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Local dendritic balance enables learning of efficient
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How can neural networks learn to efficiently represent com-
plex and high-dimensional inputs via local plasticity mechanisms?
Classical models of representation learning assume that feedfor-
ward weights are learned via pairwise Hebbian-like plasticity.
Here, we show that pairwise Hebbian-like plasticity works only
under unrealistic requirements on neural dynamics and input
statistics. To overcome these limitations, we derive from first
principles a learning scheme based on voltage-dependent synap-
tic plasticity rules. Here, recurrent connections learn to locally
balance feedforward input in individual dendritic compartments
and thereby can modulate synaptic plasticity to learn efficient
representations. We demonstrate in simulations that this learn-
ing scheme works robustly even for complex high-dimensional
inputs and with inhibitory transmission delays, where Hebbian-
like plasticity fails. Our results draw a direct connection between
dendritic excitatory–inhibitory balance and voltage-dependent
synaptic plasticity as observed in vivo and suggest that both are
crucial for representation learning.

efficient coding | synaptic plasticity | balanced state | neural sampling |
dendritic computation

Many neural systems have to encode high-dimensional
and complex input signals in their activity. It has long

been hypothesized that these encodings are highly efficient;
that is, neural activity faithfully represents the input while
also obeying energy and information constraints (1–3). For
populations of spiking neurons, such an efficient code requires
two central features: First, neural activity in the population has
to be coordinated, such that no spike is fired superfluously (4);
second, individual neural activity should represent reoccurring
patterns in the input signal, which reflect the statistics of
the sensory stimuli (2, 3). How can this coordination and
these efficient representations emerge through local plasticity
rules?

To coordinate neural spiking, choosing the right recurrent
connections between coding neurons is crucial. In particular,
recurrent connections have to ensure that neurons do not spike
redundantly to encode the same input. An early result was that
in unstructured networks the redundancy of spiking is minimized
when excitatory and inhibitory currents cancel on average in
the network (5–7), which is also termed loose global excitatory–
inhibitory (E-I) balance (8). To reach this state, recurrent con-
nections can be chosen randomly with the correct average mag-
nitude, leading to asynchronous and irregular neural activity (5)
as observed in vivo (4, 9). More recently, it became clear that
recurrent connections can ensure a much more efficient encoding
when E-I currents cancel not only on average, but also on fast
timescales and in individual neurons (4), which is also termed
tight detailed E-I balance (8). Here, recurrent connections have
to be finely tuned to ensure that the network response to inputs is
precisely distributed over the population. To achieve this intricate
recurrent connectivity, different local plasticity rules have been
proposed, which robustly converge to a tight balance and thereby
ensure that networks spike efficiently in response to input signals
(10, 11).

To efficiently encode high-dimensional input signals, it is ad-
ditionally important that neural representations are adapted to
the statistics of the input. Often, high-dimensional signals contain
redundancies in the form of reoccurring spatiotemporal patterns,
and coding neurons can reduce activity by representing these
patterns in their activity. For example, in an efficient code of
natural images, the activity of neurons should represent the
presence of edges, which are ubiquitous in these images (3).
Early studies of recurrent networks showed that such efficient
representations can be found through Hebbian-like learning of
feedforward weights (12, 13). With Hebbian learning the re-
peated occurrence of patterns in the input is associated with
postsynaptic activity, causing neurons to become detectors of
these patterns. Recurrent connections indirectly guide this learn-
ing process by forcing neurons to fire for distinct patterns in the
input. Recent efforts rigorously formalized this idea for models
of spiking neurons in balanced networks (11) and spiking neuron
sampling from generative models (14–17). The great strength
of these approaches is that the learning rules can be derived
from first principles and turn out to be similar to spike-timing–
dependent plasticity (STDP) curves that have been measured
experimentally.

However, to enable the learning of efficient representations,
these models have strict requirements on network dynamics.
Most crucially, recurrent inhibition has to ensure that neural
responses are sufficiently decorrelated. In the neural sampling
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approaches, learning therefore relies on strong winner-take-all
dynamics (14–17). In the framework of balanced networks, trans-
mission of inhibition has to be nearly instantaneous to ensure
strong decorrelation (18). These requirements are likely not met
in realistic situations, where neural activity often shows positive
correlations (19–22).

We here derive a learning scheme that overcomes these lim-
itations. First, we show that when neural activity is correlated,
learning of feedforward connections has to incorporate non-
local information about the activity of other neurons. Second,
we show that recurrent connections can provide this nonlocal
information by learning to locally balance specific feedforward
inputs on the dendrites. In simulations of spiking neural net-
works we demonstrate the benefits of learning with dendritic
balance over Hebbian-like learning for the efficient encoding of
high-dimensional signals. Hence, we extend the idea that tightly
balancing inhibition provides information about the population
code locally and show that it can be used not only to distribute
neural responses over a population, but also for an improved
learning of feedforward weights.

Results
The goal in this paper is to efficiently encode a continuous high-
dimensional input signal by neural spiking. In the following, we
explain how neurons can learn efficient representations of these
inputs through local plasticity mechanisms. We first show how a
tight somatic balance can guide neural spiking to distribute the
encoding over the population. We then show how a tight balance
on the level of dendrites can guide the learning of efficient
representations in the feedforward weights.

