
g

e
n

e
9

N
M

_
0

1
1

4
4

8
7

3
1

–
7

5
0

8
0

5
–

7
8

7
ye

s
G

C
A

G
A

C
C

A
G

T
A

C
C

C
G

C
A

T
C

T
C

T
C

G
T

T
C

A
G

C
A

G
C

C
T

C
C

A
G

1
.8

3
4

4

T
cf

ap
2

a
T

ra
n

sc
ri

p
ti

o
n

fa
ct

o
r

A
P

-2
,

al
p

h
a

N
M

_
0

1
1

5
4

7
3

4
0

–
3

6
0

4
7

9
–

4
6

1
ye

s
G

C
C

G
A

T
C

C
A

T
G

A
A

A
A

T
G

C
T

T
T

G
G

C
G

C
T

G
G

T
G

T
A

G
G

G
A

G
A

T
1

.6
6

2
1

T
im

p
3

T
is

su
e

in
h

ib
it

o
r

o
f

M
m

p
3

N
M

_
0

1
1

5
9

5
2

1
7

5
–

2
1

9
5

2
2

6
4

–
2

2
4

4
n

o
G

G
G

T
G

C
C

C
T

T
C

A
C

T
T

A
A

T
T

G
C

C
A

A
C

T
G

C
C

C
C

T
T

T
C

A
T

G
A

G
A

A
1

.6
7

3
3

W
d

r5
W

D
re

p
e

at
d

o
m

ai
n

5
N

M
_

0
8

0
8

4
8

2
1

7
–

2
3

6
3

5
7

–
3

4
0

ye
s

A
G

C
A

C
A

G
C

C
C

A
C

T
C

C
T

T
C

C
T

G
C

C
A

A
C

C
A

T
T

C
C

C
C

A
T

T
G

1
.8

3
2

2

W
n

t3
a

W
in

g
le

ss
-r

e
la

te
d

M
M

T
V

in
te

g
ra

ti
o

n
si

te
3

A
N

M
_

0
0

9
5

2
2

3
9

9
–

4
1

8
4

9
3

–
4

7
4

ye
s

T
G

G
C

C
C

T
G

T
T

C
T

G
G

A
C

A
A

A
G

C
T

G
C

A
C

A
G

G
A

G
C

G
T

G
T

C
A

C
T

1
.6

3
1

8

W
n

t5
a

W
in

g
le

ss
-r

e
la

te
d

M
M

T
V

in
te

g
ra

ti
o

n
si

te
5

A
N

M
_

0
0

9
5

2
4

9
9

9
–

1
0

1
9

1
0

7
3

–
1

0
5

8
ye

s
T

T
C

T
G

T
C

T
T

T
G

G
C

A
G

G
G

T
G

A
T

A
C

C
C

C
A

G
C

T
G

C
G

C
T

C
A

1
.6

1
2

2

M
e

ss
e

n
g

e
r

R
N

A
se

q
u

e
n

ce
s

fo
r

th
e

in
ve

st
ig

at
e

d
g

e
n

e
s

w
e

re
ta

ke
n

fr
o

m
G

e
n

B
an

k
(a

cc
e

ss
io

n
n

u
m

b
e

rs
).

T
h

e
p

o
si

ti
o

n
s

o
f

p
ri

m
e

r
se

q
u

e
n

ce
s

ar
e

lis
te

d
as

an
n

o
ta

te
d

in
EN

SE
M

B
L,

M
o

u
se

g
e

n
o

m
e

ve
rs

io
n

5
2

(a
s

o
f

D
e

ce
m

b
e

r
2

0
0

8
).

T
h

e
n

u
m

b
e

r
o

f
sa

m
p

le
s

u
se

d
fo

r
ca

lc
u

la
ti

o
n

o
f

th
e

p
ri

m
e

r-
p

ai
r-

sp
e

ci
fi

c
am

p
lif

ic
at

io
n

ra
te

is
g

iv
e

n
in

th
e

la
st

co
lu

m
n

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

0
8

9
7

8
.t

0
0

1

T
a

b
le

1
.

C
o

n
t.

