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Purpose: To assess the use of deep learning for high-performance image classification
of color-coded corneal maps obtained using a Scheimpflug camera.

Methods:Weused adomain-specific convolutional neural network (CNN) to implement
deep learning. CNNperformancewas assessedusing standardmetrics anddetailederror
analyses, including network activation maps.

Results: The CNN classified fourmap-selectable display imageswith average accuracies
of 0.983 and 0.958 for the training and test sets, respectively. Network activation maps
revealed that the model was heavily influenced by clinically relevant spatial regions.

Conclusions: Deep learning using color-coded Scheimpflug images achieved high
diagnostic performance with regard to discriminating keratoconus, subclinical kerato-
conus, and normal corneal images at levels that may be useful in clinical practice when
screening refractive surgery candidates.

Translational Relevance: Deep learning can assist human graders in keratoconus
detection in Scheimpflug camera color-coded corneal tomography maps.

Introduction

Keratoconus is an ectatic corneal disorder charac-
terized by progressive corneal stroma thinning with
corneal protrusion.1,2 Recent advances in corneal
imaging have allowed the discrimination of subclin-
ical keratoconus (forme fruste) characterized by a
slight bowing of the posterior corneal surface, which,
in the absence of clinical signs or diminished visual
acuity, is only detectable by tomography.3–6 A kerato-
conus diagnosis is important in patients consider-
ing refractive surgery because keratoconus weakens
the corneal stroma, thus increasing the risk of iatro-
genic ectasia.1,7–12 The Oculus Pentacam (Pentacam
HR, V.1.15r4 n7; Oculus Optikgeräte GmbH, Wetzlar,
Germany) is a noninvasive anterior segment tomog-
rapher that uses a rotating Scheimpflug camera to

provide direct anterior and posterior elevations and
pachymetry measurements of the cornea. The Penta-
cam HR tomographer, launched in 2005, has five times
the image resolution of the basic model.13

Several studies have used machine learning for
keratoconus detection,14–24 but most used either
topographic numeric indices measured with a Placido
disc-based corneal topographer or tomographic
numeric indices measured with a scanning slit tomog-
rapher and a rotating Scheimpflug camera. Convolu-
tional neural networks (CNNs) perform particularly
well in pattern recognition and image classification
tasks, making these algorithms a reasonable choice for
the automated analysis of color-coded Scheimpflug
images. Such analyses could provide new intrinsic
insights on keratoconus detection and allow detec-
tion of the relative importance of each image feature
to aid in the classification of CNNs via a more
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understandable interface for human observers.25,26
Recent studies used anterior segment optical coherence
tomography (AS-OCT) with CNNs for whole-image
segmentation and classification to distinguish kerato-
conic from healthy corneas.27,28 This study aimed to
assess the accuracy of a specially designed, domain-
specific CNN trained with corneal color-coded maps
of whole Scheimpflug images to discriminate among
normal, forme fruste, and keratoconic eyes.

Methods

Study Population

This study followed the tenets outlined in the
Declaration of Helsinki, in compliance with applica-
ble national and local guidelines. Ethical approval was
obtained from the Ethics Committee of Assiut Univer-
sity Hospital. Our institution approved this single-
center, retrospective review of high-quality Pentacam
four-map selectable display images of non-consecutive
refractive surgery candidates, patients with unilateral
or bilateral keratoconus, and patients with subclinical
keratoconus. All study participants provided written
informed consent.

Imaging was performed between July 2014 and
March 2019. The Pentacam four-map selectable display
provides composite, color-coded images of maps of
corneal front elevation, back elevation, thickness, and
front sagittal curvature, with numerical and spatial
annotations. Two experienced corneal specialists (KA
and MMM), each with 8 years of experience, indepen-
dently classified the anonymized images as kerato-
conus, subclinical keratoconus, or normal and attached
clinical examination summaries. The keratoconus class
(K) included those with a clinical diagnosis of kerato-
conus (e.g., presence of a central protrusion of the
cornea with Fleicher ring, Vogt striae, or both, as
determined by slit-lamp examination) or an irreg-
ular cornea (as determined by distorted keratome-
try mires or distortion of retinoscopic red reflex, or
both). The keratoconus class also included the follow-
ing topographic findings, as summarized by Piñero
and colleagues2: focal steepening located in a zone
of protrusion surrounded by concentrically decreasing
power zones, focal areas with diopteric (D) values >

47.0 D, inferior–superior (I–S) asymmetry measured
as >1.4 D, or angling of the hemimeridians in an
asymmetric or broken bowtie pattern with skewing of
the steepest radial axis.

