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Splice site mutations contribute to a significant portion of the genetic causes for mendelian
disorders including deafness. By next-generation sequencing of 4 multiplex, autosomal
dominant families and 2 simplex, autosomal recessive families with hereditary deafness,
we identified a variety of candidate pathogenic variants in noncanonical splice sites of
known deafness genes, which include c.1616+3A > T and c.580G > A in EYA4, c.322-
57_322-8del in PAX3, c.991-15_991-13del in DFNA5, c.6087-3T > G in PTPRQ and
c.164+5G > A in USH1G. All six variants were predicted to affect the RNA splicing by at
least one of the computational tools Human Splicing Finder, NNSPLICE and NetGene2.
Phenotypic segregation of the variants was confirmed in all families and is consistent with
previously reported genotype-phenotype correlations of the corresponding genes.
Minigene analysis showed that those splicing site variants likely have various negative
impact including exon-skipping (c.1616+3A > T and c.580G > A in EYA4, c.991-15_991-
13del in DFNA5), intron retention (c.322-57_322-8del in PAX3), exon skipping and intron
retention (c.6087-3T >G in PTPRQ) and shortening of exon (c.164+5G > A inUSH1G). Our
study showed that the cryptic, noncanonical splice site mutations may play an important
role in the molecular etiology of hereditary deafness, whose diagnosis can be facilitated by
modified filtering criteria for the next-generation sequencing data, functional verification, as
well as segregation, bioinformatics, and genotype-phenotype correlation analysis.

Keywords: splice site mutation, RNA splicing, minigene, hereditary deafness, next-generation sequencing

INTRODUCTION

RNA splicing refers to the process of removing introns from the initial transcript (preRNA),
transcribed from its DNA template, and connecting exons to form a continuous RNA molecule. In
eukaryotic cells, sequences near the splicing sites of preRNA are conserved, which include the GT
bases at the 5′ donor site of the intron, the AG bases at the 3′ acceptor site, the branch point
composed of the polypyrimidine trace and splicing regulatory sequences such as exonic splicing
enhancer (ESE), exonic splicing silencer (ESS), intronic splicing enhancer (ISE) and intronic splicing
silencer (ISS) (Glisovic et al., 2008; Anna and Monika, 2018). The existence of these conserved
sequences ensures the accurate RNA splicing, while mutations in these sequences may lead to
structural alteration of the protein products and a variety of genetic disorders (Wang et al., 2012).
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According to the human gene mutation database (HGMD),
approximately 9% of the pathogenic mutations are splice site
mutations (http://www.hgmd.cf.ac.uk/ac/index.php). The splice
site mutations can be divided into four categories based on their
locations: (I) canonical splice site (CSS) mutations at the intronic +1
and +2 positions of the 5′donor splicing site and the -2 and -1
positions of the 3′ receptor splicing site; (II) mutations in the
junction regions from exonic 3bp to intronic 6bp and from
intronic 12bp to exonic 2bp, excluding the classic region; (III)
exonic missense or synonymous mutations in the ESE, ESS and
UTR region; (IV)mutations in deep intron such as the branch point,
ISE and ISS (Cartegni et al., 2002). The type II, III, and IVmutations
were referred to as noncanonical splice site (NCSS) mutations. Like
CSS mutations, NCSS mutations can abolish an existing donor or
receptor splicing site, often resulting in loss of a whole exon (exon
skipping). It can also indirectly activate a hidden splice site in exons
or introns, sometimes resulting partial intron retention or exon
shortening (Booth et al., 2018). In some cases, intronic or exonic
mutations may create a new splice site, resulting in partial intron
retention, exon shortening or formation of pseudo exons (Vaz-
Drago et al., 2017).

Detection of NCSS mutations can be difficult, because the
targeted sequences are not rigidly conserved as the canonical ones
and the locations of mutations are far more variable (Anna and
Monika, 2018). To this end, bioinformatic analyzing tools, such as
Human Splicing Finder (HSF), Splice Site Prediction by Neural
Network (NNSPLICE) and NetGene2, have been developed to
evaluate the possible pathogenic effect of the splice site mutations
(Anna and Monika, 2018). The results of the computational
analysis, however, are only predictive. For NCSS mutations,
functional studies such as in vivo RNA sequencing and
in vitro minigene analysis, are often needed to verify their
exact effect on RNA splicing (Anna and Monika, 2018).