Cartilage Gene Expression

PLoS ONE | www.plosone.org 4 February 2010 | Volume 5 | Issue 2 | e8978



Mmp9, Mmp13, Nos3, Timp3, Wnt3a and Wnt5a were significantly

altered in primary chondrocytes from Hoxc8-transgenic mice.

Gene Expression in Hoxd4-Transgenic Chondrocytes
In Hoxd4-transgenic chondrocytes, 33 of the 37 tested genes

showed no significant differences in mRNA expression levels

relative to controls, while 4 genes exhibited altered expression

(Figure 2C). Wnt3a exhibited the greatest difference in DCT

values, in addition to Mmp8, Fgfr3 and Ihh, compared to controls

(Figure 2D) (p,0.05). The expression levels of Wnt3a were 2.8-

fold lower in Hoxd4-transgenic chondrocytes compared to

controls. Mmp8 expression levels were increased 1.7-fold in

transgenic animals compared to controls, and we found moder-

ately (by 1.4- and 1.3-fold, respectively) but significantly elevated

Table 2. Gene expression in Hoxc8 and Hoxd4 transgenic animals normalized to Gapdh.

Gene Control Hoxc8-transgenic Control Hoxd4-transgenic

TA only TA + TR P-value TA//+ +/+ TA//+ TR//+ P-value

Bmp4 7.0860.26 (n = 9) 7.8360.19 (n = 13) 0.028 8.6160.06 (n = 9) 8.8460.14 (n = 12) 0.220

Bmpr1a 4.4160.36 (n = 5) 4.7560.14 (n = 6) 0.356 5.4360.08 (n = 6) 5.4560.07 (n = 5) 0.834

Bmpr1b 9.6560.45 (n = 5) 10.5160.29 (n = 6) 0.131 10.1960.18 (n = 6) 10.3360.14 (n = 5) 0.584

Bmpr2 5.6460.29 (n = 5) 5.7660.11 (n = 6) 0.700 5.9060.12 (n = 6) 5.7660.06 (n = 5) 0.344

ß-Catenin 1.5460.29 (n = 5) 1.9760.09 (n = 6) 0.158 2.5460.08 (n = 6) 2.4560.05 (n = 5) 0.375

Cbf-ß 4.0060.30 (n = 5) 4.5160.07 (n = 6) 0.101 4.2960.25 (n = 2) 4.5760.09 (n = 8) 0.244

Col2a 2.8760.29 (n = 5) 3.0960.24 (n = 6) 0.574 3.5560.25 (n = 14) 3.1060.22 (n = 18) 0.185

Ext1 4.3360.30 (n = 4) 4.8560.12 (n = 6) 0.103 3.6060.15 (n = 3) 3.6560.09 (n = 8) 0.804

Fgf8 13.1860.23 (n = 5) 14.0560.27 (n = 6) 0.039 12.8060.36 (n = 6) 12.6460.56 (n = 5) 0.809

Fgf10 11.5560.19 (n = 5) 13.2060.54 (n = 6) 0.026 12.9260.46 (n = 6) 13.5360.29 (n = 5) 0.315

Fgf18 9.2760.40 (n = 5) 10.4560.74 (n = 6) 0.219 11.0760.24 (n = 6) 11.9960.47 (n = 5) 0.099

Fgfr1 2.8760.27 (n = 9) 3.1260.10 (n = 13) 0.336 3.8360.09 (n = 6) 3.6760.10 (n = 5) 0.293

Fgfr2 4.2760.34 (n = 5) 4.6460.19 (n = 6) 0.344 5.3160.14 (n = 6) 5.2960.04 (n = 5) 0.887

Fgfr3 2.8960.16 (n = 8) 3.1260.11 (n = 13) 0.238 3.6060.27 (n = 6) 2.8860.05 (n = 5) 0.044

Fgfr4 4.9760.18 (n = 5) 5.2060.16 (n = 6) 0.361 5.1360.05 (n = 6) 4.9460.15 (n = 5) 0.230

Hoxc8 2.9860.19 (n = 24) 0.2460.15 (n = 38) ,0.001

Hoxd4 15.5360.51 (n = 21) 5.5560.12 (n = 24) p,0.001

Ihh 5.6960.25 (n = 5) 6.2860.14 (n = 6) 0.059 5.7160.21 (n = 6) 5.0860.13 (n = 5) 0.039