The subclinical keratoconus class (S) included subtle
corneal topographic changes in the aforementioned
keratoconus abnormalities in the absence of slit-lamp

or visual acuity changes typical of keratoconus (forme
fruste, or asymptomatic, keratoconus). The normal
class (N) included refractive surgery candidates and
subjects applying for a contact lens fitting with a refrac-
tive error of less than 8.0 D sphere, with less than 3.0 D
of astigmatism, and without clinical, topographic,
or tomographic signs of keratoconus or subclinical
keratoconus. After classification, the labeled images
were then reviewed by a third party (HA), who identi-
fied images with conflicting labels and adjudicated their
classes by consensus, withholding the two raters’ first-
round group labels during adjudication.

Image Dataset Preprocessing Pipeline

All images were exported in a JPG format of 1024
× 1064 pixels without compression, and each image
was labeled according to its relevant class: K, N, or S.
The image stack was cropped using ImageJ (National
Institutes of Health, Bethesda, MD), keeping only
the square composite image showing the four maps
without the color scale bars. The images were then
scaled to 600 × 600 pixels. The trace of the cross that
divided the image into four maps was cleaned by select-
ing each arm and filling it with a background color
in all stacks. A copy of these processed images was
cropped separately to obtain each of the four compo-
nent images (front elevation, back elevation, corneal
pachymetry, and front sagittal curvature maps) and
resized to obtain four separate image stacks of 256 ×
256 pixels. All images were then denoised to remove the
image annotation by consecutively using the “Remove
Outliers” tool for bright and dark outliers, leaving
only the color codes. We used fixed parameters in the
“Remove Outliers” tool, with radius = 15 pixels and
threshold = 1, applying it first to remove dark outliers
and then again to remove bright outliers. Applying this
denoising allowed the use of pure color codes without
annotations and with the least possible loss of details.
At this step, five image categories (a composite of
the initial four images plus each of the four compo-
nent images) were ready to be used by the CNN. Each
five-category file contained three subdirectories named
after an image group: K, N, or S. Twenty percent of
each image category was randomly selected as the test
set and withheld from training the CNN. Figure 1
depicts the image preprocessing steps.

CNN Architecture

We designed a relatively small CNN that can easily
adapt and learn the features of color-coded input
images without the need for using publicly available
pretrained networks for transfer learning that often use
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Figure 1. Image data preprocessing pipeline. (A) Exported anonymized image (A1); cropped four-map image resized to 600 × 600 pixels
(A2); removal of image overlay (denoising) (A3); and removal of background artifacts between the images (A4). (B) Cropped front elevation
map before (B1) and after (B2) processing. (C) Cropped back elevation map before (C1) and after (C2) processing. (D) Cropped corneal
pachymetry map before (D1) and after (D2) processing. (E) Cropped front sagittal curvature map before (E1) and after (E2) processing.

millions of parameters, requiring a great amount of
unique training data to reach their full potential.29–31
The CNN architecture (Fig. 2) consists of two convo-
lutional layers (Conv1 and Conv2), each utilizing recti-
fied linear unit (ReLu) activation.32 The first convolu-
tional layer (Conv1) is the visible layer that is fed image
input as patches (patch size= 15); it contains a stack of
16 filters with a kernel size of 3× 3, followed by a max-
pooling layer of window size 2 × 2. The second convo-
lutional layer (Conv2) contains a stack of 32 filters
with a kernel size of 3 × 3, followed by a max-pooling
layer of window size 2 × 2. A flatten layer is then
used to allow feeding of the fully connected layer. This
is followed by four similar stacks of fully connected
(Dense1, 2, 3, and 4) and dropout layers. Each fully
connected layer contains 128 fully connected neurons
and utilizes the ReLU activation function, followed by
dropout regularization with 20% probability (0.2). The
final (classifying) layer of the architecture is a fully
connected layer (Dense5) with softmax activation that
contains three output neurons, resulting in the proba-
bility of classifying each of the image groups. The
softmax regression classifier predicts the class with the
highest estimated probability.33

