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ABSTRACT

Microbial association networks are frequently used
for understanding and comparing community dy-
namics from microbiome datasets. Inferring micro-
bial correlations for such networks and obtaining
meaningful biological insights, however, requires a
lengthy data management workflow, choice of appro-
priate methods, statistical computations, followed by
a different pipeline for suitably visualizing, report-
ing and comparing the associations. The complex-
ity is further increased with the added dimension
of multi-group ‘meta-data’ and ‘inter-omic’ functional
profiles that are often associated with microbiome
studies. This not only necessitates the need for cat-
egorical networks, but also integrated and bi-partite
networks. Multiple options of network inference algo-
rithms further add to the efforts required for perform-
ing correlation-based microbiome interaction stud-
ies. We present MetagenoNets, a web-based appli-
cation, which accepts multi-environment microbial
abundance as well as functional profiles, intelligently
segregates ‘continuous and categorical’ meta-data
and allows inference as well as visualization of cat-
egorical, integrated (inter-omic) and bi-partite net-
works. Modular structure of MetagenoNets ensures
logical flow of analysis (inference, integration, explo-
ration and comparison) in an intuitive and interac-
tive personalized dashboard driven framework. Dy-
namic choice of filtration, normalization, data trans-
formation and correlation algorithms ensures, that
end-users get a one-stop solution for microbial net-
work analysis. MetagenoNets is freely available at
https://web.rniapps.net/metagenonets.

INTRODUCTION

Microbial ecosystem is inherently complex owing to the
plurality of the microbes residing under the inter-play of

various confounding factors or environmental conditions
(1). Metagenomics, the study of genomic material acquired
from environmental samples, which targets microbial DNA
to decipher taxonomic and functional attributes of collected
samples, has obtained a significant boost with the advent
of next- generation sequencing technologies (2). Obtain-
ing structural or compositional insights into various mi-
crobial assemblages has always remained one of the pri-
mary objectives of most metagenomic studies (2). However,
another question that interests the microbiome researchers
pertains to microbial community dynamics, i.e. how various
microbes correlate or associate with each other in a metage-
nomic environment under study (3,4). Even though multiple
strategies are available for mining microbe-microbe associa-
tions, e.g. evidence based relationship mining and function
driven associations (4–6), a commonly used microbial in-
teraction mining approach aims at probing correlations be-
tween the occurrence (abundance) profile of microbes de-
tected in an environment (6). Such networks are therefore
also termed as co-occurrence networks and are frequently
employed in metagenomic research studies (7). However.
given the complexity of microbial ecosystems and technical
aspects associated with network/graph theory approaches,
researchers often face multiple challenges in performing a
meaningful network analysis (8). These challenges may be
classified into three groups:

Lengthy workflow for microbial network analysis

A typical workflow for network inference generally involves
(a) abundance data filtration to remove spurious or irrele-
vant features (4,9), (b) choosing from multiple data normal-
ization and transformation strategies to account for inter-
sample biases, confounding factors, compositionality etc.
(10,11), (c) choosing among multitude of correlation infer-
ence methods to derive network files (correlation matrix,
adjacency matrix, edge-lists etc.) (4), (d) employing graph
theory algorithms to compute network characteristics (like
global network properties, local centrality measures etc.) us-
ing the said network files (12,13) and (e) use a visualization
tool to view the the networks (14).
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Meta-data introduces additional complexity

Availability of comprehensive meta-data associated with
metagenomic studies puts an additional layer of complexity
to the problem of inferring and probing microbial associa-
tion networks (15). For a given environment, there can be
multiple levels of meta-data groups or categories (like ge-
ography as an environment can have countries as groups).
This gives rise to a need for individually processing net-
works for each of such groups. In addition, quite often con-
tinuous meta-data (like BMI, age) are also collected, and
researchers are therefore interested in probing correlations
of microbial abundances with such continuous data points
(or covariates) as well (15,16).

