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Abstract. Muscle activity alters the expression of func- 
tionally distinct nicotinic acetylcholine receptors 
(nAChR) via regulation of subunit gene expression. 
Denervation increases the expression of all subunit 
genes and promotes the expression of embryonic-type 
(et213~) nAChRs, while electrical stimulation of dener- 
vated muscle prevents this induction. We have discov- 
ered that the denervation-induced increases in a, 13, % 
and ~ subunit gene expression do not persist in muscles 
that have been denervated for periods extending be- 
yond a couple of months. However, expression of RNA 
encoding the e-subunit remains elevated suggesting a 
return to expression of predominantly adult-type 
(OLe~3~e) nAChR in long-term denervated muscles; a 
finding confirmed by single channel patch-clamp analy- 
sis. Since the nAChR subunit genes are regulated by 
the MyoD family of muscle regulatory factors, and the 

genes encoding these factors are also induced following 
short-term muscle denervation, we determined their 
level of expression in long-term denervated muscle. Al- 
though MyoD and myf-5 RNA levels remained ele- 
vated, myogenin and MRF4 RNAs were induced only 
transiently by muscle denervation. Surprisingly, Id-1, a 
negative regulator of transcription, was gradually in- 
duced in denervated muscle with RNA levels peaking 
about two months after denervation. It is likely that this 
maintained level of increased Id expression, in conjunc- 
tion with the returning levels of myogenin and MRF4 
expression, account for the reduced level of embryonic 
receptors in long-term denervated muscle. These 
changing patterns of gene expression may have impor- 
tant consequences for the ability of muscle to recover 
function after denervation. 

T 
HE muscle nicotinic acetylcholine receptor (nAChR) t 
is a pentameric integral membrane protein that 
functions as a ligand-gated ion channel. During 

muscle development the levels, distribution, and proper- 
ties of this receptor change (for review see Brehm and 
Henderson, 1988; Hall and Sanes, 1993). Many of these 
changes are correlated with muscle innervation. Before in- 
nervation, or after denervation of adult muscle embryonic- 
type nAChRs are expressed throughout the muscle fiber. 
These receptors are composed of four different subunits 
with a stoichiometry of tx213-,/~. After innervation of mus- 
cle, the ",/ subunit is replaced by an ~ subunit, and these 
adult-type receptors (et2[3e~) are preferentially expressed 
at the neuromuscular junction (NMJ). 

The switch from embryonic to adult-type receptors re- 
suits in a change in their channel properties. Embryonic- 
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type receptors exhibit a low single channel conductance 
and long mean channel open time, while adult-type recep- 
tors have a higher conductance and faster open time kinet- 
ics (for review see Schuetze and Role, 1987; Brehm and 
Henderson, 1988). Although the reason for the switch in 
receptor subtypes is not completely clear, it may arise 
from a requirement for long open time, embryonic-type of 
receptors in developing muscle (Jaramillo et al., 1988), 
which are detrimental to adult muscle and therefore re- 
placed with adult-type receptors (Engel et al., 1982; Ohno 
et al., 1995). 

Muscle denervation has been used as a model system to 
study the molecular mechanisms by which muscle activity 
regulates synaptic protein expression. Denervation of 
adult muscle causes a dramatic increase in the sensitivity 
of the fiber to ACh (Ginetzinsky and Shamarina, 1942; 
Axelsson and Thesleff, 1959) which is directly attributable 
to increases in the level of the et, 13, ",/, and ~ subunit RNAs 
within 24-48 h (Goldman et al., 1988). Increases in these 
nAChR RNAs lead to high levels of expression of embry- 
onic-type nAChR throughout the muscle fiber (Katz and 
Miledi, 1972; Neher and Sakmann, 1976; Henderson et al., 
1987). In addition, the level of e subunit RNA, which is 
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preferentially expressed in adult muscle, is increased lo- 
cally at the NMJ within 7 d of muscle denervation (Witze- 
mann et al., 1989, 1991; Gundersen et al., 1993). These 
changes in RNA levels have been shown to result from al- 
tered patterns of nAChR gene expression (Merlie and 
Kornhauser 1989; Klarsfeld et al., 1991; Simon et al., 1992; 
Gundersen et al., 1993). In addition, activity-dependent 
regulation is selective, since RNAs encoding other muscle- 
specific proteins, such as creatine kinase and myosin light 
chain, are unaffected by muscle denervation or electrical 
stimulation (Chahine et al., 1992; Dutton et al., 1993; 
Gilmour et al., 1995; Su et al., 1995). 