Training

We trained five identical proposed models on each
of the five training/validation datasets for 14 epochs
(an epoch is an iteration over the entire input data
provided).During training, we used 0.3 validation split.
The model sets apart this fraction of the training
data, does not train on it, and evaluates the loss and
any model metrics on the data at the end of each Figure 2. Diagram of the CNN architecture followed in this study.
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epoch. Categorical cross-entropy was used as the loss
function.31 The optimization was performed using the
Adam optimizer with the default parameters suggested
by Kingma et al.34 (learning rate = 0.0001, β1 = 0.9,
β2 = 0.999, ε = 1e-08).

Models Testing and Data Augmentation

The five models were saved with their weights after
training/validation and then reloaded to classify the
test set. To prevent model overfitting to the smaller test
dataset, we further implemented data augmentation
to increase artificially the number of original images
used to test the CNN, thereby increasing the robustness
of the testing process. Image data augmentation was
done carefully to prevent unrealistic image deforma-
tion and included minimal rotation, width shift, height
shift, and zoom. Neither horizontal nor vertical flip
was applied. All generated batches of image data were
randomly generated in real time at the start of each
mini-batch.

Support Vector Machine

To obtain benchmark performance metrics that
allow comparison with our custom network perfor-
mance, we used a support vector machine (SVM)
that was trained using a one-versus-all strategy to
classify the eyes into the three groups based on selected
corneal topographic parameters: keratometric power
in the flattest meridian (Kflat), keratometric power in
the steepest meridian (Ksteep), thinnest corneal thick-
ness (TCT), and inferior–superior asymmetry (I–S
value).18 The one-versus-all strategy consists of fitting
one classifier per class. For each classifier, the class is
fitted against all the other classes. Because each class is
represented by only one classifier, it is possible to gain
knowledge about the class by inspecting its correspond-
ing classifier with better interpretability and computa-
tional efficiency.35

Class Activation Maps

A class activation map (CAM) for a particular
category indicates the discriminative region used by
the CNN to identify the category, thus enabling an
accessible analysis of CNNmodel results.36 We used an
approach similar to that in the study by Oquab et al.37;
however, instead of a global average pooling layer, we
used a global max-pooling before the softmax activa-
tion function was applied to the final fully connected
layer to produce the desired output by projecting back
the weights of the output layer.

Computer Hardware and Software

The deep learning computation was performed on a
personal computer with an Intel Core i5-8250U proces-
sor (Intel Corp., Mountain View, CA) at 1.60 GHz
(base clock speed) and 1.80 GHz (boost clock speed)
with an NVIDIA GeForce MX130 graphics card
(driver version: 436.15; (NVIDIA, Santa Clara, CA).
The deep neural network was implemented usingKeras
2.3.1 and TensorFlow 2.0.0 libraries32,38 in Jupyter
notebook 6.0.1 installed in an Anaconda environment
running on Python 3.6. Throughout our work, we
did not implement a graphics processing unit (GPU)-
enabled TensorFlow.

Statistical Analysis

Patient data were presented as the mean ±
SD. Model performance was assessed by estimating
the false-positive rate, false-negative rate, precision,
recall, F1 score, accuracy, and area under the curve
(AUC),34,39,40 all measured using scikit-learn, version
0.21.3.35 The inter-rater agreement was assessed using
Cohen’s κ, also computed by scikit-learn. The one-
versus-all approach was applied to extend the receiver
operating characteristic (ROC) curve used in this three-
class problem, in which each class was defined as the
positive class and the other two classes were defined
jointly as the negative class.