Background: Efficient Encoding by Spiking Neurons with Tight E-I
Balance.
Setup. Continuous spatiotemporal inputs x(t) drive a recur-
rently connected spiking neural network, which encodes the
inputs through responses z(t) (Fig. 1A). Feedforward weights
Fji indicate how strongly inputs xi(t) couple to neuron j, and
recurrent weights Wjk provide coupling between the neurons.
Inputs xi(t) are always positive, to ensure that single synapses
act either excitatory or inhibitory, but not both. Neurons in
the network encode the inputs by emitting spikes, which then
elicit postsynaptic potentials (PSPs) z(t). The PSPs are mod-
eled as a sum of exponentially decaying depolarizations zj (t) =∑

t
j
s≤t−δ

exp(− t−δ−tjs
τ

) with decay time τ for each spike of neu-
ron j at times t js . PSPs arrive after one timestep δ, which we
interpret as a finite transmission delay of neural communication.
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Fig. 1. The task is to efficiently encode analog input signals x by the
response of a population of spiking neurons z. (A) To that end, neurons
couple to the input via feedforward weights F (dominated by excitation)
and to each other via recurrent weights W (dominated by inhibition). From
the encoding an external observer can decode an approximation x̂ of the
original input signal x via a linear transformation D. (B) The membrane
potential uj of neuron j is a linear sum of continuous inputs xi and spike
traces zk. Spikes cause an immediate self-inhibition, which can be seen as an
approximate reset of uj . Spikes of other neurons are transmitted with a delay
δ. When recurrent weights are learned such that recurrent input zk cancels
feedforward input xi , uj is balanced and reflects the global encoding error
x − x̂. In that case, spikes are fired only when the encoding error is high, so
that the spike encoding is efficiently distributed over the population.

Our model is similar to those in previous studies of balanced
spiking networks (11, 23).

The goal is to find the most efficient spike encoding that
enables the best reconstruction of the input, while the av-
erage firing rate of individual neurons is held fixed (see
SI Appendix, section B for details). To test the reconstruction
of the input, we consider the best linear readout x̂(t) =Dz(t)
from the neural response and quantify the mean decoder loss

L=
1

2Nx

〈
||x(t)− x̂(t)||2

〉
t
=

1

2Nx

〈
||x(t)−Dz(t)||2

〉
t
, [1]

where Nx is the number of inputs. It is important to note that the
readout is not part of the network, but serves only as a guidance
to define a computational goal. Hence, learning an efficient code
amounts to minimizing L via local plasticity rules on Fji and Wjk ,
given the best decoder D and a fixed firing rate.
Spiking neuron model. Spiking neurons are modeled as stochas-
tic leaky integrate-and-fire (LIF) neurons. More precisely,
the model employed here is a special case of the spike
response model with escape noise, which is a phenomenological
noise model that summarizes effects of biophysical channel
noise as well as stochastic input on neural spiking (24).
This stochasticity of spiking is required, since deterministic
neurons in balanced networks with transmission delays lead
to erratic network behavior (18), and it allows a direct link to
neural sampling and unsupervised learning via expectation–
maximization (SI Appendix, section B). A neuron j emits spikes
with a probability that depends on its membrane potential uj (t)
according to

pspike(uj (t)) = sig
(
uj (t)− Tj

Δu

)
, [2]

where sig(x ) = [1 + exp(−x )]−1 is a sigmoid function. When
the membrane potential approaches the firing threshold Tj , the
firing probability increases rapidly. To fix the number of spikes
for an efficient code, Tj is adapted to control the average firing
rate of each neuron (Fig. 2C). Furthermore, Δu regulates the
stochasticity of spiking. For increasing Δu the spike emission
becomes increasingly noisy, whereas for Δu → 0 one recovers
the standard LIF neuron with sharp threshold. The membrane
potential itself is modeled as a linear sum of the feedforward
inputs xi(t) and recurrent inputs zk (t); i.e.,

uj (t) =
∑

iFjixi(t)︸ ︷︷ ︸
feedforward input

+
∑

kWjk zk (t)︸ ︷︷ ︸
recurrent input

. [3]

Note that, for simplicity, in this model coding neurons are di-
rectly coupled by inhibitory connections, but similar dynamics
and learning behavior can be implemented in networks with
inhibitory interneurons (11).
Learning an efficient spike encoding with recurrent plasticity.
Spiking neurons can efficiently distribute neural responses to the
input signals over the population, by tightly balancing feedfor-
ward and recurrent input at the soma (4, 11) (Fig. 1B). In fact,
a tight balance of inputs is a direct consequence of learning an
efficient encoding via gradient descent on the decoder loss (see
SI Appendix, section B for derivation). To learn a tight balance
recurrent weights adapt according to

ΔWjk ∝−zkuj (somatic balance). [4]

Hence, when neuron k is active and the somatic potential of
neuron j is out of balance, i.e., uj (t) �= 0, the weight Wjk changes
to balance uj (t). Note that all neurons have an autapse that
learns to balance their own membrane potentials, which can al-
ternatively be interpreted as an approximate membrane potential
reset after spiking.
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Fig. 2. We compare learning in two network models, a point neuron model with somatic balance, and a model with dendritic balance. (A) In the model
with SB, neurons (gray circles) with outputs z receive feedforward network inputs x (white circles) and are coupled via recurrent connections. Recurrent
weights W are adapted to balance other inputs to the somatic membrane potential uj , which ensures an efficient spike encoding. (B) In our proposed model
with DB, neurons receive inputs at specific dendritic compartments. Recurrent connections learn to balance input currents locally at the dendrites. This leads
to dendritic potentials ui

j that are proportional to the coding error for specific feedforward inputs and therefore can be used to learn feedforward weights.
(C) After learning, local feedforward (red) and recurrent (blue) currents have adapted to tightly balance each other in individual dendritic compartments
(Bottom). This dendritic balance also results in a somatic balance of inputs (Top). Here we show a neuron from a network with 80 neurons coding for natural
images. (D) In both models a rapid compensatory mechanism ensures that every neuron fires with rate ρ. If any neuron spikes too rarely, its threshold Tj is
lowered; if it spikes too often, Tj is increased. (E–H) Illustration of learning rules in terms of experimental STDP rules. For easier interpretability we plot weight
changes for spiking inputs xi , whereas in the remainder of this paper, xi are analog input signals. (E) For learning feedforward weights in the point neuron
model (SB) a Hebbian-like STDP rule increases or decreases weights Fji depending on the time difference between pre- and postsynaptic spikes Δtj and the
weight Fji itself. If Fji is high or low, this shifts plasticity toward depression or potentiation, respectively. The same learning rule applies to the DB model, if
a neuron does not simultaneously receive any recurrent input. (F–H) Illustration of how inhibition modulates feedforward plasticity in the proposed model
for a network of two coding neurons zj (with one dendritic compartment) and zk and one input neuron xi . (F) The excitatory weight Fij and the inhibitory
weight Wi

