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Abstract

of information support for pollen allergy sufferers. For decades,
This review analyzes the state and recent progress in the field
information available for the patients and allergologists consisted of pollen counts, which are vital but insufficient. New technology
paves the way to substantial increase in amount and diversity of the data. This paper reviews old and newly suggested methods to
predict pollen and air pollutant concentrations in the air and proposes an allergy risk concept, which combines the pollen and
pollution information and transforms it into a qualitative risk index. This new index is available in an app (Mobile Airways Sentinel
NetworK-air) that was developed in the frame of the European Union grant Impact of Air POLLution on sleep, Asthma and Rhinitis
(a project of European Institute of Innovation and Technology-Health). On-going transformation of the pollen allergy information
support is based on new technological solutions for pollen and air quality monitoring and predictions. The new information-
technology and artificial-intelligence-based solutions help to convert this information into easy-to-use services for both medical
practitioners and allergy sufferers.
Keywords: Pollen allergy; Pollen season; Google trends; Pollen dispersion modeling; System for Integrated modeLling of
Atmospheric coMposition model; Pollen index; Air quality index
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Introduction Europe (http://www.eea.eu) and the US (http://www.
usepa.gov), respectively. Meteorological data flows

(4)

(5)

(6)

(7)
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For patients allergic to pollen, knowledge of the season
onset is of vital importance to start their treatment to
control symptoms and avoid the disease exacerbations,
such as asthma attacks. When traveling, patients are often
concerned about potential symptoms outside their local
environment: different pollen composition and concen-
trations, as well as different levels of atmospheric pollution
can cause exacerbation of allergic symptoms. Few
epidemiological studies have investigated the interaction
between air pollution and pollen exposure on rhinitis
symptoms[1-5] and more data are needed to quantify the
impact of air pollution on allergic rhinitis (AR). The two
major pollutants reported in connection to rhinitis so far
are ozone (O3) and fine particles (PM2.5).

Mobile technology may help to better understand the links
between air pollution, pollen, and allergic diseases. Mobile
Airways Sentinel NetworK (MASK-air) is an information
and communication technology system centered around
the patient,[6-8] operational in 27 countries. It uses a
treatment scroll list, which includes all medications
customized for each country as well as visual analog
scales (VASs) to assess the allergy, rhinitis, eye, and asthma
symptom levels. Over 33,000 users and 200,000 VAS days
have been recorded. MASK can be used to investigate the
relationship between outdoor pollen and air pollutants and
rhinitis and asthma symptoms.

Impact of air POLLution on Asthma and Rhinitis
(POLLAR) is a project of the European Institute of
Innovation and Technology-Health. The project embedded
theenvironmental data into theMASKdatabaseandmade it
available for its users.[9] One of the objectives of POLLAR is
to investigate the interaction between air pollution and
pollen and its impact on the allergy symptoms.

Estimation of the Pollen Season

Pollen counts

Pollen counts are routinely used to assess the exposure of
pollen-allergic patients.[10,11] However, the information
obtained frommost of the existing networks is not real-time
and usually comes with a delay of a week or more. Also, the
counts only partially correlate with symptoms since:

(1) Pollen counts do not necessarily represent the allergen
exposure.[12-14] Allergens are also present in the air as
(2)

(3)
sub-micronic particles that may induce symptoms.[15]

Pollen samplers are usually placed at the top of a
building.[16] The traps are well suited for estimating the

regional mean airborne pollen concentration but may
not provide an accurate personal exposure at the
ground level.
Patients live at variable distances from pollen samplers
and are exposed to spatially-variable amounts of
562
pollens, different from those at the traps locations.
High costs of the predominantly manual pollen
observations preclude establishment of dense net-
works. Thus, less than 900 pollen monitoring sites
exist worldwide.[11] At the same time, there are over
10,000 and 40,000 operational air quality (AQ) sites in
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vary from 10,000 to 100,000 datapoints per day
depending on parameter, exceeding 1,000,000 data-
points per day for satellite observations.[17]

The levels of allergens in pollen grains can vary
strongly over a short period and between neighboring

[18,19]
regions. Considerable differences may exist in the
allergen contents between the seasons or between early
and late pollination of the same species. Olive pollen
also shows substantial inter-cultivar variability.[20]