Results

The four maps display images of 3218 eyes of
the 1669 non-consecutive refractive surgery candidates,
patients with unilateral or bilateral keratoconus, and
patients with subclinical keratoconus who were used in
this study. Table 1 summarizes the characteristics of
the study population. There were statistically signifi-
cant differences in TCT and I–S values among the three
study groups (P < 0.05). There were no statistically
significant differences in Kflat or Ksteep between eyes in
the N group and eyes in the S group (P > 0.05).

The original dataset was comprised of 3218 images
in each of the five image categories, with each category
divided into three classes: K = 1038 (32.3%), N =
1108 (34.4%), and S = 1072 (33.3%) images. The train-
ing/validation set was comprised of 2574 randomly
selected images from the original dataset in each
of its five image category files. Each file contained
three subdirectories representing a balanced number
of images representing each of the three classes: K =
830 images (32.2%), N = 887 images (34.5%), and S =
857 images (33.3%). The remaining 644 images (20%)
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Table 1. Characteristics of the Study Population and a Comparison of Normal, Subclinical Keratoconus, and
Keratoconus Eyes

Group, Mean ± SD P

Parameter Ka Nb Sc N vs. K N vs. S K vs. S

Age (y) 31.5 ± 8.20 36.50 ± 9.50 31.80 ± 8.30 0.159 0.331 0.566
Kflat (D) 45.64 ± 1.20 42.96 ± 8.20 43.41 ± 1.80 0.001* 0.101 0.026
Ksteep (D) 49.33 ± 3.30 43.89 ± 2.70 44.83 ± 4.90 0.000* 0.095 0.035
Astigmatism (D) 3.02 ± 2.13 0.92 ± 0.56 1.01 ± 0.75 0.000* 0.821 0.001
TCT (μm) 459.88 ± 16.44 532.44 ± 27.14 513.19 ± 77.45 0.000* 0.042* 0.000
I–S value (D) 5.12 ± 1.76 0.04 ± 0.20 0.82 ± 0.88 0.000* 0.005* 0.002

Bolded numbers indicate statistically significant difference (P < 0.05).
aKeratoconus group included 544 subjects and 1038 eyes.
bNormal group included 579 subjects and 1108 eyes.
cSubclinical keratoconus group included 546 subjects and 1072 eyes.

Table 2. Confusion Matrix Without Normalization

Predicted Class

Image Category Actual Class K N S Total

Four-map selectable display K 789 8 33 830
N 0 887 0 887
S 0 0 857 857

Front elevation map K 764 0 66 830
N 0 887 0 887
S 34 0 823 857

Back elevation map K 796 18 16 830
N 0 869 18 887
S 26 8 823 857

Pachymetry map K 830 0 0 830
N 0 878 9 887
S 0 9 848 857

Front sagittal curvature map K 813 0 17 830
N 0 887 0 887
S 9 26 822 857

The numbers represent the average of 10 training/validation trials by the CNN using each image category and random
seeds.

were assigned to the test set in each of the five image
category files representing images of the three classes
in a ratio similar to that in the training/validation set:
K = 208 images (32.3%), N = 221 images (34.3%), and
S = 215 images (33.4%). This ensured that the dataset
was balanced among the three classes and accurately
revealed the true performance of the classifiers. The
inter-rater agreement was 0.95 with a Cohen’s κ score
of 0.88.

To record performance metrics, the training
progress, confusion matrix, and ROC curves were

plotted for each of the five map categories over the 10
cycles of training/validation. Each cycle started with
different random seeds for the weight initialization
(Tables 2, 3; Figs. 3–5).

Precision, recall, accuracy, and F1 score were excel-
lent for all image categories. The N class was least
prone to misclassification in all image categories, with
only 2% and 1% of normal images misclassified as S
class in back elevation and corneal pachymetry maps,
respectively. The N class had the largest AUC in all
image categories when the ROC curve for the N class
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Table 3. Sensitivity, Specificity, and Accuracy of the CNNModel After Normalization

False- False-
Positive Negative Recall

Image Category Class Rate Rate Precision (Sensitivity) F1 Score Accuracy

Four-map selectable display K 0 0.05 1.00 0.95 0.98 0.98
N 0.01 0 0.99 1.00 0.99 0.99
S 0.04 0 0.96 1.00 0.98 0.98