The molecular mechanisms mediating the effects of 
muscle activity on nAChR gene expression are beginning 
to be elucidated. A calcium-dependent protein kinase C 
and a cAMP-dependent signaling cascade have been im- 
plicated in mediating the effects of muscle activity in chick 
and rat, respectively (Klarsfeld et al., 1989; Huang et al., 
1992; Chahine et al., 1993). DNA sequences that ulti- 
mately respond to muscle depolarization and alter nAChR 
gene expression have also been identified. In the mouse 
and chick a subunit genes, DNA sequences conforming to 
the consensus E-box sequence (CANNTG) have been 
identified, and those located nearest to the transcriptional 
start sites have been shown to participate in mediating 
activity-dependent control of nAChR gene expression 
(Bessereau et al., 1994; Tang et al., 1994; Sue t  al., 1995). 
These elements are bound by members of the helix-loop- 
helix family of myogenic regulatory factors (MRFs), which 
include MyoD, myogenin, MRF4, and Myf-5. These pro- 
teins are thought to bind E-box sequences as heterodimers 
consisting of one of the above mentioned proteins com- 
plexed with a ubiquitously expressed E protein such as 
E47 or E12 (Weintraub et al., 1991). 

In contrast to the helix-loop-helix proteins described 
above, one member of this family of proteins, referred to 
as Id, lacks a DNA binding domain (Benezra et al., 1990). 
Id can complex with other E-box binding proteins, but 
these complexes have a low affinity for DNA. Via these 
protein-protein interactions with other myogenic regula- 
tory factors, Id can act to inhibit helix-loop-helix protein- 
dependent gene activation. 

Muscle denervation has a dramatic effect on muscle- 
specific gene expression and muscle physiology. Short pe- 
riods of denervation, up to 1 mo, results in an increase in 
embyronic-type nAChR and MRF gene expression (Evans 
et al., 1987; Witzemann and Sakmann, 1991; Voytik et al., 
1993). This period corresponds to the time when the mus- 
cle can best recover its function after reinnervation. How- 
ever, prolonged periods of denervation, extending beyond 
a couple of months, significantly reduce the ability of mus- 
cle to become functionally reinnervated (Sunderland, 
1978). During this time period, the muscle fiber undergoes 
dramatic changes in its size, cytoplasmic content, number 
of nuclei and in its ability to recover function upon regen- 
eration and/or reinnervation (B. M. Carlson, unpublished 
data). This decreased potential for recovery may be corre- 
lated with a concomitant change in the muscle's ability to 
maintain a particular pattern of muscle-specific gene ex- 
pression. To determine if there is a change in muscle-spe- 
cific gene expression after prolonged periods of denerva- 
tion which may correlate with the diminished ability to 

recover function, we assayed for nAChR, creatine kinase 
and MRF gene expression at various times of denervation. 
We report here that the changes in gene expression observed 
after short-term muscle denervation are not maintained in 
long-term denervated muscles. Most surprising was our 
finding that the high levels of a, [3, ~, and ~ subunit RNAs 
which typify both embyronic and adult denervated muscle, 
begin to return to innervated levels following 1-2 mo of 
muscle denervation. In contrast, the adult-type ~ subunit 
and creatine kinase RNAs do not decrease as a result of 
prolonged periods of denervation. These results indicate 
that there is a return to predominantly adult-type nAChR 
gene expression in long-term denervated muscle. 

Patch-clamp recordings indicated that changes in sub- 
unit gene expression are reflected in changes in both the 
single channel properties of the receptors and their rela- 
tive levels of expression in junctional and nonjunctional 
membrane. In contrast to muscle fibers denervated for 
short periods of time which express high levels of low con- 
ductance, long open time receptors throughout the mem- 
brane, fibers denervated for greater than two months ex- 
pressed predominantly the high conductance, short open 
time form of the receptor. Moreover, the level of ACh- 
induced activity was high only in recordings from junc- 
tional membrane, suggesting that a high density of recep- 
tors is limited to the subsynaptic membrane. Physiological 
data suggesting that high levels of nAChR expression are 
restricted to the previous synaptic site was also indicated 
by the pattern of fluorescence in these fibers stained with 
rhodamine-conjugated ct-bungarotoxin, an irreversible ligand 
for the muscle nAChR (Chang and Lee, 1963). 

The decreased expression of c~, [3, ~, and $ subunit 
RNAs after prolonged periods of muscle denervation cor- 
responds to a time when myogenin and MRF4 expression 
are also declining and Id expression is increasing. Our data 
suggest that the different patterns of nAChR subunit gene 
expression observed in short- and long-term denervated 
muscle may be a consequence of the changing pattern of 
expression of these myogenic factors and may underlie the 
decreased ability of muscle to recover function as the time 
of denervation increases. 