Inter-omic data further increases complexity

It is not uncommon for metagenomic studies to have one
or more ‘associated’ inter-omic abundance profile (16,17).
For example, a shotgun metagenomics study can not only
provide the researchers with microbial abundance profile,
but also the abundances of various functional units (like
enzymes, GO, COG, genes etc.). Related inter-omic studies
on same set of samples (like transcriptome profile) can also
become a closely associated inter-omic data. The inferred
functions for 16S studies are another example of inter-omic
profile associated with microbial abundance datasets. Avail-
ability of such secondary datasets often lead to the require-
ment of mining correlation of microbes with such inter-
omic units (like functions, genes etc.). The outcomes of such
correlations are often visualized in the form of ‘inter-omic
integrated networks’ and ’bi-partite networks’ (17,18). The
process of achieving the same for each meta-data category
(and corresponding group) is therefore expected to be com-
plex and tedious.

For example, for a population of samples collected from
various body sites of healthy individuals as well as those
affected by a disorder, following questions pertaining to a
typical microbial community dynamics study may stand rel-
evant:

a) What are the microbial co-occurrence patterns specific
to healthy and affected individuals?

b) What are the association patterns specific to individual
body sites in healthy as well as affected individuals? How
do these networks compare in terms of the interactions
and various network properties?

c) Is there any correlation between the occurrence of cer-
tain microbes with age or BMI or weight or any other
’continuous’ trait of the individuals in all/any category
of network?

d) Given a metabolic profile of the given samples, is there
any association between the occurrence of a microbe or
a group of microbes with the profile of a metabolite or a
group of metabolites of interest?

Many of these questions enthuse researchers and find-
ing answers to them requires concerted efforts. In the cur-
rent state of the art, a typical study on microbial correlation
networks requires dependency on stand-alone generic soft-
wares, plugins, locally installed programs as well as knowl-
edge of advance programming (19–21). Limited number

of available web-applications are either too specialized for
other research areas or offer minimal functionalities (22–
24). Furthermore, currently there is a lack of webservers
which allow inter-omic correlation network analysis and
meaningful visualization to address such questions. Table
1 provides a comprehensive comparison of the scope and
features of various tools in the network biology space (in-
cluding those specifically used for microbiome research) in
the current state of the art.

We present MetagenoNets, a web-based modular frame-
work, developed with the aim of easing the process of in-
ferring and analyzing correlation driven microbial associa-
tion networks. Following features of MetagenoNets are ex-
pected to be of significant value addition in the space of mi-
crobiome network analysis:

Accepts small to large microbial feature tables (occurrence
or abundance profile) along with multi-level meta-data.
Provision for secondary feature tables (like functional pro-
file) allows deeper insights for an integrated analysis.

a) Offers frequently used data normalization strategies and
transformation methods.

b) Provision for feature reduction through prevalence and
occurrence-based filters.

c) Availability of correlation driven network inference
methods frequently used by researchers.

d) Intelligent categorization of meta-data into categorical
and continuous data types.

e) Provision for categorical, integrated and bi-partite net-
work generation and visualization.

f) Interactive visualizations for all networks, network
properties and correlation scores.

g) Compositional comparison of categorical networks
through interactive Venn diagrams.

h) Registration independent personalized dashboard sys-
tem for privacy, traceability, collaboration.

DATA FORMAT, INPUT PARAMETERS AND METH-
ODS

Abundance data

MetagenoNets accepts two types of abundance datasets: (i)
primary input data; (ii) secondary input data. Primary input
data is essentially a (tab or comma) delimited multi-variate
abundance table representing abundances of various oper-
ational taxonomic units (OTUs) obtained either from shot-
gun metagenomic studies or from various de-novo or ref-
erence based taxonomic classifiers which are used in 16S
studies. BIOM files may also be submitted. It is manda-
tory to provide a primary input dataset to MetagenoNets.
Secondary input data, also a multi-variate abundance table
(or BIOM file), is an optional input data type. This table
may contain inter-omic features (like pathway abundances,
metabolite abundances etc.) for the samples provided in the
primary input data.