Front elevation map K 0.04 0.08 0.96 0.92 0.94 0.94
N 0 0 1.00 1.00 1.00 1.00
S 0.08 0.04 0.92 0.96 0.94 0.94

Back elevation map K 0.03 0.04 0.97 0.96 0.96 0.97
N 0.03 0.02 0.97 0.98 0.98 0.98
S 0.04 0.04 0.96 0.96 0.96 0.96

Pachymetry map K 0 0 1.00 1.00 1.00 1.00
N 0.01 0.01 0.99 0.99 0.99 0.99
S 0.01 0.01 0.99 0.99 0.99 0.99

Front sagittal curvature map K 0.01 0.02 0.99 0.98 0.99 0.99
N 0.03 0.0 0.97 1.00 0.99 0.98
S 0.02 0.04 0.98 0.96 0.97 0.97

The results show the average of 10 training/validation trials with random seeds.

was plotted versus the other two classes (one vs. all)
showing that the CNN was more “confident” classify-
ing features for the N class than the S and K classes.
The CNN showed confusion mainly between K and S
classes, especially in front elevation maps. Sensitivity,
recall, and accuracy were highest when the pachymetry
map image category was used. The five models were
saved with their weights after training/validation and
then reloaded to classify the test set. As deeper
networks have a habit of overfitting during training
when not enough training samples are provided, data
augmentation was performed to prevent the model
from overfitting to the relatively smaller test set data.
At this step, the model should have the advantage of
starting classification with weights it has learned from
previous training while dealing with never before seen
image data. By reviewing the plots of the model perfor-
mance with each image category we applied “early
stopping” callback. This callback monitor asks the
model to stop training after a minimum of validation
loss and validation squared errors and a maximum of
validation accuracy have been reached for a certain
number (three was used) of consecutive epochs (the
“patience”argument).38 The average accuracy outcome
after 10 repeated analyses was recorded for the CNN
using each image set. The composite images showed the
highest accuracy (0.989) after eight epochs, followed by
the back elevation map (0.977) after 12 epochs, front
sagittal curvature map (0.958) after 10 epochs, and the
front elevationmap (0.952) after 14 epochs. The corneal

pachymetry map showed the lowest accuracy (0.914)
after 22 epochs, indicating some degree of overfitting
to the training data of this category during the train-
ing/validation phase. Among SVMs trained on corneal
parameters, the one-versus-all ROCplots showed lower
performance using the selected corneal parameters in
discriminating eyes in the S group when compared with
our custom model performance.

In Figure 6, we present five examples of CAMs
obtained after training with each image category. The
CNN appears to use the same clinically meaningful
spatial regions to classify images. Figure 6A shows that
the CNN was correctly influenced by the pixels cover-
ing the most important diagnostic areas in each of
the four maps, ultimately succeeding in classifying the
image as keratoconus with 0.97 probability. However,
it skewed by paying more attention to the background
pixels than the central pixels in the front and back
elevationmaps. This is probably because of the proxim-
ity of the highly important pixels at the front sagit-
tal curvature map component to the background with
consequent spillover so that the CNN regarded both
as one unit. In Figure 6B, the CNNwas correctly influ-
enced by pixels overlying symmetric areas of steepen-
ing in the front elevation map, resulting in an incorrect
classification of normal with 0.93 probability. Inter-
estingly, the model showed a high degree of scrutiny
when grading pixel importance so it assigned less
weight to double arcs of pixels that symmetrically and
concentrically encircle the upper and lower steep zones,
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Figure 3. Epoch accuracy and training loss for each image category during training. During the training process, the accuracy increased
whereas the loss, representing the error, decreased. Lighter colored curves show original data, and darker lines represent the corresponding
smoothed curves.

representing a common color code step that should be
spatially present in other image classes and thus gaining
less classification importance. Figure 6C shows that
the model used the pixels encoding a paracentral cone,
classifying the image as keratoconus with 0.82 proba-
bility. Figure 6D shows that the model used the most
central pixels encoding abnormally thin central cornea
to yield a classification of keratoconus with 0.99 proba-
bility. This may lead to a false-positive diagnosis of
keratoconus in cases with normal thin cornea if the
position of the thinnest corneal location is not weighed
by the model. In Figure 6E, the CNN was correctly
influenced by pixels overlying inferior steepening in the
front sagittal curvature map, resulting in an incorrect
classification of keratoconus with 0.86 probability. All
examples show that the CNN was correctly guided by
meaningful spatial regions to classify images.