Materials and Methods 

Muscle Denervation 
Denervations were performed on 5-mo-old male Wistar rats of the WI/ 
HicksCar strain maintained at the University of Michigan. Rats were 
anesthetized with ether. The right legs of the rats were first denervated by 
sectioning the sciatic nerve high in the thigh, ligating the proximal and dis- 
tal stumps and implanting the proximal stump into a hip muscle. The dis- 
tal stump was implanted as far from the proximal stump as possible. This 
procedure results in a permanent denervation of the lower leg (Carlson 
and Faulkner, 1988). 

RNA Isolation and RNase Protection Assay 
Total RNA was isolated using the method of Chirgwin et al. (1979). 
RNase protection assays were carried out as previously described (Sacco- 
manno et al., 1992; Walke et al., 1994). After hybridization of RNA with 
appropriate probes, RNase T2 was used to digest away single-stranded 
RNA. RNase-resistant hybrids were analyzed on 6% polyacrylamide, 8 M 
urea gels. After electrophoresis, gels were dried and exposed to x-ray film. 
Signals were quantitated by scanning densitometry and values normalized 
to either total RNA in the hybridization reaction or muscle creatine ki- 
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nase RNA signal. Similar results were obtained using both normalization 
procedures. RNase protection assays were repeated at least twice with dif- 
ferent samples of muscle RNA. Specificity of protected bands was con- 
firmed by hybridization of probes to tRNA which resulted in no protected 
fragments on the gel. In addition, probe integrity during the hybridization 
reaction was monitored by omitting the RNase step. 

Probes 
Antisense RNA probes were prepared by run-off transcription of plas- 
mids harboring cDNA inserts that were linearized with appropriate re- 
striction enzymes. The probes used to detect muscle creatine kinase 
(MCK) and nAChR a, 13, % 8, and ¢-RNAs, were as described previously 
(Chahine et al., 1993). The a-probe is 600 nucleotides, including exon and 
intron sequences, of which 240 nucleotides are protected by a-RNA. 
The 13-probe is 229 nucleotides long, all of which is protected by 13-RNA. 
The ~,-probe is 560 nucleotides long, all of which is protected by 
~/-RNA. The ~-probe is 440 nucleotides long of which 344 bases corre- 
spond to genomic DNA 5' to the transcriptional start site and therefore 
only 96 nucleotides of this probe are protected by 8-RNA. The t-probe is 
484 nucleotides long, all of which are protected by ¢-RNA. The MCK 
probe is 292 nucleotides long, all of which are protected by the MCK 
RNA. The myogenin probe was prepared from an EcoRI linearized 
BSSK(+) vector harboring a 190-bp EcoRI/SacI fragment of the mouse 
myogenin cDNA (Wright et al., 1989). The myogenin probe and protected 
fragment are ~190 nucleotides long. The MyoD probe was prepared from 
a HindlII linearized BSSK(+) vector harboring a 1785-bp mouse MyoD 
cDNA insert (Davis et al., 1987) in its EcoRI site. This generates a probe 
of N500 nucleotides which is completely protected by MyoD RNA. The 
MRF4 probe was prepared from a Sail linearized BSSK (+) vector har- 
boring a 400-bp PstI/SalI MRF4 mouse genomic DNA fragment (Miner 
and Wold, 1990). The 400-nucleotide-long MRF4 probe only protects 
~100 nucleotides of MRF4 RNA due to the presense of intron sequences 
in this probe. The myf-5 (Braun et al., 1989) probe was prepared from an 
EcoRI linearized BSSK(+) vector harboring a 400-bp SacI/HindlII 
mouse genomic DNA fragment. Approximately 380 nucleotides of the 
400-nucleotide-long myf-5 probe are protected by myf-5 RNA. The Id 
probe was prepared from PvulI linearized BSSK(- )  vector harboring the 
mouse Id cDNA insert (Benezra et al., 1990). The probe is 607 nucleotides 
long, all of which are protected by Id RNA. Probes were purified from de- 
naturing acrylamide gels. 

Results 

Embryonic-Type nA ChR RNAs Initially Increase and 
Then Decrease in Long-Term Denervated Muscle 

It is well documented that sectioning the motor neuron re- 
sults in increased expression of embryonic-type nAChRs 
(Katz and Miledi, 1972; Neher and Sakmann, 1976; Hen- 
derson et al., 1987) and et, [3, ",/, and 5 subunit RNAs in 
skeletal muscle (Evans et al., 1987; Goldman et al., 1988; 
Gundersen et al., 1993; Witzemann et al., 1989). However 
these analyses have generally been confined to the first 
month of muscle denervation. In the present experiments, 
we have assayed for nAChR RNAs and nAChR function 
during a period lasting up to 1 yr after denervation. 