Lrp5 5.8460.21 (n = 9) 5.7160.11 (n = 13) 0.550 6.6360.18 (n = 6) 6.3060.07 (n = 5) 0.148

Lrp6 5.9460.12 (n = 9) 6.1460.13 (n = 13) 0.275 6.3360.11 (n = 6) 6.2060.05 (n = 5) 0.332

Mmp3 14.7760.36 (n = 5) 15.1560.46 (n = 6) 0.551 15.4860.28 (n = 9) 15.1160.39 (n = 12) 0.480

Mmp8 9.4360.66 (n = 15) 10.2960.36 (n = 21) 0.231 10.7960.28 (n = 8) 9.8460.30 (n = 11) 0.038

Mmp9 8.5160.46 (n = 15) 9.4260.23 (n = 20) 0.007 10.1760.24 (n = 12) 10.0260.28 (n = 20) 0.729

Mmp13 7.0660.54 (n = 9) 8.7160.29 (n = 13) 0.006 10.3260.24 (n = 12) 10.9760.30 (n = 20) 0.143

Nos3 9.4860.16 (n = 5) 10.3860.24 (n = 6) 0.015 9.8160.23 (n = 6) 9.9360.08 (n = 5) 0.661

Pfn1 20.0360.27 (n = 5) 0.3660.20 (n = 6) 0.265 1.6160.30 (n = 9) 1.3460.0.27 (n = 13) 0.520

Prl1 0.3760.20 (n = 8) 0.4460.15 (n = 17) 0.878 0.2060.14 (n = 8) 0.4660.14 (n = 9) 0.219

Pthlh 9.4560.38 (n = 9) 9.6060.21 (n = 13) 0.720 10.8760.21 (n = 9) 10.8860.16 (n = 14) 0.975

Runx2 4.9260.26 (n = 5) 5.2460.15 (n = 6) 0.288 6.3760.52 (n = 9) 5.5960.28 (n = 13) 0.167

Runx3 7.4460.37 (n = 5) 7.7060.33 (n = 6) 0.624 7.3160.33 (n = 9) 7.0160.17 (n = 12) 0.392

Sox5 3.9660.16 (n = 2) 3.9660.11 (n = 7) 0.998 3.9160.07 (n = 6) 3.7560.10 (n = 5) 0.228

Sox6 5.4360.27 (n = 2) 5.4360.08 (n = 6) 0.981 5.2260.10 (n = 6) 5.0560.05 (n = 5) 0.183

Sox8 2.1761.10 (n = 8) 3.4360.78 (n = 13) 0.350 4.4260.21 (n = 9) 4.4160.07 (n = 13) 0.934

Sox9 2.7760.25 (n = 8) 3.0560.11 (n = 14) 0.264 1.8060.43 (n = 9) 0.9260.24 (n = 13) 0.070

Tcfap2a 12.6860.23 (n = 5) 13.2960.42 (n = 6) 0.101 12.7760.10 (n = 2) 13.4260.25 (n = 8) 0.244

Timp3 4.4160.28 (n = 9) 5.0660.16 (n = 13) 0.045 5.3260.19 (n = 6) 4.8460.30 (n = 5) 0.199

Wdr5 4.8960.28 (n = 5) 5.2060.11 (n = 6) 0.301 6.3060.07 (n = 6) 6.2460.14 (n = 5) 0.678

Wnt3a 12.8561.05 (n = 8) 9.3161.18 (n = 10) 0.052 12.360.47 (n = 5) 14.4260.44 (n = 5) 0.011

Wnt5a 7.9860.18 (n = 5) 8.8560.22 (n = 6) 0.016 8.4060.19 (n = 6) 8.2560.17 (n = 5) 0.565

DCT values were determined for all controls (TA only) and TR-containing Hoxc8- and Hoxd4-transgenic samples. Means (6 standard error of the mean) were calculated
for all individuals tested in each group (n = from 2 to 21) as indicated. P-values were obtained by performing two-tailed Student’s T-tests.
doi:10.1371/journal.pone.0008978.t002
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Fgfr3 and Ihh expression levels (Figure 2D). These results identify

expression levels of Fgfr3, Ihh, Mmp8 and Wnt3a as significantly

altered in primary chondrocytes from Hoxd4-transgenic mice.

