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Abstract: I propose a quantum metrology protocol for measuring frequencies and weak forces
based on a periodic modulating quantum Jahn–Teller system composed of a single spin and two
bosonic modes. I show that, in the first order of the frequency drive, the time-independent effective
Hamiltonian describes spin-dependent interaction between the two bosonic modes. In the limit of
high-frequency drive and low bosonic frequency, the quantum Jahn–Teller system exhibits critical
behavior which can be used for high-precision quantum estimation. A major advantage of the scheme
is the robustness of the system against spin decoherence, which allows it to perform parameter
estimation with measurement time not limited by spin dephasing.

Keywords: quantum sensing; trapped ions; periodic modulation

1. Introduction

Over the last few years, there has been considerable interest in the development of
high-precision quantum metrology with strongly correlated quantum systems [1,2]. One
way to improve the precision of parameter estimation is to use entangled states [3–5].
Indeed, entangled states may yield a favorable scaling in the parameter precision mea-
surement compared to what is possible with uncorrelated states. Another approach for
high-precision quantum metrology is based on a probe system which exhibits a quantum
phase transition [6–9]. Such a criticality-enhanced quantum metrology can be used to
perform a high-precision measurement of the control parameter close to the quantum
phase transition. Recently, an experimental realization of quantum sensor with sensitivity
enhanced by quantum criticality was demonstrated with a Bose-Einstein condensate [10].
Usually, the existence of the quantum phase transition requires a thermodynamic limit,
where the number of constituents goes to infinity. A different class of phase transitions was
introduced in an interacting system of single-mode cavity field and two-level atom, where
the thermodynamic limit requires the cavity frequency in units of atomic transition fre-
quency to tend to zero [11,12]. An enhanced parameter estimation was proposed with such
finite size critical quantum optical system for high-precision force measurements [13–15] or
frequency measurements [8,9]. The corresponding quantum Fisher information diverges
by approaching the critical coupling, indicating that the finite size quantum optical system
becomes sensitive to infinitely small variation of the parameter of interest.

In this work, I consider the quantum metrology application of the finite size periodic
modulating quantum system consisting of interacting single spin and two bosonic modes
described by the quantum Jahn–Teller (JT) model. In my scheme, spin-boson couplings
are periodically modulated, which drives the system into the regime described by the
effective Hamiltonian. I show that, under the high-frequency drive, the spin evolution is
suppressed; thereby, it can be adiabatically eliminated from the dynamics. In the first order
of the frequency drive, the effective Hamiltonian describes spin-dependent interaction
between two bosonic modes. I show that, in the limit of high-frequency drive and low
bosonic frequency, the effective model exhibits critical behavior which can be used for
high-precision quantum metrology.

Entropy 2021, 23, 1333. https://doi.org/10.3390/e23101333 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e23101333
https://doi.org/10.3390/e23101333
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23101333
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23101333?type=check_update&version=2


Entropy 2021, 23, 1333 2 of 11

Furthermore, I include the dissipative processes which affect the two bosonic modes.
In that case, the balance of the periodic drive and the losses of bosonic excitations drives
the system into the nonequilibrium steady state. I show that the time-periodic driven
dissipative dynamics is described in terms of an effective Liouvillian. I characterize the
steady state density operator in terms of its first and second moments. In the high-frequency
drive regime, the density matrix reviews a non-analytical behavior. I derive expression
for the quantum Fisher information and show that it diverges close to the critical point. I
also consider the decoherence process of loss of spin coherence caused, for example, by
fluctuating magnetic fields. Such a spin dephasing is the major source of loss of contrast
which reduces the optimal precision of frequency measurements [16]. Remarkably, under
the condition of high-frequency drive the resulting effective Liouvillian is diagonal in
the spin basis. Consequently, the time evolution of our periodic modulating JT system is
immune against spin decoherence. This allows for performing frequency estimation with
measurement time, which is not limited by spin dephasing.

Finally, I provide a scheme for the physical implementation of our periodically driven
dissipative JT model with trapped ions. In the proposed realization, the two local phonons
along the spatial x-y directions correspond to the the bosonic modes. Bichromatic laser
fields with time-dependent periodic intensity are used to couple the internal ion’s spin
states and the two phonons, which provide the desired JT spin-boson coupling. I show that
the sympathetic cooling of an auxiliary ion can be used to create the dissipative dynamics
of the two bosonic modes.