Hereditary deafness has been known for its tremendous genetic
heterogeneity (Kremer, 2019; Sheffield and Smith, 2019). Facilitated
by recent development and widespread implication of next-
generation sequencing (NGS), vast amounts of pathogenic
variants in over 100 deafness-causative genes have been
documented in recent years (https://hereditaryhearingloss.org/).
Variants at NCSS, however, are often classified as variants of
unknown significance (VUS) due to limited research methods to
readily distinguish the pathogenic ones from the large number of
benign polymorphisms (Wang et al., 2012). To this day, NCSS
mutations have been reported and functionally verified in only a
handful of deafness-causative genes, including a c.1282-12T > A in
EYA4 lead to non-syndromic deafness DFNA10 (Hildebrand et al.,
2007), a c.6050-15G > Amutation in CDH23 lead to atypical USH1
syndrome (Valero et al., 2019), and a number of NCSS mutations
involving splicing of exon 8 in DFNA5 (Booth et al., 2018).

In this study, we identified 6NCSS and 1CSSmutations in EYA4,
PAX3, DFNA5, PTPRQ and USH1G from 4 multiplex, autosomal
dominant families and 2 simplex, autosomal recessive families with
hereditary deafness. A workflow has been proposed for analyzing the
NCSS variants in genetic hearing loss, including NGS with modified
filtering criteria for NCSS mutation, familial segregation and
genotype-phenotype correlation analysis, bioinformatic prediction
and functional verification.

MATERIALS AND METHODS

Subjects
Probands and participatingmembers of the 4 multiplex, autosomal
dominant families and 2 simplex, autosomal recessive families were
recruited through the Department of Otolaryngology—Head and
neck surgery, Ninth People’s Hospital, Shanghai Jiaotong
University School of medicine, Shanghai, China. The pedigrees
are shown in Figure 1. All subjects gave signed, informed consent
to participate this study, which was approved by the ethics
committee of Ninth People’s Hospital, Shanghai Jiaotong
University School of Medicine.

Next-Generation Sequencing
Genomic DNA samples were extracted from venous blood. The
exons and flanking introns of 144 deafness-causative genes
(Supplementary Table S1) were captured using the MyGenotics
gene enrichment system (MyGenotics, Boston, MD, United States)
and sequenced using the Illumina HiSeq 2000 sequencer (Illumina,
San Diego, CA, United States) as previously described (Chen et al.,
2016). The human genome GRCh37/hg19 was used for sequence
alignment. Conventional filtering criteria were applied in the initial
round of sequencing data analysis, in which only nonsynonymous
variants in the coding region and the CSS variants were interrogated.
In the second round of analysis, candidate variants were expanded to
all intronic variants within 50 nucleotide bases from the exon
boundary and synonymous/nonsynonymous variants in the exons.
The minor allele frequency (MAF) for the candidate variants was set
as 0.005 or less for recessive inheritance and 0.0005 or less for
dominant inheritance (Shearer et al., 2014), based on public databases
ESP (http://evs.gs.washington.edu/EVS/), GnomAD (https://
gnomad.broadinstitute.org/) and an in-house Chinese Han
population database. The pathogenicity of candidate variants
was predicted by computational tools MutationTaster,
PROVEAN, SIFT and Polyphen-2. Intrafamilial segregation of
the candidate variants were confirmed by Sanger sequencing of all
participating family members.

Bioinformatics Analysis
Three bioinformatic analyzing tools for splicing site variants were
used in this study, including HSF version 3.1 (http://www.umd.
be/HSF3/HSF.shtml), NNSPLICE version 0.9 (https://www.
fruitfly.org/seq_tools/splice.html) and NetGene2 (http://www.
cbs.dtu.dk/services/NetGene2/).

Minigene Analysis
The in vitrominigene analysis was performed as previously described
(Booth et al., 2018). Wild-type and mutant minigene inserts were
directly synthesized (Sangon Biotech, Shanghai, China,
Supplementary Table S2) or amplified from the patients’
genomic DNA (Supplementary Table S3). The inserts were
cloned into the pre-constructed exon-trap vectors pET01
(MoBiTec, Goettingen, Germany), pEGFP-C1 or pcMINI (Wuhan
bioegle Biological Technology and Science Co., Ltd., Wuhan, China),
all with intrinsic 3′ and 5′ exons separated by a multiple cloning site
(MCS). The minigene constructs were then transfected into COS7
cells (ATCC_CRL1651)using LipofectamineTM3000 Transfection
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Reagent (Thermo Fisher Scientific, Waltham, Massachusetts,
United States). Cells were harvested 36 h after transfection. The
total RNA was extracted using the Trizol method. cDNA was
reversely transcribed by TaqMan Reverse Transcription Reagents

(Takara Bio Inc., Japan). The spliced products were PCR amplified
with intrinsic primers from the pET01, pEGFP-C1 or pcMINI
vectors, detected by agarose gel electrophoresis and Sanger
sequencing.