Relationship of Gene Expression to Transgene Levels
It remains to be investigated whether the differential gene

expression levels in the cartilage of Hoxc8- and Hoxd4-transgenic

animals are proximally causal to the cartilage defects, or whether

they are distal indicators of abnormal differentiation caused by

overexpression of the transcription factors. In order to address this

question, we determined the correlation between gene expression

levels and the levels of transgene expression in individual animals

(data provided in Table S1). Our expectation was that for possible

direct targets of the Hox transcription factors, their expression

would be either strongly stimulated or repressed by the respective

transgene, and hence, expression values would be expected to

exhibit a strong positive or inverse correlation to transgene

expression levels in the same animals. Meaningful correlations

between expression of the respective gene and Hoxc8 were found

for 20 genes: Positive correlation exists for Bmpr1b and Mmp3 in

controls and Hoxc8-transgenic samples, and a consistent negative

correlation was found for Fgfr4, indicating a potential repressive

action of Hoxc8. However, neither of these genes alters expression

levels in response to higher Hoxc8 levels (see Table 2) and they are

thus unlikely to be directly regulated by Hoxc8. Strong

correlations with Hoxc8 expression levels for Bmpr1a, Bmpr2,

ß-Catenin, Cbf-ß, Ext1, Fgf8, Fgf18, Fgfr2, Runx3, Sox8, Sox9,

Wdr5 and Wnt3a in controls are lost upon expression of the

transgene, suggesting that transgene expression perturbs regulato-

ry mechanisms for these genes. A gain of correlation of gene

expression levels is detected for Nos3, Col2a and Wnt5a, with the

latter two exhibiting an inverse relationship to Hoxc8 levels.

However, Hoxc8 overexpression at the same time is correlated to

lower levels of Nos3, excluding a direct link; in transgenic cells, the

transcription factor interferes with Nos3 expression possibly

through indirect mechanisms. A complex regulatory involvement

for Hoxc8 in gene expression is indicated by the reversal by Hoxc8

overexpression in the direction of correlation for Profilin1 and

Runx2 expression. Wnt5a expression is also inversely correlated to

Hoxc8, suggesting a repressive relationship, and this is borne out

by reduced Wnt5a levels in Hoxc8-transgenic chondrocytes.

For Hoxd4, the analysis indicates positive correlations for Fgfr4,

Ihh, Sox5, Sox6 and Timp3, which are lost in the transgenic

condition. For ß-Catenin and Wdr5, the strong correlation to

Hoxd4 expression found in controls incurs reversal to inverse

correlation in Hoxd4-transgenic samples; gain of a negative

correlation in the transgenic condition was observed to Bmpr1a

and Bmpr1b, and of a positive correlation for Fgf10 and Fgf18.

Yet, there are no significant changes of expression level of these

Figure 1. Gene expression in Hoxc8- and Hoxd4-transgenic
chondrocytes. Quantitative real-time PCR was performed in triplicate
on cDNA prepared from mRNA that was isolated from primary rib
chondrocytes. Rib cages were dissected at 18.5 days of gestation from
individual Hoxc8- (A) and Hoxd4- (B) transgenic mouse embryos.
Gapdh cDNA levels in each sample were used to standardize
measurements. The results are plotted as Gapdh-normalized DCT values
for each gene relative to Gapdh-normalized Hoxc8 or Hoxd4 gene
expression (DCT) in each sample. Low DCT values reflect higher relative
expression levels, and high DCT values reflect low relative levels of gene
expression. Each dot represents an individual animal (filled symbol =
TR-containing samples, open symbol = controls). Bold panel labeling
indicates statistical significant differences in expression levels between
transgenic and control groups.
doi:10.1371/journal.pone.0008978.g001
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genes by transgene overexpression. Thus, for Hoxd4, this analysis

suggests that the relationship between transcription factor levels

and gene expression levels is complex.

Discussion

Our data demonstrate that mRNA expression levels of

particular genes are affected by overexpression of either Hoxc8

or Hoxd4 transcription factors in cartilage. These outcomes were

measured in chondrocytes prepared on gestational day 18.5, just

prior to birth. Thus, in order to interpret these results, we have to

consider their relation to the process of cartilage formation during

development.