Pollen concentrations that elicit symptoms are person-
specific. They also vary between monosensitized and

polysensitized subjects due to the overlapping pollen
seasons[21] and the possible priming effect on the
mucosa.[22] To increase the complexity, there is a non-
linear effect of pollen and allergic symptoms.[23,24]

Diversity of both exposure and sensitization levels
makes it very difficult (or impossible) to find a

“universal” concentration of pollen that is able to
induce symptoms, that is, the clinical threshold. Some of
these effects are accounted for in a new European
Academy of Allergy and Clinical Immunology (EAACI)
definition of pollen season including its onset and end,
peak pollen days and peak pollen periods.[25-27]

Simultaneous exposure to allergens and indoor or
outdoor air pollution is common[28] and interactions

[1,29]
between pollens and air pollution may exist,
leading to stronger symptoms and higher consumption
of antihistamines at the same pollen level in case of
poor AQ.[30]
Allergen content in the air

Assessment of the allergen content in the air is feasible
using antibody-basedmethods[12,13,31] or the biomolecular
identification of pollen genomes.[32] However, these
sophisticated methods may not account for all pollen
species in the air and availability of these methods for
routine monitoring is very low due to high costs of the
analysis. Bulky and expensive technology also precludes
personalized or mobile allergen content measurements.

Real-time pollen observations

The real-time pollen observation is an emerging direction
that is yet to become a mainstream. To date, overwhelming
majority of pollen monitoring stations use the Hirst-type
volumetric samplers.[10,33,34]With its simplicity, robustness,
effectiveness, and low hardware costs, such pollen traps
have become the reference all over the world.[11] However,
these observations are quite uncertain: the technical design
alone could bring 5% to 72% of measurement error,[35]

whereas themanual counting contributes to additional 20%
to30%ofuncertainty. The full cycle of pollen collection and
counting typically takes 7 to 9 days.

In order to deliver real-time pollen data, next-generation
pollen monitoring and dissemination systems based on
robots have been established.[36] Two types of technologies
are presently among the most-advanced. First, the Pollen-
Sense (https://pollensense.com) andBAA500 (HundWetzlar,
https://www.hund.de/en),[37] follow the classical approach
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automating the sampling and visual pollen recognition.
Second, the air-flow cytometry devices, such as Waveband

grated modeLling of Atmospheric coMposition (SILAM)
for Northern Europe (http://silam.fmi.fi) perform high-
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Integrated Bioaerosol Sensor/Spectral Intensity Bioaerosol
Sensor,[38] Yamatronics KH-3000,[39] Plair Rapid-E,[40] and
Swisens Poleno (http://www.swisens.ch), utilize the light-
induced fluorescence of biological material, usually accom-
panied with scattering diagrams (eg, Rapid-E) or holograms
(Poleno). Depending on the quality of the recognition
algorithm, the information on the flying particle could be
derived almost immediately with uncertainty approaching
20%to30%or less dependingon the taxon.[41,42] The pollen
identification with all devices is based on manually collected
and classified reference data sets and requires continuous
manual correction and enrichment.

Arguably, the main problem of all devices with reasonable
pollen recognition ability is their very high price. Other
challenges include yet-to-mature quality control proce-
dures, devices comparability even within the single type or
brand,[43] and difficulties with identification of the
“reference” pollen characteristics for every taxa, genus,
and species.

The first operational multi-species pollen observational
network was set in operations in Bavaria (Germany)[37]

(https://epin.lgl.bayern.de/pollenflug-aktuell), equipped
with the BAA500 devices. Since spring 2019, it provides
3-hourly data from eight monitoring locations. Also, in
2019, two Rapid-E devices were put into operations in
Serbia and Croatia (http://www.realforall.com). That
network is being extended in 2020 with the Rapid-E
monitor in Lithuania and Rapid-E and Poleno devices in
Finland. The geographical distribution of automatic pollen
monitors as well as manual counters over the globe has
been recently reviewed.[11]

Meteorological data and numerical models
563
Meteorological conditions are a vital driver of plant
phenology, with flowering period being the key phenolog-
ical phase relevant for the allergy sufferers. The most
widely used and also the oldest concept is the heat-sum-
based approach, which computes the amount of heat
accumulated by the plants since the beginning of the
growth season.[44-47] The developments suggested nearly-
linear relation of “appropriately computed” heat sum and
the stage of the flowering season.[48,49] Such models were
shown to predict the onset of the flowering season within a
few days of accuracy, about a week in advance. However,
the pollen season depends on pollen long-range transport,
which sometimes can make it dramatically different from
the local flowering period.[50-54]