jk attach to the same dendritic potential ui
j . (G) We consider the following example where three spikes are fired: xi at t = 0, zj at t = Δtj , and zk

at t = Δtk. (H) The total change in the weight Fji depends not only on the spike time difference Δtj between the input and the postsynaptic neuron, but
also on the relative inhibitory spike time Δtk. In general, if zj and zk spike close together, Fji will tend to be depressed. All weight changes were calculated
with Fji = −Wi

jk = 0.5.

This tight balance enables an efficient encoding, since once
an input signal is encoded by the spike of a coding neuron,
this spike will approximately cancel the excitatory feedforward
input to all other neurons and therefore discourage further spik-
ing. More technically, learning a balance with recurrent plas-
ticity leads to recurrent weights that “decode” the population
activity onto the membrane potential of each individual neu-
ron Wjk =−

∑
i FjiDik (where Dik is the optimal decoder).

The membrane potentials thus reflect the coding error uj (t) =∑
i Fji (xi(t)− x̂i(t)), i.e., the global coding goal, and subse-

quently drive spiking only when the global encoding is not cap-
turing the signal well.

Learning Efficient Representations with Feedforward Plasticity. To
enable an efficient encoding of high-dimensional signals, feed-
forward weights F should be adapted to the statistics of the
input signal. To that end, it is possible to derive a plasticity rule
for weights Fji that minimizes the decoder loss L via gradient
descent (SI Appendix, section B), which yields

ΔFji ∝ zj (xi − x̂i) = zj (xi −
∑

kDik zk ). [5]

Intuitively, this rule drives neuron j to correlate its output zj to
input xi , except if the population is already encoding it. To extract
the latter information, the plasticity rule requires a decoding x̂i =∑

k Dik zk , which contains information about the neural code for
input i of all other neurons in the population.

We thus conclude that an efficient code relies on information
about other neurons in two ways: 1) Neurons need to know what
is already encoded to avoid redundancy in spiking (dynamics),
and 2) plasticity of feedforward connections requires to know
what neurons encode about specific inputs to avoid redundancy
in representation (learning). While recurrent weights Wjk for
efficient spiking dynamics 1) can be learned locally (Eq. 4),
learning feedforward synapses Fji correctly 2) is not feasible
locally for point neurons, since they lack knowledge about the
population code for single inputs xi .

In the following, we introduce the main result of this pa-
per: Similar to efficient spiking through a tight balance of all

Mikulasch et al.
Local dendritic balance enables learning of efficient representations
in networks of spiking neurons

PNAS 3 of 10
https://doi.org/10.1073/pnas.2021925118

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2021925118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2021925118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2021925118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2021925118/-/DCSupplemental
https://doi.org/10.1073/pnas.2021925118


feedforward and recurrent inputs at the soma, local learning
of efficient representations can be realized by tightly balancing
specific feedforward inputs with recurrent input. Physiologically,
we argue that this corresponds to spatially separated inputs at
different dendritic compartments, where recurrent connections
balance the local membrane potential. We contrast this local
implementation of the correct gradient of the decoder loss with a
common local approximation of the gradient, which is necessary
for point neurons with somatic balance only.
Somatic balance alone requires an approximation for local learn-
ing. Since synapses for point neurons have no access to the
population code for single inputs, previous approaches used a
local approximation to ΔFji where only pre- and postsynaptic
currents are taken into account (Fig. 2E):

ΔFji ∝ zj (xi − Fjizj ) (Hebbian-like learning). [6]

We refer to this learning scheme, consisting of Eqs. 4 and 6,
as somatic balance (SB). A practically identical setup has been
proposed in ref. 11. We take this setup as a paradigmatic example
of a larger group of Hebbian-like learning rules, which have
been used to model representation learning (for a more detailed
discussion of related models and learning rules in the literature
see SI Appendix, section C).

Such Hebbian-like learning rules follow the correct gradient
when neurons do not code simultaneously, and thus nonlocal
dependencies during learning are not present. This is the case
when only a single PSP zj (t) is nonzero at a time, e.g., in winner-
take-all circuits with extremely strong inhibition (15), or when
the PSP is extremely short (14). The learning rule becomes also
approximately exact when neural PSPs z(t) in the encoding are
uncorrelated (11, 12). However, these are strong demands on
the dynamics of the network, which ultimately limit its coding
versatility and are likely not met under realistic conditions.
Dendritic balance allows local learning of efficient representa-
tions. When neural PSPs z(t) in the population are correlated,
learning efficient representations requires that information
about the population code is available at the synapses. To this
end, we introduce local dendritic potentials u i

j at synapses Fji

and couple neurons k via dendritic recurrent connections W i
jk

to these membrane potentials (Fig. 2B). The somatic membrane
potential is then realized as the linear sum of the local dendritic
potentials

uj (t) =
∑

iu
i
j (t)

u i
j (t) = Fjixi(t)︸ ︷︷ ︸

feedforward input

+
∑

kW
i
jk zk (t)︸ ︷︷ ︸

recurrent input

. [7]

Note that this amounts only to a refactoring of the equation
for the somatic membrane potential and does not change the
computational power of the neuron. Given such a network with
recurrent weights W i

jk , a SB network with recurrent weights
Wjk =

∑
i W

i
jk has equivalent dynamics. Hence, any improve-

ment in the neural code in this setup is due to an improvement
in the learning of feedforward weights. In the discussion, we
address how the compartmentalization in Eq. 7 could be realized
in biological neurons and how one can reduce the amount of
recurrent dendritic connections W i

jk without losing the central
benefits of this model.