Limited gene expression studies performed by quantitative real-

time PCR on Hoxc8-transgenic rib chondrocytes were published

by Cormier et al. (2003) [11], who compared gene expression

levels in transgenic samples to FVB inbred mice as controls. Here,

we compare gene expression levels from Hoxc8- (TA+TR) and

Hoxd4-(TA/+ TR/+)-transgenic chondrocytes to controls (TA

only and TA/+ +/+, respectively) from the same litter. In this way,

any potential influence from the maternal environment should be

excluded, since controls and experimental embryos were raised in

the same dam. Differences in maternal effects between FVB

control pregnancies and pregnancies from transgenic crosses might

account for the differences of earlier results to the present study.

Discrepancies might be further traced to sample preparation: in

this study, RNA was extracted from single rib cages from animals

at 18.5 days of gestation, whereas the earlier study prepared

postnatal rib chondrocytes from newborns between birth and up

to 2 days of age. In addition, the earlier study used poly-A+
enriched mRNA, and given the low expression levels of some of

our test genes in chondrocytes, the generally low yield of this

procedure may have introduced substantial variation. Finally, the

earlier study used pools of cDNAs while the current measurements

were done on individual samples. Because we find very small

variations between technical replicates of the same sample, we feel

confident about the reliability of the results presented here.

This comprehensive gene expression study on Hoxc8- and

Hoxd4-transgenic primary chondrocytes revealed a few genes to

be deregulated at the transcriptional level. Gene expression levels

of eight genes (Bmp4, Fgf8, Fgf10, Mmp9, Mmp13, Nos3, Timp3,

and Wnt5a) were significantly decreased in Hoxc8-transgenic

animals, and Wnt3a expression was significantly increased. In

Hoxd4-transgenic animals, elevated levels of Fgfr3, Ihh, Mmp8,

and decreased levels of Wnt3a were detected. These results suggest

that cartilage defects in Hoxc8- or Hoxd4-transgenic mice, while

similar at the morphological level, may be based on different

molecular mechanisms. They also identify these genes as plausible

candidate targets for regulation by the respective Hox transcrip-

tion factor.

Figure 2. Altered gene expression levels in Hoxc8- and Hoxd4-transgenic cartilage. DCT values (normalized to endogenous control
Gapdh) were averaged for each investigated gene over the control group as well the Hoxc8-transgenic group (A,C) and the Hoxd4-transgenic group
(B,D), respectively, and are plotted as mean 6 standard error of the mean (SEM). Student’s T-test was performed to confirm statistical significance
(p,0.05). Higher DCT values were found for Bmp4, Fgf8, Fgf10, Mmp9, Mmp13, Nos3, Timp3, and Wnt5a (A, filled bars) in Hoxc8-transgenic animals,
indicating lower expression levels compared to littermate controls (A, open bars). Wnt3a expression was higher (lower DCT value) in Hoxc-transgenic
chondrocytes compared to controls. Lower DCT values were found for Fgfr3, Ihh and Mmp8 (B, filled bars) in Hoxd4-transgenic animals, indicating
higher expression levels compared to littermate controls (B, open bars). Wnt3a expression levels are lower in Hoxd4-transgenic chondrocytes (higher
DCT value) compared to the control group. Figures C and D present the relative fold-change using the comparative CT method based on
amplification efficiency for each gene (see Methods), respectively.
doi:10.1371/journal.pone.0008978.g002
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Bone Morphogenetic Proteins
Several genes are described in the literature that pattern

distribution and proliferation of mesenchymal cells in conden-

sation sites for future skeletal elements and therefore are

important for limb and rib development [1,12,13]. During the

events of chondrogenesis, Wnt, Fgf and Bmp signals are among

the earliest signals [14]. BMPs, in addition to initiating

chondroprogenitor cell determination and differentiation, also

regulate later stages of chondrocyte maturation. Since Bmp4 is

known to have a positive effect on hypertrophy [15], decreased

expression level of Bmp4 in our Hoxc8-transgenic chondrocytes

could be responsible for the observed delay in maturation in

these cells [4]. Whether Hoxc8 itself directly deregulates BMP4

expression or whether other factors are involved warrants

further investigation.