Meta-data

MetagenoNets accepts two types of metadata, (i) primary
metadata, (ii) node metadata. Primary metadata is a (tab or
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Table 1. Comparison of the scope and key features of various tools in the network biology space (including those specifically used for microbiome research)
in the current state of the art. Links to access the tools have been provided in the last column of the table

comma) delimited file containing multiple columns of sam-
ple information. Each column of metadata file, representing
various classes of environments (e.g. disease state, geogra-
phy etc.), contains the names of various sub-classes or the
quantum of co-variate (e.g. BMI or age) corresponding to
all samples in the population. Node metadata, which is op-
tional, contains meta-information pertaining to the features
present in the primary input data (e.g. phylum affiliation of
different microbial genera). This metadata information is
employed to dynamically customize the colors of the nodes
of the network(s). In case of rich BIOM file types, metadata
is automatically extracted from the uploaded input BIOM
file.

Filtration parameters

MetagenoNets provides the end-users with provisions for
filtering sparse features through prevalence and occurrence-
based filtration criteria. While prevalence refers to the mini-
mum abundance at which a given feature must be present in
a sample, occurrence refers to the minimum number of sam-
ples in which the given feature must prevail at the prevalence
threshold (23). These parameters can be adjusted both be-
fore and after development of personal dashboard (i.e. the
analysis workspace, as described later).

Normalization and transformation methods

Most of the popular data normalization and transforma-
tion methods used for microbiome datasets are offered
in MetagenoNets (Supplementary Table S1). While ‘To-
tal Sum Scaling’ (TSS), ‘Cumulative Sum Scaling’ (CSS)
and Quartile normalization constitute the set of normaliza-
tion techniques, ‘Relative Log Expression’ (RLE, as imple-
mented in edgeR package), ‘Trimmed Mean of M values’
(TMM) and ‘Centered-Log Ratio’ (CLR) are the popular
transformation methods available for the end-users (23,25).
The choice of changing the normalization or transforma-
tion method is available dynamically, allowing the flexibil-
ity of testing various strategies in a single workspace or
personal dashboard (without the need for re-uploading the
data). It is pertinent to note that these methods are applied
only on the primary input data.

Correlation inference algorithms

Previously, researchers were reliant on classical correla-
tion metrics like Spearman or Pearson correlation co-
efficient for assessing relevant associations between the
microbes/OTUs. With the awareness about composi-
tional nature of microbiome datasets, algorithms like
CCREPE/ReBoot (26), SPARCC (27,28), CCLasso (29)
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and NAMAP (30) are not only preferred but are rather rec-
ommended for a meaningful analysis. Each of these com-
putationally and statistically intensive algorithms have their
own challenges pertaining to installation, data preparation
and workflow (23). Apart from classical correlation metrics,
MetagenoNets is equipped with the above-mentioned algo-
rithms and also includes other popularly used bootstrapped
variants of classical Spearman/Pearson correlation-based
methods (4). Dynamic choice of statistical significance (P-
value, q-value), iteration threshold and other algorithm tun-
ing parameters is offered to the end-users.

UPLOAD PROCESS AND TASK MANAGEMENT SYS-
TEM

MetagenoNets follows a sequential widget-based task sub-
mission workflow. Step 1 pertains to upload of all types of
data available with the end-users. Given the registration-
free framework, it is mandatory to provide an easy to iden-
tify ‘job label’ in this step. This job label is mapped to the
unique and personalized (eight characters) dashboard iden-
tifier specific to the task initiated by the user. The same can
be accessed through the job history page of MetagenoNets.
A live status terminal is provided to keep track of any er-
rors in the submission. Step 2 provides a summary of the
data statistics as uploaded by the user. It is pertinent to
note that MetagenoNets automatically infers the categor-
ical and continuous metadata types in the supplied meta-
data file. The statistics summary provides quantitative in-
formation pertaining to all classes of input as well as meta-
data. Step 3 allows the end-users to provide initial choice
of data filtration, normalization/transformation parame-
ters that may be applied on the primary input data (i.e. the
feature or OTU abundance profile) for developing the per-
sonal dashboard. Step 4 provides a global summary of
all the inputs/choices and seeks approval from the end-
users for development of personal dashboard (i.e. analysis
workspace). Once the approval is granted, dashboard is in-
stantly developed, and the user is given the option to access
the same. Job history page is simultaneously updated with
the job label and corresponding dashboard identifier for ac-
cessing the workspace later. Job search widget provided in
the job history section also allows the user to access any
dashboard using the unique identifier shared by a remote
collaborator.