The paper is organized as follows: In Section 2, the periodic modulating dissipative
JT model is introduced. The dynamics of the JT model in terms of an effective Liouvillian
is discussed. It is shown that, in the limit of high-frequency drive, the spin dynamics
are suppressed, and the effective Hamiltonian describes two interacting bosonic modes.
In Section 3, I consider the coherent evolution of the periodic modulating JT system. I
show that, for high-frequency drive and low bosonic frequency, the signal-to-noise ratio is
improved, which allows for performing a high-precision frequency estimation. In Section 4,
I discuss the steady-state density matrix of the periodic modulating dissipative JT model.
The physical realization of the model is provided in Section 5. Finally, the conclusions are
presented in Section 6.

2. Model
2.1. Periodic Modulating Dissipative Jahn–Teller Interaction

I consider in the following a quantum system of two bosonic modes which interact
with a single spin via periodic modulating dipolar coupling. Let

Ĥ0 = ωx â†
x âx + ωy â†

y ây +
∆
2

σz (1)

denote the time-independent Hamiltonian, which describes the quantum system in the
absence of periodic driving. Here, âβ and â†

β (β = x, y) are the annihilation and creation
operators of bosonic excitation with frequency ωβ in mode β. The single spin is described
with the Pauli matrices σx,y,z, and ∆ stands for the transition spin frequency. The effect of
the driving is represented by a time-dependent part of the total Hamiltonian

Ĥ(t) = Ĥ0 + Ĥd(t), (2)

where we assume

Ĥd(t) = 2gx cos(Φt)σx(â†
x + âx) + 2gy sin(Φt)σy(â†

y + ây), (3)

with gβ being the spin-boson coupling, and Φ the driving frequency. In the absence of
driving, the Hamiltonian (3) describes dipolar JT interaction between a single spin with
two vibrational modes. Such a JT coupling was first introduce to explain distortions and
nondegenerate energy levels in molecules and condensed quantum systems [17]. Various
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quantum optical systems have been proposed to simulate the JT model, including, for
example, cavity QED systems [18] and spin-orbit-coupled Bose-Einstein condensates [19].
Recently, the Rydberg trapped ion realization of the Jahn–Teller modes was proposed in
Reference [20].

The Fourier series of (3) can be written as Ĥd(t) = eiΦtv̂ + e−iΦtv†, where v̂ =
gxσx(â†

x + âx)− igyσy(â†
y + ây), which ensures that Ĥd(t + T) = Ĥd(t); hence, Ĥ(t + T) =

Ĥ(t), with T being the driving period.
To study driven-dissipative system, we consider the density operator ρ̂(t) whose

dynamics is governed by the Lindblad equation [21]

∂tρ̂(t) = L̂(t)ρ̂(t) = −i[Ĥ(t), ρ̂(t)] + ∑
j
D̂[L̂j]ρ̂(t). (4)

Here, L̂(t) is a time-dependent Liouvillian superoperator, while the term D̂[L̂j] is the
Lindblad dissipator, whose action is given by

D̂[L̂j]ρ̂(t) = 2L̂jρ̂(t)L̂†
j − L̂†

j L̂jρ̂(t)− ρ̂(t)L̂†
j L̂j, (5)

where L̂j are the jump operators which describe how the environment affect the system
evolution. In this work, I consider the process of loss of bosonic excitations where the
quantum jump operators are given by L̂1 =

√
γx âx, and, respectively, L̂2 =

√
γy ây, with

γx,y being the respective bosonic decay rates. I also discuss the effect of spin dephasing on
the spin-dependent bosonic modes evolution. As we will see below, due to the condition
of high frequency drive, the effective time-averaged dynamics is diagonal in the spin basis.
As a result of that, the quantum JT system becomes immune against the spin dephasing,
which can have significant impact on the high-precision quantum estimation.