Discussion

The present study showed that applying deep learn-
ing to color-coded cornealmaps of Scheimpflug images
can accurately and objectively classify eyes into the

three studied categories: normal, keratoconus, and
subclinical keratoconus. This classification is central
when screening refractive surgery candidates to avoid
the risk of postoperative ectasia.8–12

Several studies have confirmed the high accuracy
of machine learning models for keratoconus screen-
ing using indices measured with Placido disk-based
corneal topography or a Scheimpflug camera.14–24,26
These studies used topographic and numeric indices
that describe the corneal shape for machine learn-
ing approaches. In accordance with Arbelaez et al.,18
the data in our study show high diagnostic accuracy
of the SVM classifier with some limitation in perfor-
mance in discriminating eyes with subclinical kerato-
conus. However, direct comparison with the work
of Arbelaez et al.18 is not possible. Compared to
these numeric values, the corneal color-coded maps
obtained by Scheimpflug cameras add more spatial
information to CNNs as the amount of image data
is broken down into pixel values and summarized
by the reading kernel. This allows picking charac-
teristic image features in more detail, resulting in
substantial improvement in classification performance
compared to SVM. Kamiya et al.28 used transfer
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Figure 4. Confusion matrices after normalization by class support size (weights) according to the elements in each class. Every column of
a confusionmatrix represents a predicted class (keratoconus, normal, or subclinical keratoconus), and each row represents the instance of a
class. Thismatrix shows the error rates of predictions by the classificationmodel. Diagonalmatrix elements represent the numbers of images
for which the predicted label equals the true label, and the remaining elements represent imagesmislabeled by the classifier. The higher the
diagonal values of a confusion matrix, the better the predictions were by the model. (A) Confusion matrix of the four-map display training.
(B) Confusion matrix of the front elevation map training. (C) Confusion matrix of the back elevation map training. (D) Confusion matrix of
the corneal pachymetry map training. (E) Confusion matrix of the front sagittal curvature map training.

learning by applying the publicly available, pretrained
network ResNet-18 to six color-coded AS-OCT maps
(anterior elevation, anterior curvature, posterior eleva-
tion, posterior curvature, total refractive power, and
pachymetry map) to discriminate between normal and
keratoconic eyes with an accuracy of 0.99 and to
further classify the keratoconus stage with an accuracy
of 0.87. They used the arithmetic mean of the CNN
output from each of the six AS-OCT component maps
to classify the whole image; thus, their study cannot be
directly compared with ours. In the present study, we
used a simpler CNNwith a less computationally inten-
sive architecture of 13 layers which yielded the highest
accuracy with initially different random seeds at the
beginning of each training session. We also used differ-
ent and larger datasets sourced from amore commonly
used machine13 for early keratoconus detection. Also,
we used different classifications, especially with the
use of the whole four-map image for classification in
addition to the component maps. We proved that when
the whole four-map display was used, the CNN yielded
accuracy values of 0.98, 0.99, and 0.98 for theK,N, and
S classes, respectively, during training/validation; these
values remained high (0.989) for the test set, indicat-

ing the added value of the four-map composite image
compared with results yielded by each solitary map.

