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Postharvest diseases cause high economic losses in the global citrus and pome fruit
industry. The fungal genus Penicillium produces the most economically important posthar-
vest diseases of fresh citrus and pome fruits worldwide. Within this genus, it is worth
highlighting Penicillium digitatum, Penicillium italicum and Penicillium expansum, which
affect fruit quality, reduce the consumption of fresh fruit and contribute significantly to
food loss. Some of them also produce mycotoxins with negative consequences to human
health. Control of these pathogens is carried out by fungicides; however, the appearance of
fungicide-resistant species makes disease control difficult, which results in concern and
increases the need for new compounds and target discovery. Therefore, new approaches
and tools are required to combat Penicillium pathogens during storage.

A complex interplay exists between antifungal resistance and virulence expressed
by pathogenic fungi. Currently marketed antifungals are limited, when compared to
antibacterial compounds. Comparative genomic and transcriptomic studies have indicated
several new potential antifungal targets, which are currently under analysis. Among
those, factors involving virulence and pathogenesis could provide new insights for the
development of novel compounds, such as antifungal proteins or peptides.

This Special Issue focuses on different approaches developed to control pathogenic
Penicillium species during postharvest to avoid antifungal drug resistance mechanisms and
on potential new target strategies to control fungal infections based on virulence factors
and signal transduction pathways underlying the control of infection mechanisms.

A total of eight articles give potential alternatives to the use of fungicides to control
these postharvest diseases and fungal growth, including biological control using other
microorganisms, use of essential oils, antifungal proteins or regulation of specific genes
that can be crucial in virulence, fungal growth or other biological aspects of fungi.

One of these papers, authored by OuYang and co-workers [1], examines the mechanism
of citronellal, a typical terpenoid of Cymbopogon nardus essential oil. This compound exhibits
its antifungal activity against P. digitatum by reducing the levels of ergosterol, an important
compound of the fungal cell membrane, to maintain the integrity and fluidity. The study
provides new knowledge about the antifungal mechanism of citronellal, pointing to the
ERG3 gene as the key regulatory site in response to citronellal treatment.

The regulation of specific genes can contribute to the fungal growth, virulence or
pathogenesis development. To advance in the control of postharvest fungal diseases, it is
important to explore the mechanism that fungi use in the infection processes. Three of the
articles published in this Special Issue follow these lines. Xu et al. [2] studied the role of
arginine methyltransferase proteins (PRMTs), which modulate many cellular processes. In
the pome pathogen P. expansum, they identified four PRMT genes and the elimination of
one of them (PeRmtC) affects the development, pathogenicity and secondary metabolism of
the fungus, regulating conidiation via controlling genes involved in this pathway. Deletion
mutants exhibited a reduction in conidia production and a delay in conidia germination,
affecting fungal virulence. On the other hand, de Ramón-Carbonell and Sánchez-Torres [3]
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examined Zn2Cys6 transcription factors in P. digitatum and demonstrated an indirect role
of one of these genes, PdMut3, involved in cell integrity. Deletion mutants were affected in
fungal growth, conidiophore development or hypha morphology, showing alterations in
cell wall and chitin content. PdMut3 could be related to metabolism through peroxisomes
development, regulating their degradation and could also be negatively controlled by the
PdSte12 transcription factor involved in Fus3 MAPK metabolic pathway. These results
point to this gene as a potential target for the development of new antifungal compounds.

Finally, Li and co-workers [4] analyzed Calcium (Ca2+)/calmodulin-dependent pro-
tein kinases (CaMKs), identifying a new gene in P. italicum (PiCaMK1). Results obtained
in this work suggest that PiCaMK1 function involves the regulation of multiple physical
and cellular processes of this pathogen, including growth, conidiation, virulence, and
environmental stress tolerance.

On the other hand, the many problems associated with synthetic fungicides forces us to
look for more natural, sustainable compounds with a minimal impact on the environment.
Gandía and colleagues [5] describe the potential use of antifungal proteins (AFPs) as
alternative tools in the control of postharvest diseases. AFPs secreted by filamentous
ascomycetes have great potential as new biofungicides due to their characteristics. The
authors evaluated the potential application of different AFPs obtained from different
fungi: PAFB and PAFC from Penicillium chrysogenum [6,7] and NFAP2 from Neosartorya
fischeri, [8] compared to one of the first described AFPs (PAF from P. chrysogenum) [9] and
the highly active PdAfpB from P. digitatum [10] and PeAfpA from P. expansum [11]. In vitro
studies were performed with these different proteins. In vivo assays with orange and
apple fruits showed a delay in the P. digitatum and P. italicum infection of orange fruits
and the same result in the P. expansum infection of apples when the fruits were treated
with PAFB. Antifungal potential to control postharvest diseases in the case of PeAfpA had
been demonstrated in previous works in orange and apple fruits too [11,12]. All of these
results support the employment of AFPs as putative antifungal compounds in the control
of fungal postharvest diseases.

Last but not least, biocontrol is another option in the control treatment of these fungal
diseases. The application of biological control agents present in the surfaces of vegetables
and fruits is also a very appropriate alternative method to synthetic fungicides. In this sense,
Dor and colleagues [13] present quorum-sensing signaling molecules (QSMs) secreted by
bacteria as a method to control fungal pathogenicity. They demonstrated that a bacterial
N-acyl homoserine lactonase can also efficiently degrade patulin, a fungal mycotoxin
secreted by P. expansum, and that it could have a potential use in postharvest disease
treatments. Moreover, yeast and bacteria can be used in biocontrol to preserve food. The
use of edible packaging films is becoming a strategy widely employed by the food industry.
García-Bramasco et al. [14] evaluated the addition of Debaryomyces hansenii yeast in chitosan
films for controlling P. italicum. The incorporation of antagonistic yeast improved the
mechanical resistance of the films and these could be used for citrus packaging in the
future. Finally, Hammami and coworkers [15] carried out a screening of different yeasts
and bacteria isolated from the peel of citrus fruits and analyzed their antagonistic effect
against P. digitatum and P. italicum. Two different yeasts (Candida oleophila and D. hansenii)
and three bacteria isolated (Bacillus amyloliquefaciens, B. pumilus and B. subtilis) reduced the
incidence of decay in orange and lemon fruits by P. digitatum and P. italicum, confirming
their potential use as biocontrol agents in postharvest control.

To summarize, the articles included in this Special Issue cover different and alternative
treatments to control fungal postharvest diseases. The works have been carried out using
different pathogens inside the Penicillium genus and help to increase knowledge in this field.

We hope that this Special Issue has contributed to further research into new alternatives
for the control of Penicillium diseases. We highly appreciate the contributions of each of the
authors, making this Special Issue possible and thank all of them for sharing their expertise.
We express our gratitude to all the reviewers who contributed, and, furthermore, we are
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grateful to the “Journal of Fungi” for their valuable support and for giving us this opportunity
to provide advances in the field of “Control of Postharvest Pathogenic Penicillium”.
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