2.2. Time-Average Dynamics

In the following, I explore the nonequilibrium steady state which emerges in a bal-
ance between the periodic drive and boson dissipation. The physical properties of the
periodically driven quantum system can be described in terms of effective Hamiltonian,
which reflects the periodic driving according to the Floquet theorem. For closed driven
quantum systems which are not subject to dissipative processes, the time-evolution can
be split into the product of kick operators which describes the residual micromotion and
time-independent evolution dictated by the effective Hamiltonian [22]. Recently, an expres-
sion for the nonequilibrium steady state in the limit of the high-frequency expansion of the
Lindblad equation was derived [23]. Assuming that the system is prepared initially in a
state with ρ̂(0) the density operator at time t can be written as ρ̂(t) = eĜ(t)etL̂eff e−Ĝ(0)ρ̂(0).
In the leading order of Φ−1, the time-independent effective Liouvillian is given by [23]

L̂effρ̂ = −i[Ĥeff, ρ̂] + ∑
β=x,y

γβD̂[âβ]ρ̂(t),

Ĥeff = Ĥ0 +
1
Φ
[v̂, v̂†] + O

(
Φ−2

)
, (6)

where Ĥeff is the time-independent effective Hamiltonian. Finally, the period time-dependent
micromotion operator is given by Ĝ(t)ρ̂ = Φ−1{[v̂, ρ̂]eiΦt + [v̂†, ρ̂]e−Φt}.

Using (2), we find that the effective Hamiltonian becomes

Ĥeff = ωx â†
x âx + ωy â†

y ây +
∆
2

σz −
4gxgy

Φ
σz(â†

x + âx)(â†
y + ây)

+O
(

Φ−2
)

, (7)

where we assume Φ� gβ, ωβ, ∆, γβ (high-frequency drive regime). We observe that the
effective Hamiltonian is diagonal in the spin basis. Moreover, the periodic driving causes
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spin-dependent coupling between the two x and y bosonic modes, which is of order of
Φ−1; thus, it cannot be neglected.

In the following, I provide the diagonalization of the effective Hamiltonian (7). I show
that, in the high-frequency drive regime and low bosonic frequencies, the effective model
exhibits critical behavior which can be used for high-precision quantum metrology.

3. Quantum Metrology with Periodic Modulating Quantum System:
Coherent Evolution

Before discussing the dissipative dynamics, I consider first the eigenfrequencies of
the Hamiltonian. Because (7) is quadratic in the bosonic operators, it can be exactly
diagonalized. Hereafter, I assume that the spin is initially prepared in the state |ψs〉 = |↑〉,
where σz|↑〉 = |↑〉. Then, performing generalized Bogoliubov transformation (see the
Supplement for an overview of the derivation), the effective Hamiltonian is transformed
in a canonical form, Ĥeff = ω ∑2

α=1 ναd̂†
αd̂α, where ν1 =

√
1− λ2 and ν2 =

√
1 + λ2 are the

eigenfrequencies (we set ωx,y = ω), with λ =
√

8gx gy
ωΦ being the dimensionless coupling

parameter. The energy gap tends to zero when λ → 1, which signals the existence of
critical point and emergence of quantum phase transition [24]. Such finite size quantum
phase transition was discussed in the context of the quantum Rabi model [11], where the
dimensionless parameter ηqr = ω/Ω is introduced. In the limit ηqr → 0, the quantum Rabi
model exhibits a phase transition, which was recently experimentally observed [12]. Here,
one can define the ratio ηpm = ω/Φ such that, in the limit ηpm → 0, the periodically driven
quantum JT system exhibits critical behavior at λc = 1. In Figure 1, the exact time-evolution

is shown of the position quadrature 〈q̂1〉 and its variance ∆q̂1 =
√
〈q̂2

1〉 − 〈q̂1〉2 using
the time-dependent Hamiltonian (2). Here, q̂ = {x̂, p̂x, ŷ, p̂y} is the bosonic quadrature
operator, where x̂ = (â†

x + âx), p̂x = i(â†
x − âx) and, respectively, ŷ = (â†

y + ây), p̂y =

i(â†
y− ây) are the position and momentum quadrature operators for the two bosonic modes.

I compare the numerical result with the analytical expressions

〈x̂(t)〉 = sin(ων1t)
ν1

,

∆x̂(t)2 =
1

4ν2
1 ν2

2
{6− (ν2

1 − ν2
2)

2 + (ν2
1 − 2(1− ν2

1)
2))

× cos(2ων1t) + (ν2
2 − 2(1− ν2

2)
2)) cos(2ων2t)}, (8)

which are derived from the Heisenberg equation of motion for initial two bosonic modes
state |ψ(0)〉 = |ψx〉 ⊗

∣∣ψy
〉
, where

∣∣ψβ

〉
= 2−1/2(

∣∣0β

〉
+ i
∣∣1β

〉
) (see the Supplement for

more details). Here,
∣∣nβ

〉
is the Fock state of the bosonic mode with occupation number nβ.