Accounting for the pollen release from inflorescences and
subsequent transport in the atmosphere requires numerical
models, which compute the whole lifecycle of pollen:
maturation and presentation, release into the air, atmo-
spheric transport and transformations, and deposi-
tion.[50,55,56] Such models currently can predict
concentrations of up to six pollen types for up to 5 days
for the whole Europe (http://atmosphere.copernicus.eu,
http://silam.fmi.fi). The models COSMO-ART for Central
Europe (http://www.meteoswiss.ch) and System for Inte-
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resolution forecasts with grid-cell size of 1 and 2.5 km,
respectively. Diversity of vegetation across the continents
and severe lack of available observational data so far
preclude development of hemispheric and global pollen
dispersion models.

In Europe, an ensemble of continental-scale pollen models
has been developed within the scope of Copernicus
Atmospheric Monitoring Service (CAMS) (http://atmo
sphere.copernicus.eu), which has been shown to provide
more robust predictions than individual models.[55] The
pollen service is a part of the CAMS European AQ
forecasting services.[57] CAMS AQ forecast is generated
for up to 5 days over the globe and up to 4 days for Europe.
With the open access to its products, CAMS supports
many applications in a variety of domains including health,
environmental monitoring, renewable energies, meteorol-
ogy, and climatology.

The CAMS pollen developments are based on the pollen
modules of SILAM[58] (http://silam.fmi.fi). SILAM per-
forms operational pollen forecasts for six pollen species
(alder, birch, grass, mugwort, olive, ragweed), trial
forecasts for insects (aphids), and AQ forecasts for the
globe, Europe and Asia, AQ hindcast for the previous day,
as well as re-analysis of AQ from 1950 onwards. A variety
of the data assimilation algorithms for pollen are under
development,[50,55,59,60] including the use of the real-life
symptom data obtained by the MASK-Air app.[61]

Internet and Google trends (GT)
Internet-based surveillance systems using search engine
queries[62] and socialmedia[63] are new techniqueswith the
potential to extend the currentmonitoring systems.[64] The
analysis of online searches, in particular using GT has
shown potential in predicting changes in flu infections[65]

and in other areas of medicine.[62] However, differences
were found between GT and flu epidemics.[65-67] Recent
studies have suggested that GT are also sensitive to allergic
diseases.[68-71] GTdata reflect the real-world epidemiology
of AR and could potentially be used as a monitoring tool
for AR.[72] However, different languages, terminology,
cultural specifics, and information availability complicate
the analysis and reduce its sensitivity.[73] In particular, for
asthma, only massive outbreaks, such as thunderstorm-
induced asthma, can be identified by GT.[74]

The 5-years-long GT analysis (2011–2016) in Europe
showed a clear seasonality of pollen allergy-related
queries in most countries. Different terms were found
representative in different countries – namely “hay
fever,” “allergy,” and “pollen” – showing the cultural
differences.[73] The ragweed pollen allergy in GT was
mainly associated with the term “ragweed,” whereas the
three terms identified in the first study (“pollen,” “hay
fever,” and “allergy”) did not correspond to the ragweed
pollen season in eight out of 11 surveyed countries.[73]

The term “ragweed” is mostly used in native languages
whereas the direct translations by GTs are sometimes
incorrect.[75] The “ragweed” queries were also visible
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during spring and summer, indicating that the tree and
grass pollen allergy in spring may be perceived as

pollen and AQ forecasts. These forecasts were expanded
with the SILAM six-pollens forecasts and combined with
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“ragweed.” As a result, the ragweed season found by
GTs is far longer than the measured pollen season.[76]

A dedicated analysis for France over 2011 to 2016 showed
similar findings in all French regions but only for spring
and summer peaks. Wintertime pollen peaks were not
reflected. Moreover, cypress pollen season is poorly
represented in GT.[77]

Two GT studies were performed in Germany. Data from
four pollen monitoring stations in the Berlin and
Brandenburg area over 3 years (2014–2016) were used
to investigate the correlation of season definitions, birch
and grass pollen counts and total nasal symptom and
medication scores as reported by patients in “Patients Hay
fever Diary” (PHDs).[78] After the identification of pollen
periods on the basis of the EACCI criteria, a statistical
analysis was employed, followed by a detailed graphical
investigation. The analysis revealed that the definitions of
pollen season as well as peak pollen period start and end as
proposed by the EAACI are overall but not exactly
correlated to symptom loads for grass and birch pollen-
induced AR reported by patients in PHDs. The same group
analyzed the same data to examine the relationship
between hay fever-related Google searches, symptom
levels, medication use, and pollen counts. The analysis
reveals that GT data are highly correlated with the
symptom levels and reproduce the peak of the pollen
season comparatively well.[79]