To prevent reinnervation of the muscle fiber, we used a 
denervation procedure that included, in addition to sec- 
tioning the sciatic nerve, ligating the proximal and distal 
nerve stump and implanting the proximal nerve stump 
into a nearby muscle. Previous experiments, employing sil- 
ver staining of segments of the distal nerve and electrical 
stimulation of transected sciatic nerve, have shown that 
this denervation procedure prevents the return of nerve fi- 
bers for a period of time extending beyond 22 mo (Carlson 
and Faulkner, 1988). 

RNase protection assays were used to determine the 
level of expression of nAChR subunit RNAs in muscle 
that had been denervated for up to 12 mo. Each assay in- 
cluded a probe for a particular nAChR subunit RNA and 
MCK. We determined that creatine kinase RNA did not 
change during 12 mo of muscle denervation by assaying 
the level of this RNA, normalized to total RNA used in 

In Situ Hybridization and nA ChR Staining 
In situ hybridization assays were performed as previously described 
(Goldman and Staple, 1989; Goldman et al., 1991). nAChRs were stained 
with rhodamine-conjugated a-bungarotoxin as previously described 
(Henderson et al., 1987). 

Physiological Recordings 

Individual muscle fibers were obtained from the flexor digitorum brevis 
(fdb) muscles of denervated rats. The fdb muscle was dissected and disso- 
ciated according to Henderson et al. (1987), and recordings were made in 
the cell-attached configuration of the patch clamp technique (Hamill et 
al., 1981) as previously described (Brennan and Henderson, 1993). Irre- 
spective of the time after denervation, the original endplate was morpho- 
logically distinguishable at the time of recording, as has previously been 
reported (Henderson et al., 1987). 

Single channel currents were acquired and analyzed as described by 
Brennan et al. (1992). Mean open times were estimated a t  Wpipett e = +80 
mV for distributions containing greater than 100 events, except for some 
nonsynaptic recordings where the frequency of events was extremely low. 
Slope conductances were estimated by linear regression from the current 
vs. voltage relationship for Vpipett e between + 60 and + 140 mV. Estimates 
of the ACh-induced activity represent the product of the open probability 
times the number of channels and were calculated by TAC® software (In- 
strutech Corp., Elmont, NY). Estimates of the relative percentages of 
openings corresponding to high and low conductance events, as well as 
levels of ACh-induced activity, were made immediately after seal f o rma-  
tion a t  Vpipett e = +80 mV. Statistical significance was determined using a 
Student's two-tailed t test. Where given, n values indicate the number of 
fibers. 

Figure 1. L o n g - t e r m  musc le  d e n e r v a t i o n  has  little effect  on  M C K  
R N A  levels. R N a s e  p ro tec t ion  assays  were  used  to assay  for  cre- 
a t ine k inase  R N A  levels in musc le  d e n e r v a t e d  for var ious  l eng ths  
o f  t ime  ex t end ing  up  to 1 yr. A t  the  top  of  the  g raph  is a r ep re sen -  
ta t ive R N a s e  p ro tec t ion  result .  T h e  g r aph  r e p r e s e n t s  quan t i t a t i on  
o f  the  M C K  R N A  level as a func t ion  of  the  t ime  the  musc le  re- 
m a i n s  dene rva t ed .  M C K  R N A  ( d e n s i t o m e t r y  va lue)  is no rma l -  
ized to total  R N A  (l~g) appl ied  to the  gel. Va lues  a re  the  ave rage  
of  six expe r imen t s .  R N A  was isola ted f rom bo th  g a s t r o c n e m i u s  
and  tibialis an te r ior  muscles .  
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Figure 2. Adaptation of nAChR RNA levels to long-term muscle 
denervation. RNase protection assays were used to assay for em- 
bryonic-type nAChR RNA levels in gastrocnemius muscle de- 
nervated for various lengths of time extending up to 1 yr. At the 
top of each graph is a representative RNase protection result. 
The graph represents quantitation of the nAChR RNA level as a 
function of the time the muscle remains denervated, nAChR 
RNA is normalized to MCK RNA levels. Asterisks (*) indicate 
values were below detectable levels. 

the hybridizat ion reaction,  in six different  exper iments  
(Fig. 1). Since muscle denervat ion  lasting up to 12 mo had 
no significant effect on the expression of the M C K  R N A ,  
expression of  n A C h R  subunit  R N A s  was normal ized to 
the expression of this muscle-specific gene. 