Introducing dendritic compartments for individual inputs al-
lows us to use the same trick as before: By enforcing a tight
E-I balance locally, recurrent connections will try to cancel the
input as well as possible. Thereby, recurrent weights W i

jk will
automatically learn the best possible decoding of the population
activity z to the input Fjixi . This leads to a local potential that
is proportional to the coding error u i

j = Fji(xi − x̂i). In terms of
recurrent synaptic plasticity, this is realized by

ΔW i
jk ∝−zku

i
j (dendritic balance). [8]

Thus, the dendritic membrane potential u i
j can be used to find

the correct gradient ΔFji from Eq. 5 locally:

ΔFji ∝
1

Fji
zju

i
j (learning by errors). [9]

We refer to this learning scheme as dendritic balance
(DB). As can be seen, the learning rules for feedforward and
recurrent weights both rely on the local dendritic potential,
which they also influence. This enables recurrent inputs to
locally modulate feedforward plasticity. However, this also
requires the cooperation of feedforward and recurrent weights
during learning. We propose three different implementations
that ensure this cooperation, by learning recurrent weights
on a faster or on the same timescale as feedforward weights
(SI Appendix, section B.3). We show that these three approaches
yield similar results, which equal the analytical solution (Eq. 5)
in performance (SI Appendix, Figs. S2 and S3).

It is possible to integrate the learning rules that depend on
membrane potentials over time and obtain learning rules that
depend on the relative spike timings of multiple neurons. If we
consider only one input neuron and one coding neuron, learning
with dendritic balance and somatic balance yields the same spike-
timing–dependent plasticity rule. This rule is purely symmetric
and strengthens the connection when both neurons fire close
in time (Fig. 2E). However, if the spike of the excitatory input
neuron is accompanied by an inhibitory spike in the coding
population, the spike-timing–dependent rule breaks symmetry
(Fig. 2H). This shows how learning with dendritic balance can
take more than pairwise interactions into account to enable the
neuron to find its place in the population code.

Simulation Experiments. To illustrate the differences that arise
between the networks using SB and DB during learning, we set
up several coding tasks of increasing complexity. Most centrally,
we will show that two aspects of realistic neural dynamics make
learning especially difficult: 1) correlated occurrences of the pat-
terns that are represented by coding neurons and 2) transmission
delays of recurrent inhibition. Both aspects lead to correlations in
the activity of coding neurons z, which, as we demonstrate, have
a detrimental effect on the representations learned by Hebbian-
like learning.
Learning an efficient encoding with recurrent and feedforward
synaptic plasticity. In a first test we performed a comparison on
the MNIST dataset of handwritten digits (Fig. 3C). We restricted
the dataset to the digits 0, 1, and 2, which were encoded by nine
coding neurons. Networks were initialized with random feedfor-
ward weights and with zero recurrent weights. To demonstrate
the effects of recurrent and feedforward plasticity, we separated
learning into two stages: First, recurrent plasticity learned to
balance feedforward input to the neurons, which leads to a
decorrelation of neural responses to the input signals (Fig. 3B),
and reduced the decoder loss (Fig. 3A). Later, feedforward
plasticity was turned on, which aligned feedforward weights with
reoccurring patterns in the input (Fig. 3D). This further reduced
the decoder loss and led to better reconstructions (Fig. 3C). Since
images were rarely encoded by more than one or two neurons
(Fig. 3B), interactions in the population were small and thus both
setups found similar solutions.
Dendritic balance can disentangle complex correlations. Our the-
oretical results suggest that DB networks should find a better
encoding than SB networks when correlations between learned
representations are present in the stimuli. To test this, we devised
a variation of Földiak’s bar task (12), which is a classic indepen-
dent component separation task. In the original task neurons en-
code images of independently occurring but overlapping vertical
and horizontal bars. Since the number of neurons is equal to
the number of possible bars in the images, each neuron should
learn to represent a single bar to enable a good encoding. We
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Fig. 3. Learning an efficient encoding with recurrent and feedforward synaptic plasticity. In this simulation experiment, networks consisting of nine coding
neurons encoded 16 × 16 images of digits 0, 1, and 2 from the MNIST dataset. (A) Decoder loss decreases with neural plasticity for both models using either
SB or DB. A naive network with random feedforward and zero recurrent weights shows a large decoder loss (1). Learning recurrent connections results
in a drop in decoder loss (2). Later, feedforward plasticity was turned on, also resulting in an improvement of performance (3). Final performances and
encodings of SB and DB are very similar. (B–D) Results of the DB network for different moments in time during learning. (B) Input signal xi and decoded
signal x̂i for a single pixel i in the center of the image. MNIST digits were presented as constant input signals for 70 ms and faded for 30 ms to avoid
discontinuities. After learning, the decoded signal tracks the input reasonably well given the very limited capacity of the network. Below are the spike
trains of all neurons in the network in response to the input signal. Learning recurrent weights decorrelates neural responses; learning feedforward weights
makes neural responses more specific for certain inputs. (C) Sample of input images x from the MNIST dataset and reconstructions x̂ of the input images.
The reconstructions presented here are calculated by averaging the decoded signal during input signal presentation over 70 ms. (D) Feedforward weights F
and the optimal decoder D. Weights F are first initialized randomly; after learning every neuron becomes specific for a certain prototypical digit. Learning
also causes feedforward and decoder weights to align.

kept this basic setup, but additionally we introduced between-bar
correlations for selected pairs of bars (Fig. 4A). We then could
vary the correlation strength p between the bars within the pairs
to render them easier or harder to separate.