FIGURE 1 | Pedigrees of Families (A–F). Mutations of the causative genes (in parentheses) are marked under the corresponding individuals. Symbols in gray
indicate phenotype too young to be determined.
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RESULTS

Clinical Characteristics of the Families With
Deafness
Families A-D exhibited typical autosomal dominant inheritance
with multiple affected members spanning at least three
generations (Figure 1). For Families A, B and C, audiograms
of the affected members were consistent within each family, all
showing bilateral, symmetric, progressive sensorineural hearing
loss with delayed onsets (Figure 2). No other symptoms were
reported. The affected members in Family D show characteristic
features of Waardenburg syndrome type III (WS3) including
sensorineural deafness, heterochromic iridis, premature graying

of the hair, dystopia canthorum, patchy de-pigmentation of the
skin, dystrophia canthorum and upper limb anomalies with
intrafamilial variation (Table 1). Interestingly, four affected
members in Family D exhibited unilateral hearing loss, which
is extremely rare in genetic hearing loss. In the two simplex,
autosomal recessive families (Figures 1E,F), both affected
children had non-syndromic, congenital, profound deafness.

Identification and Verification of the
Candidate Pathogenic Variants
By targeted NGS, we identified candidate pathogenic variants
in each of the multiplex, autosomal dominant families,

FIGURE 2 | Audiograms of the affected individuals in Families (A–D), which shows hearing of both ears (A,B,D) or the better ear (C).
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including c.580G > A in EYA4 for Family A, c.1616+3A > T in
EYA4 for Family B, c.991-15_991-13del in DFNA5 for Family
C, and c.322-57_322-8del in PAX3 for Family D. Co-
segregation of the variants and the disease phenotype were
confirmed in all participating family members (Figure 1). The
audiograms and associating features (the vestibular disorder)
in Family C and the WS3-associated phenotype in Family D

are consistent with previously reported genotype-phenotype
correlation for the corresponding genes (Somashekar et al.,
2020). In the two simplex families, compound heterozygous
variants c.5426+1G > A and c.6087-3T > G in PTPRQ were
identified in the proband of Family E and homozygous variant
c.164+5G > A in USH1G in Family F. No other candidate
variants in known deafness genes have been identified.

TABLE 1 | Characteristic features of WS3 in Family D.

Status Member Deafness Heterochromic iridis Premature graying of the
hair

Dystopia canthorum Patchy de-pigmentation of
the skin

Limb anomaly

Affected II-1 Left ear N N Y N N
Affected II-2 Right ear Both Y Y N N
Unaffected II-3 N N N N N N
Unaffected II-4 N N N N N N
Affected II-5 N N N Y N N
Affected III-1 Left ear Right eye Y Y N N
Unaffected III-2 N N N N N N
Affected III-3 Both Right eye N Y N N
Unaffected III-4 N N N N N N
Unaffected III-5 N N N N N N
Affected III-6 Both Both N Y Y Y

TABLE 2 | Summary and bioinformatic analysis of the pathogenic variants identified in Families A-F.

Family Gene Reference
transcription

Candidate
variants

The types
of splice

site
mutations

HSFa NetGene2a NNSPLICEa MAF ACMG
classification

Expression
in blood

A EYA4 NM_172103 c.580G > A II
(junctional)

Disruption of the
original donor
splice site (0.78
> 0.67)

Cannot be
predicted

Cannot be
predicted

0 Uncertain extremely
low

B EYA4 NM_172103 c.1616+3G
> A

II
(junctional)

Disruption of the
original donor
splice site (0.10
> 0.06)

weak change of
the original
splice site (0.47
> 0.41)

weak change of
the original splice
site (1.00 > 0.99)

0 Uncertain extremely
low

C DFNA5 NM_004403 c.991-
15_991-
13del

IV (deep
intronic)

Creation of a
new acceptor
site (0.52
> 0.88)

No change of the
original splice
site (1.00 > 1.00)

No change of the
original splice site
(0.93 > 0.94)

0 Uncertain extremely
low

D PAX3 NM_181459 c.322-
57_322-8del

IV (deep
intronic)

Creation of a
new acceptor
site (0.30
> 0.84)

Disruption of the
original splice
site (0.43 > 0)

Disruption of the
original splice site
(0.52 > 0)

0 Uncertain extremely
low

E PTPRQ NM_001145026 c.5426+1G
> A

I (canonical) Disruption of the
original splice
site (0.89
> 0.63)

Disruption of the
original splice
site (0.47 > 0)