PERSONAL DASHBOARD AND RESULTS

Modules of MetagenoNets

The four modules in MetagenoNets, each designated for a
specific set of analyses and visualizations, are provided in
the framework of a personal workspace, called dashboard.
These modules include: (i) categorical networks, (ii) inte-
grated networks, (iii) Venn diagrams and (iv) properties.

Categorical networks module. This module allows infer-
ence and visualization of various category- specific net-
works, wherein categories are derived automatically from
the categorical metadata classes detected by MetagenoNets.
For example, for the class pertaining to ‘State of health’,
the categories of ‘Disordered’ and ‘Healthy’ may be present.

Networks can not only be dynamically inferred using vari-
ous algorithms (and associated parameters), but can also be
visualized using interactive and customizable network dia-
grams and correlograms (heatmap of correlation matrix) for
each category of interest. The options to incorporate vari-
ous centrality measures and node metadata affiliation in the
visualizations further add to the overall utility of this mod-
ule (Figure 1A). Results of this module can be downloaded
in the form of high-resolution images as well as re-usable
textual data (edge-lists, correlation matrices, jsons etc.).

Integrated networks module. This module allows inference
and visualization of integrated and bi-partite networks.
Integrated networks represent correlations between mixed
feature types like taxa (or microbes), functions (e.g. metabo-
lites) and continuous meta-data classes (e.g. age), such that
intra-feature-type as well as inter-feature-type associations
are allowed. Bi-partite networks on the other hand allow
only inter- feature-type correlation mining. MetagenoNets
allows end-users to select the functional (or secondary fea-
tures) as well as continuous meta-data classes using a search
enabled widget, to probe the possibility of correlation(s) of
the searched features with the primary feature set (taxa).
Apart from inheriting all functionalities of Categorical net-
works module, this module of MetagenoNets allows visual-
ization of bi-partite networks through intuitive Sankey dia-
grams (31), wherein taxa are aligned along the left axis while
the co-variates and functions are aligned along the right axis
(Figure 1B).

Venn diagram module. This module aims at probing com-
positional comparisons between related networks of a given
class of meta-data. The compositional comparison refers to
identification of the sets of identical or exclusive nodes as
well as edges between related categories of networks. This
is achieved by offering automated generation of node com-
position Venn diagrams and edge composition Venn dia-
grams (32). Users can select any meta-data class of interest
and probe intersecting or exclusive nodes and edges across
all categories of networks in that class (Figure 1C). The dy-
namic choice of classes, network algorithms and other pa-
rameters is offered in this module as well.

Properties module. Exploring and comparing centrality
measures associated with various networks is a rational and
frequently followed approach in network biology. Proper-
ties module allows exploration of popular centrality mea-
sures, namely, degree, clustering coefficient, closeness, be-
tweenness, eccentricity and coreness (33). Two types of re-
sults are provided by this module: (i) a tabulated listing of
the centrality measures for all nodes of a selected network,
with the functionality of searching, sorting, filtering and ex-
porting the results; and (ii) a trend-line embedded grouped
box plot view for global comparison of a selected central-
ity measure across all categories of networks in a chosen
class of meta-data (Figure 1D). Like all other modules, the
dynamic choice of classes, network algorithms and related
parameters is available in this module as well.