The simulation results indeed showed that the performance
of the SB, but not of the DB model, deteriorates when learned
representations are correlated (Fig. 4B). The decoder loss for
SB grows for increasing p and reaches its maximum at about
p = 0.8. This is because Hebbian-like learning (as used in SB)
correlates a neuron’s activity with the appearance of patterns
in the input signal, irrespective of the population activity. The
correlation between two bars therefore can lead a neuron that
initially is coding for only one of the bars to incorporate also the
second bar into its receptive field (Fig. 4B). Hence, for increasing
correlation p neurons start to represent two bars, which does
not reflect the true statistics of the input, where single bars may
still occur. For p > 0.8 the decoder loss decreases, as here the
occurrence of the correlated pairs of bars becomes so likely that
the representations reflect the statistics of the images again. In
contrast, DB enables neurons to communicate which part of
the input signal they encode and hence they consistently learn
to code for single bars. Accordingly, the decoder loss for DB
is smaller than for SB for every correlation strength of bars
(Fig. 4B).

We expected to see a similar difference between SB and DB
networks when complex stimuli are to be encoded. In a third
experiment we therefore tested the performance of the networks
encoding images of natural scenes (Fig. 4C). To also test whether
the amount of compression (number of inputs vs. number of
coding neurons) would affect SB and DB networks differently,
we varied the number of coding neurons while keeping the
population rate fixed at 1,000 Hz. This way, only the compression,
and not also the total number of spikes, has an effect on the
performance of the networks.

The simulations showed that for natural images, DB net-
works learn more efficient representations than SB networks.
The difference in performance becomes larger the higher the
compression of the input signal by the network is (Fig. 4D). This
effect seems to be related to the observations we made in the bar
task: Networks with few coding neurons have to learn correlated
representations (SI Appendix, Fig. S10), which renders SB less
appropriate. We found that SB networks consistently needed
about twice as many neurons to achieve a similar coding perfor-
mance to that of DB networks (Fig. 4D).
Dendritic balance can cope with inhibitory transmission delays.
Correlations between coding neurons can also be introduced by
transmission delays of inhibition (18). We therefore expected to
find that DB networks are much more robust to long transmission
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A B

C D

Fig. 4. Dendritic balance improves learning for complex correlations in the input signal. (A and B) In one simulation experiment, 16 neurons code for
8 × 8 images containing 2 random of 16 possible bars. Thus, optimally, every neuron codes for a single bar. (A) Creation of input images with correlation
between reoccurring patterns. Two bars are selected in succession and added to the image. With probability p the bars are symmetric around the top left to
bottom right diagonal axis. With probability 1 – p the two bars are chosen randomly. (B) Decoder loss after learning for different correlation strengths for
networks with SB and DB. Displayed is the median decoder loss for 50 different realizations for each datapoint; error bars denote 95% bootstrap confidence
intervals. On the sides, 8 of all 16 converged feedforward weights are shown for representative networks. When correlations between bars are present, the
representations learned by SB overlap, while DB still learns efficient single-bar representations. (C and D) Similarly, for complex natural stimuli DB finds better
representations when coding neurons are correlated. (C) We extracted 16 × 16-pixel images from a set of whitened pictures of natural scenes (3), scaled
them down to 8 × 8 pixels, and applied a nonlinearity (SI Appendix, section D). (D) Decoder loss after learning of SB and DB networks featuring varying
numbers of coding neurons, while keeping the population rate constant at 1,000 Hz. On the sides we show exemplary converged feedforward weights. For
a large number of coding neurons (Left) both learning schemes yield similar representations, but performance is slightly better for DB. For a small number
of neurons (Right) DB learns more refined representations with substantially reduced decoder loss compared to SB. The reason is that for a small number
of neurons the learned representations are more correlated and consequently are harder to disentangle. Notably, different amounts of neurons result in
different coding strategies.

delays than SB networks. To investigate this, we simulated
networks of 200 neurons with a range of timesteps δ, which
we interpret as transmission delays. We varied the delay from
δ = 0.1ms to δ = 10ms and observed how the delay affected
coding performance for natural images. Indeed, performance
of SB networks drastically broke down to a baseline level when
transmission delays became longer than 0.3 ms (Fig. 5A). All
neurons had learned the same feedforward weights (Fig. 5B). In
contrast, DB networks continued to perform well even for much
longer delays. While long delays for DB also lead to a decrease
in coding performance, DB prevented the sudden collapse of the
population code.

To illustrate the mechanism that caused the breakdown in
performance for SB, we also ran simulations of networks learn-
ing to code for MNIST images with longer transmission delays
(Fig. 5C). After learning with Hebbian-like plasticity, neurons
showed highly synchronized activity (Fig. 5D) and had learned
overly similar feedforward weights (Fig. 5E). When transmission
delays become long, inhibition will often fail to prevent that mul-
tiple neurons with similar feedforward weights spike to encode
the same input. Hebbian-like plasticity can exacerbate this effect,
since it will adapt feedforward weights of simultaneously spiking
neurons in the same direction. In contrast, neurons learning with
DB use the information that inhibition provides for learning,
even if it arrives too late to prevent simultaneous spiking. Hence
DB manages to learn distinct representations also in the face of
long transmission delays.

Finally, this difference in the two learning schemes is still
present for input signals with fast and complex temporal dy-
namics. To show this we repeated an experiment from ref. 11,
where natural speech sounds were encoded by a population of
100 neurons (Fig. 5 F–H). In this scenario SB learned only
a proper encoding with instantaneous transmission, i.e., when

simultaneous spiking was prohibited by removing the least likely
spikes in the case of multiple spikes per time bin. However, even
for extremely short transmission delays of δ = 0.05ms, Hebbian-
like plasticity led to pathological network behavior (Fig. 5H).
In contrast, DB learned a similarly efficient encoding in both
conditions (Fig. 5G).