In contrast  to the MCK R N A  and consistent with previ- 
ous reports  (Evans et al., 1987; Goldman  et al., 1988; Witze- 
mann et al., 1989; Gundersen  et al., 1993), RNase  protec-  
t ion assays revealed an initial increase in n A C h R  R N A  
levels during the first month  of denervat ion  (Fig. 2). How- 
ever, as denervat ion  progressed beyond  1 mo, we were 
surprised to find that  c~, 13, % and ~ subunit  R N A s  specifi- 
cally began to re turn to innervated levels. This finding was 
most dramat ic  for the "V and ~ RNAs ,  which approached  
innervated levels within 2 mo after denervat ion.  In con- 
trast the et and [3 R N A s  showed a more  gradual  decline ap- 
proaching innervated  levels by 7 mo after denervat ion.  Al l  
four subunit-specific R N A s  began decreasing ~ 1 - 2  mo af- 
ter  nerve section. 

The transient  nature  of the increases in R N A s  that  en- 
code subunits of the embryonic- type  n A C h R  was in 
marked  contrast  to expression of the adul t - type • subunit  
R N A .  Levels of • subunit  R N A  were found to increase 
ninefold shortly after denervat ion  and remained  e levated 
throughout  the ensuing 12 mo (Fig. 3). Note  that  in this 
part icular  exper iment  ~ subunit  R N A  began to decrease 

Figure 3. The adult-type spe- 
cific e-RNA remains elevated 
in long-term denervated mus- 
cle. RNase protection assays 
were used to assay for the 
embryonic-type specific ",/sub- 
unit RNA and the adult-type 
specific e subunit RNA in 
tibialis anterior muscle den- 
ervated for various lengths of 
time up to 7 mo. Above the 
graph is a representative 
RNase protection result. The 
graphs represent quantita- 
tion of ~/- and e-RNA levels 
as a function of time the mus- 
cle remains denervated. 
nAChR RNA levels are nor- 
malized to MCK RNA levels. 

be tween 0.3 and 1 mo after denervat ion,  while in the ex- 
per iment  r epor ted  in Fig. 2 this R N A  began to decrease  
after 1 mo of  denervat ion.  This difference in t ime course 
l ikely reflects the different muscles used in these two ex- 
periments.  Exper iments  r epor ted  in Fig. 2 used R N A  iso- 
lated from the gastrocnemius muscle, while exper iments  
repor ted  in Fig. 3 used R N A  isolated from the tibialis an- 
ter ior  muscle. 

Prolonged Muscle Denervation Leads to a Decreased 
Expression of  Functional Embryonic-Type nA ChRs 

To de termine  if changes in n A C h R  subunit  m R N A s  were 
reflected in concomitant  changes in the expression of func- 
t ionally distinct receptors,  single channel  recordings were 
made  from denerva ted  fdb fibers isolated from the dener-  
vated muscle. Two functionally distinct classes of  A C h R  
were present  in denerva ted  fdb fibers: high conductance 
(77.8 _+ 2.3 pS; n = 19), short  open t ime (1.56 -+ 0.17 ms; 
n = 20) adul t - type n A C h R  (e-containing) and the low con- 
ductance (49.9 ___ 1.7 pS; n = 14), long open t ime (3.13 __ 
0.36 ms; n = 15), embryonic- type  n A C h R  (~/-containing) 
channel  (Fig. 4). The relat ive percentages of ACh- induced  
opening a t t r ibuted to these two distinct classes were deter-  
mined in both junct ional  and extrajunct ional  regions of 
the muscle fiber (Table I). This analysis revealed a de- 
creased expression of embryonic- type  channels as the 
length of t ime of denervat ion  increased beyond 1 mo in 
both junct ional  and extrajunct ional  membrane .  By 4 mo of 
denervat ion,  the major i ty  of n A C h R  channel  openings 
were of the adult- type.  In addit ion,  the level of ACh-  
induced channel  activity was 300-fold lower in recordings 
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Figure 4. ACh-induced sin- 
gle channel events recorded 
from the endplate of a 4-mo 
denervated fdb fiber. (Right) 
Representative single chan- 
nel openings elicited in a cell- 
attached patch from the 
postsynaptic membrane by 
250 ~M ACh. Two distinct 
classes of events, correspond- 
ing to the low conductance/ 
long open time (embryonic) 
and high conductance/short 
open time (adult) forms of 
the nAChR were evident. 
(Left) Amplitude histogram 
for all events recorded at this 
endplate (concurrent multi- 
ple openings not shown). 
Two distinct amplitude classes 
are evident, but nearly all 
events fall in the distribution 
corresponding to the higher 
amplitude (adult-type) class. 
Bar, 5 ms; 5 pA. 

from extrajunctional versus junctional  membrane  from 
long-term denervated fibers, suggesting a reversal of de- 
nervat ion supersensitivity. 