Disruption of the
original splice site
(0.99 > 0)

0 likely
pathogenic

extremely
low

E PTPRQ NM_001145026 c.6087-3T
> G

II
(junctional)

Creation of a
new acceptor
site (0.61
> 0.66)

Disruption of the
original splice
site (0.26 > 0)

Disruption of the
original splice site
(0.93 > 0)

0 Uncertain extremely
low

F USH1G NM_173477 c.164+5G
> A

II
(junctional)

Disruption of the
original splice
site (0.91
> 0.81)

Disruption of the
original splice
site (1.00 > 0.71)

Disruption of the
original splice site
(0.99 > 0)

0 Uncertain extremely
low

aThe numbers in the parentheses indicate the confidence scores of a newly created or original splicing site before and after mutation, which range from 0 (strongly disruptive) to 1 (strongly
supportive).
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Bioinformatic Analysis for the Pathogenicity
of the Candidate Variants
Results of the bioinformatic analysis were shown in Table 2.
Because of the close vicinity of the EYA4 c.580G > A variant right
next to the donor splice site, here we evaluated its potential
negative effect on splicing instead of the presumed amino acid
substitution (p.Asp194Asn). Beside the canonical c.5426+1G > A
of PTPRQ variant, the rest of the six variants identified in this
study were all type II (c.580G > A of EYA4, c.1616+3G > A of
EYA4, c.6087-3T > G of PTPRQ and c.164+5G > A of USH1G) or
type IV (c.991-15_991-13del ofDFNA5 and c.322-57_322-8del of
PAX3) non-canonical splice site mutations. For the non-
canonical splice site variants, HSF predicts that c.6087-3T > G
of PTPRQ, c.991-15_991-13del of DFNA5 and c.322-57_322-8del
of PAX3 create new acceptor sites, while c.580G > A of EYA4,
c.1616+3G > A of EYA4 and c.164+5G > A of USH1G disrupt the
original splice sites. NetGene2 and NNSPLICE predict that
c.1616+3G > A of EYA4, c.322-57_322-8del of PAX3, c.6087-
3T > G of PTPRQ and c.164+5G > A of USH1G (weakly)
disrupted the original splice sites. None of the variants were
present in public databases ESP (http://evs.gs.washington.edu/
EVS/), GnomAD (https://gnomad.broadinstitute.org/) and the
in-house Chinese Han population database of 1,000 individuals.

Verification of Disrupted Splicing for the
NCSS Variants
For all pathogenic variants identified in this study, the associated
genes have extremely low expression in peripheral blood

(Table 2), preventing in vivo analysis directly using samples
from the patients. By in vitro minigene assay, the c.1616+3A >
T and c.580G > A variants in EYA4 and the c.991-15_991-13del
variant inDFNA5 generated a shorter spliced product missing the
entire exon according to the sequencing results (Figures 3A,B).
These three variants probably disrupt their original splicing site
and lead to exon skipping. The rest four candidate variants
generated spliced products with more complicated pattern,
including exon shortening of 11bp from the 3′ end for
c.164+5G > A in USH1G (Figure 3C), intron retention of
67 bp from the 5′ end for c.322-57_322-8del in PAX3
(Figure 3D), exon skipping and partial intron retention for
both c.5426+1G > A and c.6087-3T > G variants in PTPRQ
(Figures 3E,F). These four variants probably disrupt the original
splice sites and activate alternative ones in the exon or intron.

DISCUSSION

Targeted or whole-exome NGS has been increasingly employed
for mutation screening of heterogeneous diseases such as
deafness. The routine sequencing data analysis usually focus
on non-synonymous variants in exon and CSS variant only,
while the potential NCSS variants are often ignored. Though
the exact prevalence of the NCSS pathogenic variants is not clear
for hereditary hearing loss, several previous reports and our
current study has suggested that it very likely be notable,
especially in familial cases with no pathogenic variants
identified in known deafness genes (Booth et al., 2018). In this
paper, we propose a workflow for detection and verification of

FIGURE 3 | Minigene assay analysis of c.1616+3A > T and c.580G > A in EYA4 (A), c.991-15_991-13del in DFNA5 (B), c.164+5G > A in USH1G (C), c.322-
57_322-8del in PAX3 (D), c.6087-3T > G (E), and c.5426+1G > A (F) in PTPRQ. left column. Reversed transcriptional analysis showing distinct bands (a, b, a′ and b′);
right column. Sequencing results of the corresponding bands.
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NCSS mutations by NGS (Supplementary Figure S1). The
modified filtering criteria evaluate all variants, intronic or
exonic, synonymous or non-synonymous, for potential
negative effect on splicing, which will be followed by
bioinformatic analysis and functional verification by either
reversed transcriptional PCR or minigene analysis. Other
helpful criteria include intrafamilial phenotypic co-
segregation, consistency with previously reported gene-
specific genotype-phenotype correlation, and identification
of pathogenic mutations in both alleles of the recessive
causative genes.