Taking all these studies together, it is likely that pollen
seasons can be retrospectively analyzed using GT but
some caveats need to be considered: (1) Only clear-cut
seasons can be identified using GT. If there are over-
lapping seasons, pollen counts in some areas of the
country need to be considered. There is also no
information on the patients who posted the Google
queries, which additionally blurs the picture in case of
overlapping seasons. (2) It is likely that GT are easier to
use in Northern Europe where there are only two major
seasons (Betulaceae and grasses) than in Southern Europe
where seasons of several species overlap. (3) In most
countries, the ragweed pollen season cannot be studied
using GT. (4) GT are extremely helpful retrospectively
since aberrant queries can be assessed using the real-
world monitoring data. However, for the prospective
prediction GT are difficult to use. In particular, GT were
initially used and then criticized for analysis and
prediction of the flu epidemics[80,81] and virus infec-
tions.[82] Newer techniques can improve the estimation of
the flu epidemics,[83] but aberrant peaks caused by
various unrelated factors still pose a problem. GT may
prove useful for forecasting the next pollen season as
found for flu.[84,85]

Personalized Symptom Forecasting: Longitudinal Approach
of Personal Allergy SYmptom FOrecasting (PASYFO) System

The first PASYFO system was developed as a use- case of
the European CAMS service (http://www.pasyfo.lt and
PASYFO App for iOS and Android) using the CAMS
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the PHDs symptom reports.[43,44] The symptom forecast-
ing model (SFM) then utilized these retrospective data and
generated the longitudinal personalized predictions of
symptoms. The system prototype has been built for Baltic
States but can cover any region with valid pollen and AQ
forecasts and symptom reports.

The variables used by the PASYFO prototype from CAMS
and SILAM forecasts include birch, grass, alder, mugwort,
olive, and ragweed pollen, AQ parameters, such as sulfur
dioxide, nitrogen dioxide, O3, and PM2.5 hourly concen-
trations, as well as the basic meteorological parameters,
such as temperature, precipitation, cloudiness, wind speed,
and humidity (https://atmosphere.copernicus.eu/pasyfo-
forecasts-personal-allergy-symptoms). The SFM v.1 is a
self-adjusting statistical model that learns from the
retrospective time series generally following the technolo-
gy[60] with appropriate modifications. The list of output
parameters corresponds to that of the reported symptoms
(for nose, eyes, and lungs in case of PHD).

Interactions Between Allergens and Pollutants
Associations between major air pollutants (O3 and PM2.5)
and ARwere studied during grass and birch pollen seasons
as well as outside the pollen season in Northern Europe.[86]

The daily load of allergic symptoms was recorded by the
MASK-air

®

App using VAS in 2017 and 2018. Uncon-
trolled AR was identified from the reported symptom
strength and applied medication. Pollutant levels were
taken from the SILAM forecasts. Pollen seasons were
assessed region-wise using GT and, if needed, pollen
counts. Generalized estimating equation models were used
to account for repeated measures per user, adjusting for
gender, age, treatment, and country. The study showed
that association between uncontrolled rhinitis and pollu-
tants was stronger during the grass pollen season. An
interquartile range increase in the O3 level during the grass
season was associated with an odds ratio of 1.25 (95%
confidence interval [CI]: 1.11–1.41) in 2017 and of 1.14
(95% CI: 1.04–1.25) in 2018. A similar trend was found
for PM2.5, especially in 2017. These results suggest
interactions between air pollution and grass pollen
affecting the AR severity. There was no association with
AQ during the birch pollen season.