As we see, very good agreement between the exact and the analytical results is observed,
which indicates that the time-evolution is mainly dictated by the effective Hamiltonian (7).

Measuring the position quadrature 〈x̂(t)〉, one can estimate, for example, the bosonic
frequency ω. In order to quantify the sensitivity in the frequency estimation, we use fidelity
susceptibility Fx(ω) = ∂ω〈x̂(t)〉

∆x̂(t) [1]. The shot-noise limited sensitivity in the estimation of
ω from the measured signal 〈x̂(t)〉 is δω = 1/Fx(ω). In Figure 2, we plot the fidelity sus-
ceptibility as a function of time for different couplings λ. As λ increases toward the critical
coupling λc = 1, the sensitivity in the frequency estimation is improved. Indeed, using
(8), it is straightforward to show that, at time t∗ = π/ων1 and λ approaching λc, we have
∂ω〈x̂(t∗)〉 ∼ (π/

√
32ω)(1− λ)−3/2 and, respectively, ∆x̂(t∗)2 ∼ (13 + 3 cos(2πν2/ν1))/8.

Therefore, minimizing the position variance, the uncertainty in the boson frequency es-
timation scales as δω ∼ 2

√
10ω
π (1− λ)3/2, which implies that arbitrarily large frequency

estimation precision can be achieved close to the criticality.
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Figure 1. (Color online) (a) Time-evolution of the position quadrature 〈x̂(t)〉. We compare the
exact result of the time-dependent Schrödinger equation with Hamiltonian (2) with the analytical
expression (8) (solid lines) for λ = 0.9 (purple circles), λ = 0.93 (blue triangles), and λ = 0.95 (red
squares). The other parameters are set to ∆ = 0, g/2π = 5.0 kHz, and Φ/2π = 1.1 MHz. (b) Variance
∆x(t) of the position quadrature. The exact result (blue circles) is compared with the analytical
expression (8) (solid line) for λ = 0.93.
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Figure 2. (Color online) Fidelity susceptibilityFx = ∂ω〈x̂(t)〉/∆x̂(t) as a function of time for different
couplings λ. The parameters are g/2π = 5.0 kHz and Φ/2π = 1.1 MHz. Higher frequency sensitivity
is achieved by increasing λ toward the critical value.

Our technique can also be applied to the measurement of the spin frequency ∆.
The effect of ∆ on the spin-boson interaction is of order of Φ−2 (see the Supplement).
Including such terms, I find that the eigenfrequencies of the effective Hamiltonian are

modified according to ν1(ε) =
√

1− λ2
+(ε) and ν2(ε) =

√
1 + λ2

−(ε), where the cou-

plings are λ±(ε) =

√
8g2

ωΦ (1± ε) (we assume g = gβ), and ε = ∆/Φ � 1. Then, us-
ing (8), I obtain ∂ε〈x̂(t∗)〉 ∼ (4g2π/ωΦ)(1− λ2

+(ε))
−3/2 and ∆x̂(t∗)2 ∼ (13 + ε + (3−

ε) cos(2πν2(ε)/ν1(ε)))/8, where t∗ = π/ων1(ε). For the spin frequency uncertainty
estimation, I obtain δε = 1/Fx(ε) ∼ (

√
5/π)(1− λ+(ε))3/2, which again becomes in-

finitesimally small close to the critical point.
In the following, I discuss the the effect of dissipation of the bosonic excitations. In that

case, the time-periodic drives, and the loss of bosonic excitations leads to nonequilibrium
steady state, which we describe in terms of an effective time-independent Liouvillian.
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4. Quantum Metrology with Periodic Modulating Dissipative Quantum System

Let us now consider the potential quantum metrology application of our periodically
driven dissipative JT quantum system. The interplay between the dissipative dynamics and
the coherent driving leads to emergence of nonequilibrium steady state. Such a steady
state density matrix may exhibit non-analytical behavior at the criticality [25]. Indeed,
the critical dissipative phase transitions are characterized by a nonanalytical change of
the steady state and can be used to enhance the sensitivity of single and multi parameter
estimation close to a quantum critical point [15,26,27].