Discussion
In the past, the formation of neural representations has often
been modeled with pairwise Hebbian-like learning rules (11,
12, 14–17, 25–27). However, the learning rules that are derived
directly from neural coding models typically require not only
information about pre- and postsynaptic activity, but also the
coding error of the whole population. Commonly it is maintained
that this information is not locally available to the synapse and
it is left out of the equation, yielding pairwise Hebbian-like
learning rules. Here, we found that omitting this information
about the population code can have a detrimental effect on
learning when neural activity is correlated, which is the case in
realistic conditions. In this case, Hebbian-like learning leads to a
highly inefficient encoding in comparison to the derived learning
by errors or even in comparison to random connections (Figs. 4
and 5). To overcome this problem, we showed how learning by
errors can be implemented locally by neurons with dendritic bal-
ance and a voltage-dependent plasticity rule. This suggests that
dendritic balance could play a crucial role in synaptic plasticity
for the formation of efficient representations.

Why does Hebbian-like learning fail when neural activity
is correlated, and how does learning by errors prevent this?
When the activity of neurons is correlated, Hebbian-like
learning adapts the feedforward weights of these neurons
into a similar direction. This even further strengthens the
correlations between neurons—a vicious cycle, which ultimately
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Fig. 5. Dendritic balance prevents learning of redundant representations for inhibitory transmission delays. (A) Decoder loss of networks of 200 neurons
coding for natural scenes for different inhibitory transmission delays δ. For transmission delays longer than 0.3 ms, Hebbian-like learning in SB networks
leads to highly inefficient representations and large decoder loss. In contrast, for networks learning with DB, the decoder loss increases only moderately
even for long transmission delays. The results are robust with respect to the stochasticity of firing Δu and the firing rate ρ (SI Appendix, Fig. S8). (B) Selection
of learned weights for a transmission delay of 1 ms. DB learns similar weights as before (Fig. 4D), while SB leads to a collapse of representations. (C–E) To
illustrate the effect of feedforward plasticity, we repeated the MNIST experiment in Fig. 3 with long transmission delays of 3 ms (before, 0.1 ms in Fig. 3).
(C) First, only recurrent connections were learned (1); later, feedforward weights were learned (2). As before, recurrent plasticity decorrelates responses and
decreases the decoder loss. When feedforward plasticity was turned on, Hebbian-like plasticity (SB) learned worse representations than random feedforward
weights, which is indicated by the increase in decoder loss. In contrast, our model with DB learned improved representations with substantially reduced
decoder loss. (D) The poor performance of the SB model is a consequence of highly synchronous spiking responses to the inputs, whereas neurons fire
asynchronously in the model with DB. (E) Neurons in the SB model learn overly similar feedforward weights, whereas neurons with dendritic balance learn
feedforward weights that capture the input space well. (F–H) This effect is still present when input signals show fast changes in time. Here, 100 coding
neurons firing at 5 Hz encode a speech signal. (F) Spectrogram of the signal presented in 25 frequency channels. (G) As can be seen in the reconstructed
signal (Top), SB finds a good encoding for instant inhibition (loss = 0.06), but even for extremely small delays of 0.05 ms the learned representations collapse,
leading to pathological network behavior and bad encoding performance (loss = 0.23). (H) In contrast, DB finds a similar encoding for both instant inhibition
(loss = 0.057) and inhibitory delays of 0.05 ms (loss = 0.06).

can lead to highly redundant representations and extremely
correlated spiking. Strong correlations between coding neurons
typically mean that certain inputs are overrepresented and
others underrepresented in the population, which is indicated
by negative or positive coding errors, respectively. In contrast to
Hebbian-like learning, learning by errors selectively weakens
connections to overrepresented inputs and thereby helps to
reduce the correlations between coding neurons. In our model,
correlations between coding neurons can arise through either
correlations of the learned representations in the input signal or
transmission delays of recurrent inhibition. Correlated firing due
to correlations in the input can in principle always be addressed
by increasing the number of coding neurons, as this will increase
the independence of the learned representations (Fig. 4D and
SI Appendix, Fig. S10). Correlations due to transmission delays
of recurrent inhibition, on the other hand, are a fundamental
problem that arises in balanced networks (18, 23, 28). Here, the
exact point of breakdown of Hebbian learning depends on the
specific type of input and network size and might occur for longer
transmission delays in simplistic scenarios. However, already
in the case of moderately large networks receiving complex
input signals the effect is severe—even for submillisecond
delays Hebbian-like learning can lead to a collapse of neural
representations and almost perfectly correlated spiking of
the whole population (Fig. 5). In contrast, learning by errors
consistently avoids this breakdown, and we therefore argue that
it becomes indispensable when transmission delays are present.

To make coding errors available for single synapses locally, we
introduced balanced dendritic potentials that are proportional

to these errors. This can be achieved by learning a balance
through recurrent plasticity on the dendrites, as then the net-
work automatically finds an optimal decoding of neural activity
to the feedforward inputs. Yet, presenting an error through a
balance of inputs is a quite general principle, and theoretically
it would also be possible to present the coding error elsewhere.
Rate-based models of predictive and sparse coding for example
suggest that coding errors are presented in the activity of other
neural populations (29–32). However, this idea cannot be easily
transferred to spiking neurons, where coding errors would be
rectified by neural spiking mechanisms; hence, it is not directly
possible to present negative and positive errors in the same
unit. Neural learning in these theories, however, relies on this,
and indeed, still no conclusive experimental evidence for such
error units exists (33, 34). Another theory therefore suggests that
prediction errors are presented by voltage differences between
soma and dendrite in two-compartment neurons (35–37). In
contrast, our work shows that a coding error, which is calculated
from the mismatch between excitation and inhibition locally in
each dendritic compartment, can act as a very precise learning
cue for single synapses. What supports this idea is that a local
dendritic balance of inputs, which is maintained by plasticity, has
indeed been observed experimentally (8, 38–40). Furthermore,
this balance on single neurons can also explain central charac-
teristics of cortical dynamics (4), such as highly irregular spiking
(41, 42), but correlated membrane potentials of similarly tuned
neurons (43, 44).