Our ROC analysis results suggest a lower value
of anterior elevation maps for keratoconus detection.
This result is consistent with that reported by Ishii
et al.,41 who suggested a greater diagnostic value of
the posterior elevation measurement, thus supporting
the adoption of CNNs as a classification tool in clini-
cal practice.33,37 This offers much-needed confidence
in the procedure, permitting physicians to authenticate
predictions made by the network and ensuring that
predictions are not influenced by extraneous factors.
Qualitative evaluation of model behavior via CAMs
has provided insight into the most influential image
pixels of the model to be used to guide classification
decisions. These maps provided compelling evidence
that the CNN classification is most easily influenced
by clinically relevant spatial regions; however, they may
generalize beyond the training area. These findings are
consistent with those reported by Dunnmon et al.42
in their assessment of CNNs for automated classi-
fication of chest radiographs; they also noted that,
although clinically meaningful spatial regions influence
CNN classification, these models occasionally gener-
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Figure 5. Comparisons of the ROC curves for the CNN using
data from each of the five input image categories during train-

alize beyond their triage task area meant for classi-
fication, resulting in false-positive or false-negative
errors.

Our study has several limitations. The dataset used
for both training/validation and testing was sourced
from the same institution. Thus, generalizing our
findings to other institutions should be considered
with caution because of differences in image quality,
data preprocessing, image labeling, sample weights, or
other confounding factors that could lead to a higher
error rate. Another limitation is ambiguity in defining
subclinical keratoconus, forme fruste, and borderline
cases, which should represent a corneal tomography
spectrum including all patients who are at high postop-
erative risk for worsening ectasia.43 The balanced
class distribution in this study is far from represent-
ing real-life prevalences and was selected to prevent
model bias during training/validation and to facili-
tate portraying the class performance by all available
metrics. We also noted a trend toward overfitting of
the CNN to training data, but we did not assess the
number of images needed to prevent this during train-
ing. Instead of using tens of thousands of images
to prevent overfitting, we employed the well-known
technique of image augmentation to assess the trained
network on a small dataset with random perturbations.
This provided satisfactory model performance while
avoiding overfitting. However, our simple but powerful
domain-specific CNN architecture ensures flexibility
regarding the downsampling of high-resolution input
images while optimizing the computational cost to be
comparable to that of general-purpose central process-
ing units. This would be challenging for standard trans-
fer learning via pre-trained CNNs that usually require
high-performance GPUs.

←
ing/validation of the CNN compared with the performance of the
SVM classifier using some corneal topographic parameters. The one-
versus-all approach was applied to extend the ROC curve used in
this three-class problem, in which each class was defined as the
positive class and the other two classes were jointly classified as
the negative class. Classes: 0, keratoconus; 1, normal; 2, subclinical
keratoconus. The plots labeled by lowercase letters are zoomed-in
views of the upper left corner of the graph labeled by the corre-
sponding uppercase letter. (A, a) ROC curves for four-map display
images; (B, b) front elevation maps; (C, c) back elevation maps; (D,
d) corneal pachymetry maps; (E, e) front sagittal curvature maps; (F)
Kflat; (G) Ksteep; (H) TCT; and (I) I–S value. Themicro-average ROC curve
is defined as the precision (true positives [TPs]/TPs + false positives
[FPs]) from individual TPs and FPs of each class (Precisionmicro= TP0
+ TP1 + TP2 / TP0 + TP1 + TP2 + FP0 + FP1 + FP2). The macro-
average ROC curve is defined as the average precision of the three
classes (Precisionmacro = precision0 + precision1 + precision2/3).
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Figure 6. Selected examples of CAMs showing the areas of an image that are most important for its CNN classification. Classes: 0, kerato-
conus; 1, normal; 2, subclinical keratoconus. CAMs of a four-map display image (A), a front elevation map (B), a back elevation map (C), a
corneal pachymetry map (D), and a front sagittal curvature map (E).

Conclusions

Our domain-specific CNN trained used prospec-
tively labeled color-coded corneal images captured
with a Scheimpflug camera to classify keratoconus,
subclinical keratoconus, and normal corneal images
at levels that may be useful in clinical practice. This
was achieved not only with four-map selectable display
images but also with the individual component images.
Such a network does not require a great amount
of computational resources and could be valuable in
keratoconus detection and screening refractive surgery
candidates. This approach could offer timely services
in remote regions and reduce human error, and it is
free from the bias and fatigue experienced by clinicians.
We recommend making optional Scheimpflug images
without numerical overlays available in the future to aid
further research on this topic.
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