Consider the strong driving regime, where the effect of the time-dependent micro-
motion term can be neglected; thereby, the time-evolution of the system is mainly dictated
by the effective time-independent Liouvillian L̂effρ̂. Hereafter, I also assume that a force
displacement term Ĥ f = ( f /2)(â†

x + âx) with magnitude f is applied along the x di-
rection which displaces the respective bosonic mode. Since the displacement term is
time-independent, it does not affect the time-average dynamics so that the total effective
Hamiltonian becomes ĤT = Ĥeff + Ĥ f .

As time increases, the system approaches the steady state with density matrix ρ̂ss.
Because the coherent, as well as the dissipative, dynamics are quadratic in the bosonic
operators the steady state is in a Gaussian form, so that it can be completely characterized
with the first and the second moments [28]. Let us define the symmetric covariance matrix,
whose elements are

V(ρ̂ss)kl =
1
2
〈q̂k q̂l + q̂l q̂k〉 − dkdl , (9)

where d = 〈q̂〉 is the mean displacement vector, and all expectation values are taken with
respect to the steady state ρ̂ss.

In Figure 3a, the numerical result is shown for the covariance elements V11 and V22 as
a function of the coupling strength g = gβ. In the steady state regime, the matrix elements
are given by

V11 =
2λ4

c − λ4

2(λ4
c − λ4)

, V22 =
2λ4

c + (λ2
c − 3)λ4

2(λ4
c − λ4)

, (10)

where I have assumed ωβ = ω. Due to the symmetry, we have V11 = V33 and V22 = V44.
All other covariance matrix elements are presented in the Supplementary Information. One
can identify two couplings defined by λ2

±c = (1 + γ2/ω2)(1± ε)−1. Up to first order of
Φ−1, we have λ2

±c = λ2
c , with λ2

c = 1 + γ2/ω2 being the critical coupling. We see that, for
strong periodic drive, the effect of the micromotion term can be neglected such that the
behavior of the system is dictated by the effective Liouvillian (6). Increasing the spin-boson
coupling increases the covariance elements, as well, and they diverge by approaching λc as
Vkl ∼ (λc − λ)−1. Figure 3b shows the exact result for the experimentally observable mean
boson numbers 〈n̂x〉 and 〈n̂y〉. In the steady state regime, these two quantities are given by
(see the Supplement for details)

〈n̂x〉ss =
λ4λ2

c(λ
4
c − λ4) + 2 f̃ 2λ6

c
8(λ4

c − λ4)2 ,

〈n̂y〉ss =
λ4λ2

c(λ
4
c − λ4 + 2 f̃ 2)

8(λ4
c − λ4)2 , (11)

where f̃ = f /ω. As we see, the analytical results (11) match the exact result very closely.
For f̃ 6= 0, the two quantities diverge as 〈n̂β〉 ∼ (λc − λ)2.

Let us now discuss the effect of the spin dephasing on the steady state. Such a
decoherence effect can be described by including a spin dephasing term in Equation (4)

with the jump operator L̂dec =
√

Γ
2 σz. Here, Γ = 1/τdep stands for the constant dephasing

rate, and τdep is the decoherence time. Since the periodic drives creates a spin-dependent
coupling between the bosonic modes, one can expect that the spin decoherence would
decrease the estimation precision. Remarkably, because the high-frequency drive causes a
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spin-dependent bosonic interaction, and the dissipative dynamics are time-independent,
the resulting effective Liouvillian is diagonal in the spin basis such that the JT system
becomes immune against the spin dephasing. We emphasize that the spin noisy decoupling
is intimately related with the strong periodic drive in the JT system. We observe that, even
in the presence of spin dephasing, the steady state numerical result for the average bosonic
excitation in Figure 3b closely follow the analytical expression (11). In Figure 4a, the time
evolution of the position quadrature and the mean boson number is shown, including the
spin decoherence term in Equation (4), for γβ = 0. Usually, the effect of the spin dephasing
is to compromise the signal contrast. As we see, the high-frequency drive protects the
signal contrast against spin dephasing. In Figure 4b, the position quadrature is plotted
as a function of the dephasing rate Γ for different frequencies Φ and constant coupling
λ. We observe that, by increasing Φ and keeping λ fixed, one can further suppress the
effect of the spin dephasing. This result indicates the periodic modulating JT system can
serve as a probe for enhanced parameter estimation with measurement time not limited by
spin dephasing.
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Figure 3. (Color online) (a) Covariance matrix elements V11 and V22 as a function of the coupling
strength g = gx = gy. I compare the numerical solution of the time-dependent Liouvillian equation
with Hamiltonian (2) blue circles and purple triangles with the solution using the time-average
Liouvillian (6) with effective Hamiltonian (7) (dashed lines). The parameters are set to ω/2π =