Adult-type specific e-RNA and nA ChRs Remain 
Localized to Discrete Regions of the Muscle Fiber Four 
Months After Denervation 

The adult-type specific ~-RNA is localized to the neuro- 
muscular junct ion in innervated and short-term dener- 
vated muscle. This localized expression appears to be me- 
diated by the synaptic basal lamina (Goldman et al., 1991, 
Brenner  et al., 1992; Jo and Burden,  1992). We were inter- 
ested in determining if long-term denervat ion affected the 
distribution of this RNA. In situ hybridizations revealed a 
localized expression of this R N A  in muscles denervated 
for up to 1 yr (Fig. 5 A). In addition, we continue to detect 
a localized, high level of synaptic expression of n A C h R  
protein in muscles denervated for 4 mo as revealed by flu- 
orescent a-bungarotoxin  staining (Fig. 5 B). These results 
are consistent with continued expression of ~-RNA at the 

Table L Percentage of High-Conductance Openings in FDB 
Fibers Denervated In Vivo 

Number of days denervated Synaptic Nonsynaptic 

0 t 97%(42) 97%(10) 
14-172 8%(10) 2%(6) 
19-212 16%(13) 7%(6) 
120-150 70%(10) 65%(8) 
>210 99% (3) 67% (6) 

The values represent the percentage of total openings that were due to activation of the 
high conductance (e-containing) ACh receptor in synaptic and nonsynaptic recordings 
from flexor digitorum brevis (FDB) fibers denervated in vivo for the number of days 
indicated. Values in parentheses indicate the number of fibers examined. Recordings 
were made in the cell-attached configuration. [ACh] = 250 nM. 
*Data are from Brehm and Kullberg (1987) and Brennan and Henderson (1993). 
~Data are from Henderson et al. (1987). In these experiments, ACh receptors present 
at the time of denervation were irreversibly blocked by a-bungarotoxin. Openings rep- 
resent channels newly synthesized after denervation. 

old neuromuscular  junct ion of long-term denervated mus- 
cle and with the higher levels of ACh-induced activity in 
junctional  than in extrajunctional recordings. 

Long-Term Muscle Denervation Results in a Changing 
Pattern of MRF RNA Expression 

Since long-term muscle denervat ion resulted in reduced 
expression of embryonic-type nAChRs,  and because the 
n A C h R  genes are known to be regulated by MRFs 
(Gilmour et al., 1991; Prody and Merlie, 1992; Berberich et 
al., 1993; Bessereau et al., 1994; Durr  et al., 1994; Tang et 
al., 1994), we examined MRF expression in the long-term 
denervated muscles. All the MRFs analyzed were induced 
within 10 d after muscle denervat ion (Fig. 6). At  10 d after 
denervat ion myogenin and MRF4 were induced ~100- 
and 40-fold, respectively, while MyoD and myf-5 were in- 
duced ~7-  and 17-fold, respectively. MyoD and myf-5 ex- 
pression remains high for at least 7 mo after denervation. 
Myogenin and MRF4 do not maintain their high level of 
expression beyond 1 mo after denervation,  and in this re- 
spect are similar to the expression of embryonic-type 
n A C h R  RNAs. 

Finally, we examined the expression of Id RNA in the 
denervated muscles. We were surprised to find that this 
R N A  has a relatively slow time course of induction follow- 
ing muscle denervat ion (Fig. 6). Peak levels of Id R N A  
were detected ~ 2  mo after denervat ion and these levels 
remained significantly above that found in innervated 
muscle for at least 7 mo after motor  nerve section. The 
time period in which Id levels were maximal corresponded 
to the time when n A C h R  subunit  R N A  levels and levels of 
functional receptors were decreasing. 