In this study, multiplex, autosomal dominant families A-D
have pedigrees large enough for effective intrafamilial phenotypic
co-segregation analysis. The compound heterozygous (PTPRQ)
or homozygous (USH1G) mutations in Family E and F are in
agreement with the presumable recessive inheritance as reported
by numerous previously studies (Sang et al., 2015; Wu et al., 2018;
D’Esposito et al., 2021). Affected members within each family
have audiograms that show similar hearing phenotype and are
consistent with previous reports for genotype-phenotype
correlation of EYA4, DFNA5, PAX3, PTPRQ and USH1G.
Family D has additional features perfectly matched to WS3,
for which PAX3 is the main causative gene. With these
supporting evidences, we were able to narrow down a list of
candidate NCSS variants including several that were originally
missed by routine NGS filtering process.

In this paper, we predicted the pathogenicity of the six
NCSS variants by three computational prediction software
HSF, NNSPLICE and NetGene2 (Table 2). Though all six
variants were predicted to affect the RNA splicing by at least
one computational tool, it remains to be functionally verified
as prediction tools alone frequently generate false positive or
false negative results. In this aspect, the simplest and most
effective approach is targeted sequences reversed
transcriptional PCR in tissues of the lesion (Valero et al.,
2019). This approach, however, rarely works for deafness-
causative genes, as the cochlear tissue is difficult to obtain
and none of five genes involved in this study are expressed in
the peripheral blood. In this case, minigene analysis provides
an in vitro assay for testing RNA splicing effect of NCSS
variants, which can be used to confirm whether potential
pathogenic variants affect splicing efficiency or activate
variable hidden splicing sites (Booth et al., 2018). It also
remains to be verified by other hearing-impaired patients
carrying the same NCSS variants, which will provide further
genetic evidence in support for its pathogenicity.

Based on the minigene analysis results, we concluded that
splice site variants at the classical (type I) and junction (type II)
region often directly destroy the original acceptor or donor
splice site, leading to exon skipping, such as the c.1616+3A > T
and c.580G > A variants in EYA4 (Figure 3A). Sometimes
NCSS variants can weaken the recognition of the donor or
acceptor splicing site and activate a cryptic splicing site in the
intron, resulting in exon skipping and/or partial intron
retention, such as the c.5426+1G > A and c.6087-3T > G
variants in PTPRQ (Figure 3F), or activate a cryptic splicing
site in the exon, resulting in shortening of the exon, such as the

c.164+5G > A variant in USH1G (Figure 3C). Mutations in the
deep intron region (type IV) can destroy the branch point with
polypyrimidine tract, resulting in exon skipping, such as c.991-
15_991-13del in DFNA5 (Figure 3B), or activate a cryptic
splicing site in the deep intron, resulting in partial intron
retention, such as the c.322-57_322-8del variant in PAX3
(Figure 3D).

The c.580G > A variant in EYA4 is of particular interest, as
under most circumstance it will be interpreted as a p.
Asp194Asn missense mutation at a very conservative amino
acid position. Though most of the reported EYA4mutations are
truncating mutations leading to haploinsufficiency (Zhang et al.,
2004), at least four EYA4 missense mutations have been
reported to lead to non-syndromic deafness DFNA10(Tan
et al., 2014; Liu et al., 2015; Sun et al., 2015; Cesca et al.,
2018). However, our results showed that the c.580C > G
variant disrupts the pre-mRNA splicing of EYA4, resulting in
exon8 (143 bases) skipping and presumably early termination of
the protein translation. In light of this discovery, we designed
minigene experiment to analyze the other four previously
reported EYA4 missense mutations c.511G > C, c.978C > G,
c.1301T > A and c.1643C > G, which all tested negative for any
splicing abnormality (Supplementary Figure S2). Nevertheless,
it is worth noting that exonic synonymous variants or benign
amino acid substitutions may be hidden NCSS variants such as
the c.580C > G variant in EYA4, which may deserve re-
evaluation and in-depth study.

In conclusion, we identified and functionally verified 6 NCSS
variants in EYA4, PAX3, PTPRQ, and USH1G in Chinese Han
families with sensorineural deafness. The NCSS variants may be
an important cause of genetic hearing loss that demands closer
attention in genetic diagnosis.
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