A troubleshooting module for formatting data according
to the requirements of MetagenoNets has also been pro-
vided. Apart from cleaning the data for the presence of spe-
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Figure 1. A summary of various visualizations generated by different modules of MetagenoNets. (A) Categorical networks and corresponding correlograms
for each group of metadata class (i.e. disease condition). Node are colored according to their phylum affiliation and sized according to their degree. (B)
Integrated bi-partite networks and sankey plots, probing correlations between microbial occurrence and abundance of branched chain amino acid (BCAA),
lipopolysaccharide biosynthesis (LPS) and methyerythritol phosphate pathway-1 function. (C) Node composition and edge composition Venn diagrams
all the groups of networks in the meta-data class of disease condition. (D) Network centrality measures for each group and their comparisons using the
grouped box plot. Degree centrality and clustering coefficient have been compared in both the groups (categories) of networks.

cial characters, NA (or missing) values, this module allows
extraction of abundance data and metadata from various
types of BIOM files.

DEMOS AND CASE STUDY

Four ready to execute demos have been hosted
on MetagenoNets server at https://web.rniapps.net/
metagenonets/demos.php. One of the demos correspond-
ing to the dashboard ID: 1a52c9c2 pertain to the use case
aimed at studying microbial (and inter-omic) association
patterns in Inflammatory Bowel Disease (IBD) which
includes Crohn’s disease (CD) and Ulcerative colitis (UC).
Taxonomic and functional profiles corresponding to the

metagenomic study (downloadable from MetagenoNets
demo page) were obtained from the Inflammatory Bowel
Disease Multi’omics Database pertaining to HMP2
(https://ibdmdb.org/) (34,35).

We considered the zeroth day sample corresponding to
all the subjects in the study (76 IBD: 48 CD, 28 UC;
24 non-IBD). Spearman’s correlation coefficient, as em-
ployed previously by the authors of the study, was used
for association mining (34,35). Categorical networks per-
taining to IBD samples indicated an apparent increase in
the network density in comparison to the non-IBD cate-
gory. Node meta-data mapping with respect to phylum af-
filiation of the microbes indicated an enrichment of high

https://web.rniapps.net/metanets/demos.php
https://ibdmdb.org/
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degree nodes belonging to phylum Bacteroidetes and de-
crease in those belonging to phyla Firmicutes and Acti-
nobacteria in IBD samples (Figure 1A). It has previously
been reported that members belonging to phyla Firmicutes
and Actinobacteria produce beneficial metabolites like SC-
FAs that help in maintaining colon health and the integrity
of gut lumen (36). Similarly, higher abundance of phylum
Bacteroidetes has been reported to be associated with var-
ious metabolic disorders (36). Additionally, we used the
search widget of Integrated networks module to select a
deleterious pathway reported to be enriched in IBD cate-
gory of samples (lipopolysaccharide biosynthesis pathway
or LPS) and a beneficial pathway enriched in non-IBD cat-
egory (Branched chain amino acid biosynthesis pathway or
BCAA), to infer important microbes associated with these
functions and how such associations vary across different
categories of networks (Figure 1B). It may be noted that
while LPS is a known hallmark of low-grade systemic in-
flammation, BCAAs are known to promote gut health as
reported in the previous studies (37). Bi-partite networks
and Sankey plots, as generated through integrated networks
module, indicated that while there was no significant corre-
lation between any microbe and LPS in non-IBD samples,
Escherichia coli (a Gram-negative bacterium) was found to
be positively correlated with LPS in IBD category. Addi-
tionally, while BCAA biosynthesis was seen to be positively
correlated to most of the commensal and beneficial bacte-
rial strains in non-IBD samples, such correlations were ob-
served to disappear and shift to pathogenic strains in IBD
category. A positive correlation between methylerythritol
phosphate (MEP) and Alistipes putredinis in non-IBD, as
reported by the authors as an over-transcribed function of
A. putredinis (36,37), was also observed. Correlograms gen-
erated for both categorical and integrated networks indi-
cated the strength of the above discussed correlations (Fig-
ure 1B).