Discussion 

Before the studies reported here, it has been presumed 
that embryonic-type n A C h R  R N A  expression remained 
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Figure 5. Localization of 
e-RNA and nAChRs to dis- 
crete regions of the 4-mo 
denervated muscle fiber. (A) 
In situ hybridization was 
used to identify ~-RNA in 
tibialis anterior muscle fi- 
bers denervated for 4 mo. 
The white grains correspond 
to the distribution of e-RNA 
(similar results were ob- 
tained at 1 yr after denerva- 
tion). (B) Distribution of 
nAChR in 4 mo denervated 
muscle fiber. High density of 
synaptic receptors indicated 
by rhodamine a-bungaro- 
toxin fluorescence. 

elevated in denervated muscle. This is clearly not the case. 
After 2 mo of denervation, the predominant forms of 
nAChR RNAs expressed are those which encode the 
adult-type receptor. These changes in RNA expression are 
reflected in the expression of functional nAChRs on the 
muscle's surface. With time after denervation greater than 
1-2 mo, the relative percentage of ACh-induced openings 
attributed to the embryonic-type receptor decreases until 
at times greater than 210 d, the relative percentages of 
openings by the adult and embryonic forms of the nAChR 
at the synapse are indistinguishable from those of an in- 
nervated fiber. In addition, the observation that the level 
of extrajunctional ACh-induced activity is quite low (sug- 
gesting that denervation supersensitivity has declined) is 
also consistent with a return to an "innervated condition" 
in long-term denervated fibers. One caveat is that the rela- 
tive percentage of openings by embryonic type receptors 
in extrajunctional membrane (33%) does not completely 
return to levels characteristic of the innervated state (3%; 
Brehm and Kullberg, 1987; Brennan and Henderson, 
1993). In addition, the overall level of ACh-induced activity 
at the junction in long-term denervated rat fdb fibers is ap- 
proximately half that observed in innervated fibers (C. Bren- 
nan and L. Henderson, unpublished data), although this 
may reflect a lower overall capability of long-term dener- 
vated fibers to synthesize proteins, rather than a specific ef- 
fect on nAChR expression. 

Is it possible that these results derive from reinnervation 
of denervated muscle fibers? We do not believe this is the 
case for the following reasons: (a) a denervation proce- 
dure was used that had previously been documented to 
prevent the return of nerve fibers for a period of time ex- 
tending beyond 22 mo (Carlson and Faulkner, 1988); (b) 
the muscle fibers retained, on an average, only 18% of 
their original mass consistent with their denervated state; 
(c) morphological studies showed a progressive worsening 
of the histological quality of the muscle fibers as the time 

of denervation increased (B. M. Carlson, unpublished ob- 
servation); (d) MyoD and myf-5 RNAs, which are regu- 
lated by muscle activity, remained elevated in the long- 
term denervated muscles; (e) at the time of dissection of 
the muscles there was no observable sign of reinnervation, 
nor did the lower leg contract upon electrical stimulation 
of the proximal stump of the sciatic nerve; and Q) using 
the same denervation technique, Billington (1995) has 
shown that the maximum tetanic force generated by 4 mo 
and longer denervated EDL muscles drops to 0.3% of con- 
trol and remains at that level. Therefore, we conclude that 
the results reported here do not reflect reinnervation of 
the denervated muscle fibers. 

The consequences of expressing adult-type nAChRs in 
long-term denervated muscle are not known. However, it 
is interesting to note that the recovery of function of de- 
nervated muscle by grafting and reinnervation is ~100% 
of that of control muscle grafts if the muscle is grafted and 
reinnervated within the first two months of denervation. 
However, denervation lasting from 2-7 mo results in a 
progressive decrease in the ability of the muscle to recover 
function (B. M. Carlson, unpublished observation). It is 
possible that one component of this robust recovery of 
function after short-term denervation is the expression of 
embryonic-type nAChRs on the denervated muscles sur- 
face. Perhaps these receptors are involved in maintaining a 
permissive state for reinnervation. Alternatively, increased 
embyronic-type receptor expression may be a conse- 
quence of other events that are required for maintaining a 
muscle in a receptive state for reinnervation and maximal 
functional recovery. In this case the nAChR genes will 
serve as useful probes for characterizing the mechanisms 
leading to poor muscle recovery following long-term de- 
nervation. 