The MASK-POLLAR Approach
The technology of MASK-POLLAR includes allergy
symptom collection by the MASK-air

®

app,[6] related
analytical software, European pollen and AQ forecasts
(Europe and the globe) of SILAM. The SFM of PASYFO
has been expanded with relevant statistical tools and
prepared for the cross-sectional analysis of generalized
allergy risk (as compared to the latitudinal approach of
PASYFO). Attention was paid to the general data
protection regulations compliance and personal-data
protection via double encryption of the database and
interfaces with the public-key cryptography (http://clem.
dii.unisi.it/∼vipp/files/MultimediaSecurity/MS_asymm_
crypto.pdf).

http://www.pasyfo.lt/
https://atmosphere.copernicus.eu/pasyfo-forecasts-personal-allergy-symptoms
https://atmosphere.copernicus.eu/pasyfo-forecasts-personal-allergy-symptoms
http://clem.dii.unisi.it/~vipp/files/MultimediaSecurity/MS_asymm_crypto.pdf
http://clem.dii.unisi.it/~vipp/files/MultimediaSecurity/MS_asymm_crypto.pdf
http://clem.dii.unisi.it/~vipp/files/MultimediaSecurity/MS_asymm_crypto.pdf
http://clem.dii.unisi.it/~vipp/files/MultimediaSecurity/MS_asymm_crypto.pdf
http://www.cmj.org


Air quality index (AQI) absence of the mechanistic models for these factors, they
will be taken from the previous-days reports.

1. Annesi-Maesano I, Rouve S, Desqueyroux H, Jankovski R, Klossek
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AQ is a public-health-relevant representation of atmo-
spheric composition, often distributed as a single number
of AQI, varying from 0 (good AQ) to 4 (very bad AQ).

The POLLAR implementation of the AQI for Europe
followed the modified definition of the European Envi-
ronment Agency (https://www.eea.europa.eu/themes/air/
air-quality-index/index). In particular, the POLLAR AQI
used hourly O3 concentrations rather than the 8-h moving
average. This modification followed the SILAM and
CAMS standard temporal resolution, making the AQI
more relevant to the allergy-related problems, where 8 h is
a much too long averaging period. A similar definition of
AQI is used by the United States Environmental Protection
Agency (https://www.epa.gov/outdoor-air-quality-data/
about-air-data-reports) with minor differences in its
parameters.

Apart from the AQI value, the MASK-POLLAR system
highlights the reason for the AQI elevation, that is, points
out the component, which concentration is elevated. The
daily-updated forecasts of AQI are available from the
SILAM Web site http://silam.fmi.fi, AQ forecast section.

Pollen index
The second component of primary importance for the
allergy sufferers is pollen index (POLind). The idea follows
that of the AQI: a series of thresholds have been defined for
each of the six pollen types predicted by SILAM (four of
them are predicted by CAMS regional ensemble), which
were projected to the scale from 0 to 4. The difficulty,
however, is that there is no formal POLind definition since
there is no pollen-related legislation at European level.
Therefore, the current thresholds are based on expert
opinions summarized in a book,[44] which was the main
result of the European Cooperation on Science and
Technology (COST) Action EUPOL (Assessment of
production, release, distribution, and health impact of
allergenic pollen in Europe).

Allergy risk index (ARI)
Assuming that pollen and the AQ are the dominant
contributors to human pollen-related allergy, and the ARI
can be constructed as a combination of the two. The
MASK-POLLAR study showed the key AQ components
exacerbating the pollen-induced allergy[85]: O3 and PM2.5.
The sensitivity to poor AQ grows with the pollen season
propagation due to the prolonged pollen exposure.
Following this finding, the allergy risk is mainly driven
by pollen presence in the air (pollen index) but can be
modified by up to 20%by the AQ. A simple formula ARI=
POLInd + 0.2 ∗ AQI sets the baseline representing the
“mean” findings of POLLAR. The next version of the ARI
will include dynamic day-to-day adjustments based on the
MASK-Air reports. This adjustment will takes into
account the pollen potency, interactions between the
different AQ components and pollen species, non-linearity
and mutual interactions between them, and so on. In the
1565
Summary
For patients allergic to pollen, forecast of the allergy risk is
valuable information that can help in self-management of the
disease and reduction of the symptom severity. It has been
shown that this risk depends not only on concentrations of
specific pollen in the air, but alsoon the allergen content of the
pollen grains (pollen potency), concentrations of several
atmospheric chemicals and aerosols, meteorological con-
ditions, and so on. This information is currently available
from the traditional pollen observations, new technologies of
real-time monitoring, numerical models, and big-data
analysis. Recent progress allowed for the first system of
personalized allergy symptom forecasting and cross-sectional
allergy risk assessment, which takes into account interactions
between the pollen, AQ and allergy and asthma.
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