Hedgehog Signaling
Ihh is involved in chondrocyte differentiation, proliferation and

maturation during endochondral ossification. There is evidence

that Ihh decreases the rate of progression to hypertrophy [16,17].

Ihh is expressed in prehypertrophic chondrocytes and is involved

in a negative feedback loop at the level of hypertrophic cells [18].

In this feedback scheme, Ihh stimulates synthesis of Parathyroid

hormone-like hormone (Pthlh, formerly known as Pthrp) in the

periarticular region of the growth plate, which then delays

differentiation of proliferating chondrocytes into hypertrophic

chondrocytes, which express Ihh mRNA [19]. Thus, chondrocyte

hypertrophy is regulated through the interplay of Ihh and Pthlh

signaling, and this regulation also involves Fgfs and Bmp signaling

[8]. On the other hand, Ihh also has signaling functions

independent of Pthlh [20]. Hoxd4-transgenic rib cage chondro-

cytes exhibit elevated Ihh expression compared to controls, but no

change in Pthlh expression levels. Thus, for Hoxd4-transgenic

chondrocytes, it is possible that elevated Ihh expression contributes

to the observed phenotypes of delayed chondrocyte maturation

and increased persistence of immature cells in the Hox transgenic

cartilage, but likely this would be independent of the Pthlh

feedback loop.

Fibroblast Growth Factors
FGF signaling pathways are important regulators of chondro-

genesis. Experimental studies in mice and cell culture show that

signaling through Fgfr3 inhibits chondrocyte proliferation [21].

Mutations of this receptor cause a range of human bone disorders

[22]. Targeted deletion of Fgfr3 in mice leads to increased regions

of proliferating and hypertrophic chondrocytes [23,24]. These

findings at late gestational and postnatal stages of mouse

development have led to the conclusion that Fgf signaling through

this receptor is to limit chondrocyte proliferation and differenti-

ation [25]. To date, only Fgf18 is discussed as a candidate for a

ligand that signals through Fgfr3, based on the phenotype and

expression pattern of Fgf18 null mice as well as on studies in vitro,

where Fgf18 can stimulate the proliferation of cultured articular

chondrocytes [26,27].

In Hoxd4-transgenic chondrocytes, we found elevated gene

expression of Fgfr3, while the Fgfs we investigated (Fgf8, Fgf10

and Fgf18) were not deregulated. Increased Fgfr3 signaling

activity would be expected to further limit chondrocyte differen-

tiation compared to controls, and thus could be responsible for the

delayed chondrocyte maturation observed in the Hoxd4-trans-

genic animals. In contrast, in Hoxc8-transgenic chondrocytes,

gene expression of Fgf8 and Fgf10 was found to be decreased, but

no changes in expression levels of Fgf receptors were detected.

Fgf8 signaling is required for the development of distal cartilage

elements in the limb in chick embryos [28], indicating that Fgf8

promotes the process of proliferation and differentiation of

mesenchymal cells into chondrocytes. Fgf10-deficient mice

exhibit a complete truncation of fore and hind limbs [29], also

supporting a role for Fgf10 in promoting chondrocyte prolifer-

ation, although in vitro studies of cultured murine cartilage cells

from the ventral rib cage showed no discernable response to

exogenously administered Fgf10 [30]. Nevertheless, the decrease

in expression levels of Fgf8 and Fgf10 in Hoxc8-transgenic

chondrocytes is consistent with a possible role in the phenotype

we observe in these animals. It is interesting to note that the Fgf

signaling pathway appears to be differentially affected by

overexpression of Hoxc8 versus Hoxd4 transcription factors in

chondrocytes, in that either the receptor or the growth factors are

deregulated, but not both, by the same transgene. These results

suggest that the two transcription factors, despite apparently

similar phenotypic effects on cartilage formation, may regul-

ate different transcriptional targets in chondrocytes or their

progenitors.

Matrixmetalloproteases and Tissue Inhibitor of
Metalloproteases 3

A key process in endochondral ossification is the degradation of

extracellular matrix (ECM) (for review, see Ortega et al. [31]).