An apparent downside of implementing dendritic balance
is the large increase in the number of recurrent inhibitory
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connections. Connecting every neuron to each feedforward
synapse on the dendrites of other neurons would even for
moderately sized networks prove extremely costly. However, we
found that only a small fraction of the inhibitory connections in
our model are required for learning, namely strong connections
between neurons whose firing is correlated. We demonstrated
this in the example of the bars task, where 90% of dendritic
connections can be pruned without changing the learning out-
come (SI Appendix, Fig. S9). Moreover, in our model inhibition
is mediated by direct recurrent connections between coding
neurons, but fewer connections would be required if inhibition
was mediated via interneurons. By incorporating inhibitory
interneurons with broad feature selectivity, it is possible to
merge inhibitory connections that provide largely the same
information (11). We therefore expect that the main benefits of
the proposed learning scheme can be achieved also with relatively
few connections.

Biological Plausibility. Our model presents the simplest extension
of existing point-neuron models (11), which allows us to for-
mally derive and isolate the effect that dendritic balance can
have on representation learning. While more complex models of
dendritic structure and nonlinear dynamics can elucidate their
role for neural computation (45), nonlinear dynamics would
also alter the computational capacity (45), thus hampering a
direct comparison to previous models of learning. Nevertheless,
the question remains whether the proposed learning based on
dendritic balance can be implemented by biological neurons. In
the following we discuss the main requirements of the proposed
learning scheme.

A central element of the dendritic balance model is the de-
pendence of synaptic plasticity on local membrane potentials.
Indeed, it has been argued that the local membrane potential
is a critical factor determining synaptic plasticity (46–49). Such
voltage-dependent plasticity is thought to be mediated mainly
by the local calcium concentration, which closely follows the
local membrane potential (50, 51) and locally modulates neural
plasticity (52). As required by our model, this voltage dependence
implies that inhibition can have a large impact on excitatory
synaptic plasticity locally (53, 54), which also has been found ex-
perimentally (8, 55). Yet, it remains a major open question what
the precise functional role of these voltage-dependent plasticity
mechanisms could be (8, 45). Our work proposes that a central
feature of voltage-dependent synaptic plasticity is to base the
plasticity of single synapses not only on pre- and postsynaptic ac-
tivity, but also on the activity of other neurons in the population.

How are the proposed learning rules related to experimen-
tally observed voltage-dependent plasticity? Many experiments
show that excitatory plasticity requires a strong depolarization
of the membrane potential, which for example happens during
postsynaptic spiking (46). Our feedforward plasticity rule can
be reconciled with plasticity rules that are inspired by these
experiments (56, 57) (see Fig. 6B for details). The voltage de-
pendence of inhibitory (recurrent) plasticity has only recently
started being investigated (8). Recent experimental evidence
suggests that this inhibitory plasticity, like excitatory plasticity,
is calcium dependent and also requires postsynaptic spiking (58,
59). Our recurrent plasticity rule is similar to previous models of
voltage-dependent inhibitory plasticity (11, 60), which set a target
value for the postsynaptic membrane potential. Like our rule,
these rules have not considered the requirement of postsynaptic
spiking for plasticity induction explicitly. We speculate that such
a requirement enables the network to preferentially select con-
nections between neurons with correlated activity, which are es-
pecially relevant for learning (SI Appendix, section B.3). Further
experimental and theoretical research is required to understand
the precise mechanism and purpose of this type of inhibitory
plasticity.

Another requirement of the learning scheme is that different
compartments on the dendritic tree are well isolated, so that
recurrent inputs can modulate the plasticity of specific synapses
(Fig. 6A). In biological neurons, dendrites are electronically
distributed elements, where strong voltage gradients may exist
across the dendritic tree (61, 62). These voltage differences are
the result of strong attenuation of input currents, meaning that
individual synapses can have very localized effects (63). Thus,
the required isolation between compartments exists in biological
neurons if they are sufficiently separated and especially for com-
partments on different dendritic branches (38). This isolation
between spatially separated compartments also reduces nonlin-
ear interactions between them. As a result, the integration of
any net excitation from different compartments at the soma is
approximately linear (63), as required by our model. In contrast
to excitation, though, inhibition on distant dendrites mainly acts
locally by gating excitation, so that dendritic inhibition can have
a very weak effect on the somatic membrane potential (64).
Propagating dendritic inhibition to the soma is, however, not
required for network function, because any remaining net exci-
tation can also be balanced by plastic inhibitory synapses close to
the soma. Therefore, the model’s key requirements for learning
and network function could also be met in biological neurons.

However, how synapses in biological neurons are organized
on these dendritic compartments seems to be at odds with our
model: First, while in our model individual feedforward inputs
(which are mostly excitatory) have isolated dendritic potentials,
it is well known that correlated excitatory synapses often cluster
on dendrites (65–67); second, while in our model we generally
find more inhibitory than excitatory synapses, excitatory synapses
outnumber inhibitory synapses on dendritic branches, e.g., 4:1
on the dendrites of cultured rat hippocampal neurons (38). We
argue that these two disparities can be resolved, if the individual
continuous inputs provided to our model are seen as the resulting
currents of clustered, correlated synapses. How this clustering
could be organized by synaptic plasticity is a matter of ongoing
research (68), and it will have to be the subject of future work
to reconcile these plasticity mechanisms with representation
learning.