To gain insight into potential mechanisms mediating the 
decreased expression of embryonic-type receptor genes 
during long-term denervation, we assayed for MRF RNA 
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Figure 6. Regulation of myogenic factor RNA levels in short and 
long-term denervated muscle. RNase protection assays were used 
to determine the level of various myogenic factors in denervated 
tibialis anterior muscle. Representative RNase protection assays 
are shown in the upper left of the figure. Quantitation of these 
RNase protection assays is presented in the graphs. Muscle regu- 
latory factor RNA levels are normalized to MCK RNA levels. 

expression in these same muscle samples. We suspected 
that MRF expression participated in this regulation be- 
cause; (a) these transcription factors are known to activate 
nAChR gene promoters in in vitro cell culture experi- 
ments (Piette et al., 1990; Gilmour et al., 1991; Prody and 
Merlie, 1992; Berberich et al., 1993; Durr et al., 1994); (b) 
myogenin knock-out mice fail to induce nAChR a and ",/ 
subunit RNAs (Hasty et al., 1993); and (c) mutations in 
particular E-box cis-acting sequences, that mediate bind- 
ing of these factors to nAChR promoter DNA, affect 
nAChR promoter activity in vivo (Bessereau et al., 1994; 
Tang et al., 1994). RNase protection assays showed a com- 
plex pattern of MRF RNA expression over a 7-mo period 
of muscle denervation (Fig. 6). Both myogenin and MRF4 
were induced shortly after muscle denervation. Consistent 
with previous reports (Witzemann and Sakmann, 1991; 
Dulcert et al., 1991; Eftimie et al., 1991; Voytik et al., 
1993), we found myogenin was induced to a significantly 
higher level than any of the other MRFs. However, both 

myogenin and MRF4 induction were transient and return 
to a lower level by 2 mo after denervation. 

MRFs have been proposed to participate in mediating 
nAChR gene induction following muscle denervation (Mer- 
lie et al., 1994; Tang et al., 1994; Sue t  al., 1995). Our data 
are consistent with this possibility and indicate that the de- 
crease in nAChR RNAs beginning '--~1-2 mo after dener- 
vation may result from lower levels of myogenin and/or 
MRF4 expression (Fig. 6). Interestingly, in denervated 
chick muscle, MRF4 is not observed to increase following 
muscle denervation (Neville et al., 1992), yet nAChR 
genes are induced. There is evidence to suggest that regu- 
lation of nAChR expression in chicks does not precisely 
parallel that observed in mammals and amphibians. For 
example, the developmental change in nAChR kinetics 
does not occur in chick (Schuetze, 1980), and there may be 
species-specific differences in mechanisms governing myo- 
genic factor, as well as nAChR gene expression (Walke et 
al., 1994). However, if a mechanism is conserved between 
birds and mammals in initiating and maintaining nAChR 
gene induction after muscle denervation, one would pre- 
dict that myogenin is a more likely candidate for mediat- 
ing this effect. In support of this hypothesis, Hasty and col- 
leagues (1993) have shown that developmental induction 
of nAChR ct and ~/subunit RNAs is prevented in myoge- 
nin knock-out mice. However, this study also showed that 

subunit RNA is developmentally induced in myogenin- 
deficient mice. These data suggest that denervation para- 
digms may not completely recapitulate early developmental 
changes in MRF expression, as has previously been reported 
(Witzemann and Sakmann, 1991). Conversely, different 
nAChR subunit genes may be differentially regulated by 
individual MRFs. 

Most interesting is our observation that Id expression 
gradually increases during the first 2 months after dener- 
vation (Fig. 6). This time course is consistent with the hy- 
pothesis that Id is responsible for blocking MRF activity 
that leads to a decline in nAChR gene expression. The ef- 
fect of Id could be manifested by combining with different 
MRFs and therefore affecting genes differentially regu- 
lated by these MRFs. In addition, Id overexpression has 
recently been correlated with muscle atrophy in adult 
transgenic mice (Gundersen and Merlie, 1994). Denerva- 
tion-induced expression of Id may be contributing to mus- 
cle atrophy as well as influencing other events related to 
the ability of muscle to recover function following long- 
term denervation. Clearly Id expression is becoming maxi- 
mal in the same time frame that denervated muscle loses 
its ability to recover function upon reinnervation. One ca- 
veat to these interpretations is that we are assuming that 
MRF RNA expression reflects MRF protein levels. Al- 
though this is generally true, it will ultimately be necessary 
to demonstrate this correlation by assaying for MRF pro- 
tein. 

In summary, long-term muscle denervation results in a 
changing pattern of nAChR and MRF gene expression 
that no longer resembles the embryonic state of develop- 
ing muscle fibers. It is well known that adult, innervated 
muscle is usually refractory to further innervation (Els- 
berg, 1917; Jansen et al., 1978). The changes in gene ex- 
pression we observe, which in many ways come to resem- 
ble that of the innervated state, may contribute to the poor 
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recovery of function in long-term denervated muscle sub- 
ject to reinnervation. It will be of interest to determine if 
interventions such as electrical stimulation of long-term 
denervated muscle will delay or prevent these detrimental 
changes in gene expression, allowing denervated muscle to 
retain its potential for functional recovery. 
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