Matrixmetalloproteases (MMPs) are a large family of endopepti-

dases that are involved in degradation of many different

components of the ECM, such as Collagen II, Collagen X and

Aggrecan [32,33]. MMPs are produced by a many different cell

types, including epithelial cells, fibroblasts, inflammatory cells, and

chondrocytes.

MMP13 (formerly known as Collagenase 3) is highly expressed

during endochondral ossification; it is required for the transition

from cartilage to bone at the growth plate of long bones [34,35].

MMP13 actively degrades type II collagen, the major type of

collagen in immature cartilage. During endochondral ossification,

MMP13 is expressed in the lower zone of hypertrophic

chondrocytes, co-localized with type X Collagen [36]. MMP9

(formerly known as Gelatinase B) is a key regulator of apoptosis of

hypertrophic chondrocytes [37]. Although both MMPs are

expressed in non-overlapping cell types, they act together in

primary and secondary ossification. Gene expression levels of

Mmp9 as well as Mmp13 were found significantly decreased in

our Hoxc8-transgenic chondrocytes, which could lead to reduced

ECM degradation. Additionally, MMP-mediated processes, such

vascular invasion and chondrocyte apoptosis, might be disturbed

or delayed based on lower expression levels of these genes.

Reduced expression of Mmp9 and Mmp13 in Hoxc8-transgenic

chondrocytes would be consistent with a delay in chondrocyte

maturation and ossification, and thus might be responsible for the

cartilage immaturity phenotype we observe in Hoxc8-transgenic

mice.

In contrast, in Hoxd4-transgenic chondrocytes, we found

Mmp8 expression to be elevated. Mmp8 (formerly known as

Collagenase 2) is implicated in tissue remodeling under inflam-

matory conditions, and in wound healing [38,39,40]. Mmp8 was

also reported to be expressed in mandibular and hind limb

chondrocytes [41], and our results demonstrate it to be expressed

in rib chondrocytes. The functional role of Mmp8 in chondro-

genesis is currently unknown.

The activity of MMPs is regulated by the four members of the

Tissue Inhibitor of Metalloproteinases (TIMP) family, which are

mainly expressed by chondrocytes and bone-lining cells [42].

TIMP3 localizes to the ECM and inhibits MMP9, among other

MMPs [43,44]. Inhibition occurs when the active site of the
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MMPs becomes occupied in a 1:1 stoichiometric ratio by the

TIMP protein, and a normal balance between MMPs and TIMPs

is important for matrix remodeling and tissue architecture [45].

We found Timp3 expression decreased in Hoxc8-transgenic

chondrocytes; it is intriguing to note that this coincides with

decreased expression of Mmp9 and Mmp13. These results suggest

that matrix maintenance and remodeling may be altered in

Hoxc8-transgenic cartilage.

Nitric Oxide Synthase 3
Nos3 encodes the murine endothelial Nitric oxide synthase,

located on mouse chromosome 5 [46]. NO (nitric oxide) is known

to mediate physiological responses in the nervous system, immune

system and vascular smooth muscle. It has been reported that NO

produced by eNOS and iNOS in osteoblasts and osteoclasts

influences bone growth and remodeling [47,48]. Studies in chick

growth plate chondrocytes indicate that NO metabolism is

required for development of the mature chondrocyte phenotype:

it stimulates hypertrophy and seems to promote apoptosis of

terminally differentiated chondrocytes [49]. NO also stimulates

MMP production and activity in osteoarthritic joint cartilage [50].

The occurrence of limb reduction defects in Nos3-deficient mice

[51] demonstrates a crucial role of NOS3 for normal bone

development. Thus, it is tempting to speculate that lower

expression of MMPs in Hoxc8-transgenic chondrocytes could be

due to reduced NO production associated with lower Nos3

expression levels.