Fig. 6. Biologically feasible implementation of the proposed feedforward
learning rule. (A) The proposed learning scheme requires the following dis-
tribution of information in the dendritic tree: First, synapses need to know
when a postsynaptic spike occurred. This information could be provided,
e.g., by backpropagating action potentials (bAPs). Second, the potentials
of the dendritic compartments that sum specific excitatory and inhibitory
inputs have to be sufficiently decoupled. Such a strong attenuation of inputs
exists for example between dendritic branches (38). (B) The inputs ui

j to
the local potential and the postsynaptic spike signal zj can be used by
a voltage-dependent plasticity rule to implement the proposed learning
scheme. Typically such rules assume that plasticity happens in a strongly
depolarized regime that is associated with large calcium concentrations
(shaded red area, compare to ref. 57). To reconcile our model with such
rules, we assume the postsynaptic spike zj shifts the local potential into
the strongly depolarized regime, e.g., through bAPs or dendritic plateau
potentials (72), and local input ui

j determines whether long-term depression
(LTD) or long-term potentiation (LTP) occurs.
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Experimental Predictions. Ultimately, we can generate two
directly measurable experimental predictions from our model:
First, if input currents to a neuron’s dendrites are locally
unbalanced, recurrent plasticity will learn to establish a local
E-I balance. Second, our model predicts that the strength of
local inhibition determines the sign of synaptic plasticity: During
plasticity induction at excitatory feedforward synapses, activating
inhibitory neurons that target the same dendritic loci should lead
to long-term depression of the excitatory synapses. We would
expect this effect to persist, even if the inhibitory signal arrives
shortly after the pre- and postsynaptic spiking. These predictions
mainly apply to populations of sensory coding neurons, but
models similar to the somatic balance model have been proposed
to solve other tasks as well (69, 70), suggesting that dendritic
balance could be of more general relevance for learning. Indeed,
indications of inhibitory modulated plasticity can be found not
only in visual cortex (55), but also in hippocampus (38) and
possibly other areas (8, 71).

To conclude, we here presented a learning scheme that facil-
itates highly cooperative population codes for complex stimuli
in neural populations. Our results question pairwise Hebbian
learning as a paradigm for representation learning and suggest
that there exists a direct connection between dendritic balance
and synaptic plasticity.

Materials and Methods
Neural activity was simulated in discrete timesteps of length δ. Images
were presented as continuous inputs for 100 ms each, that is, as constant
inputs for 70 ms, after which they were linearly interpolated over 30 ms to
the next image to avoid discontinuities in the input signal. In the speech
task, audio signals were encoded in 25 frequency channels, sampled at 200
Hz, and presented with linear interpolation between datapoints. For every
experiment a learning set and a test set were created. The networks learned
online on the training set; in regular intervals the learning rules were turned
off and the performance was evaluated on the test set. Performance was
measured via the instantaneous decoder loss (Eq. 1) by learning the decoder
D alongside the network. The respective update rule for the decoder is
given by

ΔDij ∝ zj(xi −
∑

kDikzk). [10]

For DB networks we propose three learning schemes with fast or slow
recurrent plasticity (detailed in SI Appendix, section B.3). To reduce com-
putation time for large networks, the analytical solution of optimal recur-
rent weights Wi

jk = −FijFik was used as an approximation of the proposed
learning schemes. For Figs. 3 and 5 C–E the dendritic balance learning

scheme with fast recurrent plasticity and the weight decay trick (DB decay
in SI Appendix) is displayed. For Fig. 4, as well as Fig. 5 F–H, we used the
analytical solution. When comparing the proposed learning schemes to the
analytical solution on reference simulations (SI Appendix, Figs. S2 and S3),
they consistently found very similar network parameters and reached the
same performance.

In early simulations we observed that coding performance is largely
affected by the population rate, i.e., how many spikes can be used to encode
the input signal. To avoid this effect when comparing the two learning
schemes, we additionally introduced a rapid compensatory mechanism to
fix the firing rates, which is realized by changing the thresholds Tj . We
emphasize again that this adaptation is in principle not necessary to ensure
stable network function. In fact, error-correcting balanced state inhibition
can already be sufficient for a network to develop into a slow firing
regime (11). The fixed firing rate is enforced by adapting the threshold Tj

according to
ΔTj ∝ (sj − ρ δ),

such that neurons are firing with a target firing rate ρ. Here, ρ δ is the mean
number of spikes in a time window of size δ if a neuron would spike with
rate ρ, and sj is a spike indicator that is 1 if neuron j spiked in the last time
δ; otherwise sj = 0.

Furthermore, in the simulations of correlated bars and natural scenes
(Fig. 4), we aided the learning process by starting with a high stochasticity
in spiking and slowly decreasing it toward the desired stochasticity. While
similar results were obtained without using this method, we observed that
convergence of the networks to an efficient solution was more reliable with
it, as it helped in avoiding local minima of the goal function in early phases
of learning. Specifically, we started with a stochasticity of Δu = 1.0. We then
exponentially annealed it toward the final value Δu∗ by applying every
timestep

Δu(t + 1) = Δu(t) − ηΔu(Δu(t) − Δu∗
).

Data Availability. Full derivations of the network dynamics and learning
rules, more details about the relation of our model to previous models
in the literature, and supplementary figures containing additional infor-
mation for simulation experiments, as well as simulation parameters, are
provided in SI Appendix. Code for reproducing the main simulations is avail-
able in GitHub at https://github.com/Priesemann-Group/dendritic_balance
(73). Computer programs data have been deposited in Zenodo at https://
zenodo.org/record/4133446.
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