0.2 kHz, ∆/2π = 0.5 kHz, Φ/2π = 800 kHz and γ/2π = 0.5 kHz. (b) Exact numerical result for the
mean excitations of the two bosonic modes compared with the steady state analytical result (11). We
set f̃ = 1.27 and dephasing rate Γ/2π = 2.5 kHz.

Finally, I discuss the estimation precision using our periodically driven dissipative
JT system. Since the steady state is in two-mode Gaussian form, one can characterize
the sensitivity in terms of quantum Fisher information. For concreteness, I estimate the
sensitivity of the force estimation. Because, in that case, all covariance matrix elements
are independent of the parameter we wish to estimate, the corresponding quantum Fisher
information is given by FQ( f ) = (∂ f d)TV(ρss)−1(∂ f d) [29,30]. The force precision is
bounded by the quantum Cramér-Rao bound, δ f 2 ≥ FQ( f )−1. I find

FQ( f ) =
16λ6

c + 4λ4
cλ4 − 2λ8

(λ4 + 4(λ2
c − λ2))(λ4 + 4(λ2

c + λ2))(λ4
c − λ4)

. (12)

Approaching λ→ λc, we have FQ( f ) ∼ (1/2λ3
c)(λc − λ)−1 so that the uncertainty in the

force estimation becomes δ f̃ ∼
√

2λ3/2
c (λc − λ)1/2.
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Figure 4. (Color online) (a) Position quadrature and mean boson as a function of time in the presence
of spin dephasing. I compare the exact solution of the Lindblad equation with Hamiltonian (2) for
〈x̂(t)〉 (pink circles) and 〈n̂x(t)〉 (blue triangles) with those given by the coherent evolution without
spin dephasing (solid lines). The parameters are set to ω/2π = 0.5 kHz, Φ/2π = 1.4 MHz, ∆ = 0,
γ = 0, Γ/2π = 2.0 kHz, and λ = 0.6. (b) Exact result for the position quadrature as a function
of the spin dephasing rate Γ at time t = π/(2ων1). We assume Φ/2π = 1.4 MHz (pink circles),
Φ/2π = 1.6 MHz (blue circles), Φ/2π = 2.0 MHz (red triangles), and λ = 0.6.

5. Physical Implementation

Trapped ions are suitable quantum system to implement the periodic modulating
dissipative JT model by controlling sideband coupling with laser radiations [31]. Indeed,
the time-dependent spin-boson interaction can be created using laser radiation, while, in
order to realize the dissipative term in the Lindblad Equation (4), one needs to perform
a sympathetic cooling of auxiliary ion. For this goal, I assume that two ions are confined
in a linear Paul trap along the z axis with trap frequencies ω̃x,y,z, where the radial trap
frequencies are much larger than the axial trap frequency ωx,y � ωz, so that the ions
are arranged in a linear configuration. I assume that ion 1 is used to implement the JT
interaction, while ion 2 is the auxiliary ion which is not necessarily the same atomic species.
In the limit of strong radial confinement, one can treat the small radial oscillations of the
ions around their equilibrium positions in terms of local phonons. Then, the Hamiltonian
which describes the x-y phonons becomes [32,33]

Ĥph = ∑
β=x,y
{

2

∑
k=1

ω̃β â†
k,β âk,β + κβ(â†

1,β â2,β + â1,β â†
2,β)}. (13)

Here, ω̃β is the local phonon frequency along the β direction, and κβ is the Coulomb
mediated hopping between sites 1 and 2. We assume that ion 1 has two metastable states
|↑〉 and |↓〉 with transition frequency ω0 such that the interaction free Hamiltonian is
Ĥfree = Ĥph + (ω0/2)σz.