A comparison of node and edge compositions of each
category of network, using the Venn diagrams module, in-
dicated that most of the nodes were common between IBD
and non-IBD networks, while the Venn diagram for edges
indicated the presence of disease-condition specific exclu-
sive edges. This affirms that although the set of nodes be-
tween the IBD and non-IBD specific categorical networks
was almost similar, their mutual associations underwent a
significant change or dysbiosis according to the disease con-
dition (Figure 1C). In addition, the average clustering co-
efficient across IBD and non-IBD categories of networks,
as obtained through the properties module, also indicated
the emergence of closely clustered communities in IBD as
compared to non-IBD. The major players in each category
of network were also identified from the properties table,
wherein Alistipes shahii was observed to have highest degree
and closeness in IBD network while, Dorea formicigenerans
showed highest degree and closeness in non-IBD network
(Figure 1D).

IMPLEMENTATION

MetagenoNets can be freely accessed by the researchers at
https://web.rniapps.net/metagenonets. Its back-end is pri-
marily based on Python and C++. Data visualizations are

based on Cytoscape.js (38), jVenn (32), D3.js (39) and in-
house customizations of the same for better user experi-
ence. Server connections are established using PHP and the
front-end design is based on HTML, CSS and Javascript.
The platform has been tested with Mozilla Firefox, Chrome,
Opera and Safari. Supplementary Table S1 provides de-
scription and references to the publications/ source codes
of various algorithms employed in MetagenoNets.

FUTURE DIRECTIONS

Use of statistical tests (like Kruskal-Wallis and Wilcoxon
tests) and marker feature detection algorithms (like clas-
sification and regression based methods) for feature re-
duction is a common strategy adopted by microbiome re-
searchers (23). Such feature reduction strategies can par-
ticularly be helpful in generating integrated networks us-
ing statistically relevant primary and secondary features.
Currently, MetagenoNets only employs the standard oc-
currence and prevalence-based feature filtration approach
and relies on availability of relevant primary and sec-
ondary input datasets. Future version of MetagenoNets
is planned to include the utility of aforementioned fea-
ture reduction strategies. In addition, given the popular use
of ordination-based dimensionality reduction (on primary
feature set) coupled with co-inertia analysis and procrustes
analysis for inter-omic correlation inferences, future version
of MetagenoNets will implement these methods as well (17).
Many features of MetagenoNets are a result of the continu-
ous feedback and requests by the existing userbase, and we
expect this tool to continue evolving beyond planned devel-
opment strategies as well.

DISCUSSION

Network analysis is commonly used in microbiome re-
search. However, researchers need to follow a lengthy work-
flow to perform even a simple correlation analysis and vi-
sualization. Need for inter-omic association mining using
the secondary datasets or co-variates in the meta-data, fur-
ther complicates the process of inferring the correlations
and generating meaningful visualizations. We have devel-
oped MetagenoNets, a web-based application, to reduce the
time and effort needed to conduct such analyses. The inclu-
sion of multiple algorithms and data management methods
in this tool enables the researchers to explore and employ
appropriate strategy suitable to the nature of their data (and
associated meta-data). In addition, the provision for multi-
ple interactive visualization techniques and real time choice
of algorithms in the framework of a modular workspace, en-
sures that the end-users can approach the problem of micro-
bial correlation analysis in a logical progression. Although
inter-omic correlation analysis is rather a much needed ap-
proach for microbial network analyses, it has rarely been
represented in this field. MetagenoNets has made initial at-
tempts in automating the inference and suitable visualiza-
tion of integrated and bi-partite networks. Future versions
of MetagenoNets will focus on expanding the scope of inter-
omic correlation mining, apart from expanding the general
scope of microbial association mining using microbiome
datasets.

https://web.rniapps.net/metanets
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DATA AVAILABILITY

MetagenoNets application is freely available at http://web.
rniapps.net/metagenonets.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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