ß-Catenin and Wnt Signaling
ß-Catenin plays important roles during skeletal development,

and is the molecular node for signal transduction in the canonical

Wnt signaling pathway [52]. Wnt-proteins are thought to bind to

cell-surface receptors of the Frizzed family and activate Dishev-

elled family proteins; in turn, ß-Catenin becomes protected from

proteasome-mediated degradation. Activated/de-phosphorylated

ß-Catenin enters the nucleus and promotes the activation of target

genes by interaction with TCF/LEF family of transcription

factors. While in both Hoxc8- and Hoxd4-transgenic chondro-

cytes ß-Catenin expression was not altered at the transcriptional

level, Wnt3a exhibited decreased expression levels in Hoxd4-

transgenic rib cage chondrocytes. This reduced Wnt3a ligand

expression and hence, reduced signaling, could be involved in

delayed chondrocyte maturation in mice with Hoxd4 overex-

pression. On the other hand, we found Wnt3a expression levels

elevated in Hoxc8-transgenic chondrocytes. Since Wnt3a pro-

motes cell proliferation in many tissue systems, higher Wnt3a

levels would be consistent with accumulation of proliferating cells

in Hoxc8-transgenic cartilage. The most intriguing finding,

however, is that Wnt3a levels are misregulated in opposite

direction in Hoxc8- versus Hoxd4-transgenic chondrocytes, again

providing evidence for the notion that both transgenes are

involved in distinct pathways in the respective transgenic

cartilage.

Wnt5a is expressed in proliferating and prehypertrophic

chondrocytes and plays a pivotal role during chondrocyte

proliferation and differentiation [53]. Chondrocyte differentiation

was found delayed in developing long bones in Col2a1-Wnt5a

transgenic mice, where Wnt5a is expressed in proliferating and

immature chondrocytes under control the of the Col2a1 promoter

[54]. Experiments in chicken also reveal a delay in maturation

from proliferative to hypertrophic chondrocytes by overexpression

of Wnt5a [55,56,57]. Long-term micromass cell cultures in vitro

confirm that Wnt5a overexpression is associated with a delay in

maturation of chondrocytes [58]. Wnt5a mouse mutants also show

a delay in chondrocyte progression to hypertrophy, and as a

consequence, limbs are shorter in Wnt5a2/2 mutants [54]. Thus,

conditions of both overexpression and loss of Wnt5a resulted in

altered proliferation of chondrocytes. We found Wnt5a expression

decreased in Hoxc8-transgenic chondrocytes, consistent with a

delay in maturation to hypertrophy. This, combined with the

consistent negative correlation of Wnt5a expression to Hoxc8

expression levels, makes Wnt5a an excellent candidate for

a transcriptional target of Hoxc8 in chondrocytes or their

progenitors.

Conclusions
By targeted investigation of 37 candidate genes, we found

altered expression in transgenic cartilage of several genes that are

known regulators of cartilage development. These genes could

therefore be responsible for the cartilage defects observed in

Hoxc8- and Hoxd4-transgenic animals, respectively. Strikingly,

the subset of genes deregulated in Hoxc8-transgenic cartilage

differs from the group of genes deregulated in Hoxd4-transgenic

cartilage, indicating that different molecular pathways may be

responsible for seemingly similar phenotypic outcomes, namely

delayed chondrocyte proliferation and maturation. Nevertheless,

our study identifies several genes that respond to altered Hoxc8 or

Hoxd4 gene dosage, respectively, and thus might be targets of

these transcription factors in chondrocytes or their progenitors.

Further research will be needed to define the temporal sequence of

changes in gene expression during chondrocyte differentiation,

and to understand how Hox transcription factors and the

deregulated genes we identified here interact to regulate

chondrogenesis.

Supporting Information

Table S1 Correlation between gene expression and transgene

levels in Hoxc8- and Hoxd4-transgenic chondrocytes. The

relationship of gene expression levels to transgene levels in

individual animals was assessed using the Pearson’s correlation

coefficient (r) between DCT values, which are normalized to the

reference gene. A correlation coefficient close to 1.0 indicates a

strong positive relationship, r close to 0 indicates lack thereof, and

negative r indicates an inverse relationship between transgene and

candidate gene levels. Sample numbers smaller than 3 were

excluded from consideration. Bold font indicates strong positive

or negative correlation (r.|0.6|) of gene expression to transgene

levels in control and/or transgenic individuals: black: strong

correlation in controls and transgenics; green: lack of correlation

in control but gain of strong correlation with expression of the

respective transgene; red: strong correlation in controls but loss

with expression of the respective transgene; blue: strong

correlations in opposite directions in controls and transgenic

samples.

Found at: doi:10.1371/journal.pone.0008978.s001 (0.05 MB

DOC)
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