Let us now discuss the physical implementation of the periodic JT interaction. Con-
sider that ion 1 is simultaneously addressed by bichromatic laser fields along two trans-
verse x-y directions with laser frequencies beat notes ωr,β = ω0 − ∆ − (ω̃β − ωβ) and
ωb,β = ω0 − ∆ + (ω̃β − ωβ) which induce a transition between spin states |↑〉 and |↓〉.
Here, ∆ introduce effective spin frequency and ωβ effective boson frequencies. The interac-
tion Hamiltonian becomes

ĤI = Ωx(t){σ+eiηx(â†
x+âx)−iφx (e−iωr,xt + e−iωb,xt) + h.c.}

+Ωy(t){σ+eiηy(â†
y+ây)−iφy(e−iωr,yt + e−iωb,yt) + h.c.}. (14)

Here, Ωx(t) = 2Ωx,0 cos(Φt) and Ωx(t) = 2Ωy,0 sin(Φt) are the time-dependent Rabi
frequencies with amplitudes Ωβ,0, φβ are the laser phases, and ηβ are the Lamb-Dicke
parameters. For simplicity, we denote â1,β = âβ. Next, we assume the Lamb-Dicke
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limit η � 1 and transform the Hamiltonian (14) in the rotating-frame with respect to

ÛR(t) = e−i(ω0−∆)t(σz/2)−i ∑β{(ω̃β−ωβ)tâ†
β âβ−iω̃βtâ†

2,β â2,β}, which yields

Ĥ0 + Ĥd(t) = Û†
R(Ĥfree + ĤI)ÛR − iÛ†

R∂tÛR, (15)

where the spin-phonon couplings are gβ = ηβΩβ,0, and we assume that φx = π/2 and
φy = 0.

The dissipative dynamics of ion 1 can be implemented by performing a sympathetic
cooling of the auxiliary ion 2 [34,35]. We assume that the auxiliary ion is continuously
laser cooled with ∑β D̂[L̂β]ρ̂(t), where the jump operators are L̂β =

√
Γβ â2,β, with Γβ

being the cooling rates. The Heisenberg equation for the auxiliary x-y phonons becomes
∂t â2,β = iκβ âβ − Γβ â2,β. In the limit Γβ � κβ, one can adiabatically eliminate auxiliary
modes, which gives an effective dissipative dynamics for ion 1 with rates γβ = κ2

β/Γβ.

6. Conclusions

I have proposed a quantum metrology application of the finite size periodic modulat-
ing JT model which describes the interaction between a single spin and two bosonic modes.
The periodic modulating spin-boson couplings drive the system into a regime dictated
by the time-independent effective Hamiltonian. In the high-frequency drive regime, the
effective Hamiltonian describes a spin-dependent interaction between the two bosonic
modes. I have shown that the energy gap vanishes at the critical point which can be used
to enhance the precision of the parameter estimation. In particular, I have shown that the
arbitrarily large boson or spin frequency estimation precision can be achieved close to a
critical point.

Furthermore, I have discussed the effect of the loss of bosonic excitations on the
time-dependent JT dynamics. The interplay between the periodic modulation and the
dissipation drives the system into a nonequilibrium steady state. In the high-frequency
drive regime, the time-evolution of the dissipative JT system is described in terms of an
effective Liouvillian. I have shown that the steady state density matrix reviews a non-
analytical behavior at the critical point, which can be used for high-precision parameter
estimation. The key advantage of using periodic modulating JT quantum probe is the
robustness against the spin dephasing. I have shown that, due to the high-frequency drive,
the effective Liouvillian is diagonal in the spin basis, which makes the JT system immune
against spin decoherence. Thanks to this, our frequency measurement time is not limited
by the spin decoherence.

I have discussed the physical implementation of our model using trapped ions. The JT
spin-boson couplings are created by applying bichromatic laser fields along the transverse
directions with time-periodic intensity which couple the internal ion’s spin states and
phonons. The driven-dissipative dynamics can be implemented by using an auxiliary ion
which is continuously laser cooled. Finally, I note that our periodic modulating sensing
technique is also relevant for other experimental setups, such as cavity or circuit QED
systems [18,36].
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