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Abstract: Background: Vasculogenic mimicry, a novel neovascularization pattern of
aggressive tumors, is associated with poor clinical outcomes.

Objective: The aim of this research was to establish a new model, termed VC score, to
predict the prognosis, Tumor Microenvironment (TME) components, and immunothera-
peutic response in Hepatocellular Carcinoma (HCC).

Methods: The expression data of the public databases were used to develop the prognos-
tic model. Consensus clustering was performed to confirm the molecular subtypes with
ideal clustering efficacy. The high- and low-risk groups were stratified utilizing the VC
score. Various methodologies, including survival analysis, single-sample Gene Set En-
richment  Analysis  (ssGSEA),  Tumor  Immune  Dysfunction  and  Exclusion  scores
(TIDE), Immunophenoscore (IPS), and nomogram, were utilized for verification of the
model performance and to characterize the immune status of HCC tissues. GSEA was
performed to mine functional pathway information.

Results: The survival and immune characteristics varied between the three molecular
subtypes. A five-gene signature (TPX2, CDC20, CFHR4, SPP1, and NQO1) was veri-
fied to function as an independent predictive factor for the prognosis of patients with
HCC. The high-risk group exhibited lower Overall Survival (OS) rates and higher mor-
tality rates in comparison to the low-risk group. Patients in the low-risk group were pre-
dicted to benefit from immune checkpoint inhibitor therapy and exhibit increased sensi-
tivity to immunotherapy. Enrichment analysis revealed that signaling pathways linked to
the  cell  cycle  and  DNA  replication  processes  exhibited  enrichment  in  the  high-risk
group.

Conclusion:  The  VC  score  holds  the  potential  to  establish  individualized  treatment
plans and clinical management strategies for patients with HCC.

Keywords: Hepatocellular carcinoma, vasculogenic mimicry, machine learning, prognostic prediction model, tu-
mor microenvironment, immunotherapy.

1. INTRODUCTION
Primary liver cancer ranks as the sixth most preva-

lent  malignancy  globally  [1].  In 2020,  there  were
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905,700 diagnoses and 830,200 deaths attributed to pri-
mary liver cancer worldwide. Hepatocellular Carcino-
ma (HCC), a dominant histological subtype within pri-
mary  liver  cancer,  constitutes  approximately  75%  of
all  diagnosed  liver  cancer  cases.  The  5-year  survival
rate of patients with HCC is < 20% as the malignancy
is diagnosed at an advanced stage [2]. Surgical inter-
ventions, including liver resection and transplantation,
are  the  primary treatment  for  HCC [3].  Furthermore,
the Food and Drug Administration has granted appro-
val for six systemic therapies for HCC [4]. Among th-
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ese, lenvatinib and sorafenib serve as first-line drugs in
systemic therapy for HCC. However, the beneficial ef-
fects of these conventional therapies are limited to the
early stage of HCC. Past research has demonstrated the
significance  of  the  Tumor  Microenvironment  (TME)
in the onset and progression of HCC. Furthermore, a
correlation has been observed between the components
of the TME and the prognosis of patients with HCC.
However,  reliable  prognostic  biomarkers  for  HCC
have not been identified. As the progression of HCC is
regulated  by  the  immune  system,  immunotherapies,
such  as  immune  checkpoint  inhibitors,  virotherapy,
and adoptive T-cell transfer, are considered innovative
therapeutic  modalities  [5].  Hence,  there  is  a  pressing
need to identify biomarkers that can predict the clinical
outcomes  and  treatment  responses  in  patients  with
HCC.

Vasculogenic  Mimicry  (VM),  a  phenomenon  ex-
hibited by invasive tumor cells, represents a phenotype
of  Epithelial-mesenchymal  Transition  (EMT),  which
occurs in epithelial-derived tumor cells triggered by hy-
poxia and angiogenic factors [6, 7]. VM is the forma-
tion of microvascular channels in the extracellular ma-
trix that transport fluid independent of endothelial ves-
sels  [8].  During the development of  VM, the expres-
sion levels of some epithelial  cell  markers,  including
CDH1,  CTNNA1,  and  TJP1,  are  downregulated,
whereas  those of  mesenchymal  cell  markers,  such as
CDH5 and CDH2, are upregulated. EMT plays a cru-
cial function in VM-forming tumor cells and promotes
the invasion and metastasis of tumors through diverse
mechanisms  [9].  Various  signaling  pathways  are  in-
volved  in  VM.  In  particular,  the  miR200-ZEB1  and
miR34-SNAIL1 axes are considered the major regula-
tors of VM formation. The miR200-ZEB1 and miR34-
SNAIL1 axes downregulate the transcription of CDH1
to suppress the epithelial properties of cells, contribut-
ing  to  the  disruption  of  cell-to-cell  adhesions  and
consequently promoting tumor metastasis. In addition,
VM is associated with poor clinical outcomes. Prior re-
search has identified VM in diverse cancer types, in-
cluding HCC, melanoma, and ovarian cancer [10].

The invasiveness of HCC, a typical hyper-vascular
solid tumor,  is  closely associated with microvascular
invasion. The vascular network, including VM, holds
significance in supporting the rapid growth of tumors
by ensuring an ample supply of oxygen and nutrients
[11]. Earlier research has shown a positive correlation
between  the  expression  of  Methyltransferase-like  3
(METTL3) and VM formation in HCC tissues via the
Hippo-YAP1 pathway [10]. Ou et al. revealed that VM
induced by Frizzled 2 (FZD2) may be a key step in the

metastasis and early recurrence of HCC [12]. Besides,
hypoxia-related VM mediated by integrins A5 and B1
(ITGA5 and ITGB1) could be one of the reasons for so-
rafenib  resistance  in  HCC  patients  [13].  Previous
studies  have  identified  the  presence  of  VM  in  HCC
and its association with poor clinical prognosis [9, 14,
15]. However, few studies have developed prognostic
models based on VM-related genes and the principles
of machine learning.

The  aim  of  the  research  was  to  establish  a  new
HCC  prognostic  model  using  public  transcriptomics
databases. Patients with HCC were stratified based on
VM-related genes.  The clinicopathological,  immuno-
logical, and pathway characteristics of the stratified pa-
tients were subjected to comparative analysis. Then, a
prognostic model (defined as VC score) was construct-
ed based on VM-derived subtypes, and validated using
testing  and  immunotherapy  cohorts  to  prove  that  the
model had high accuracy in predicting survival status
and treatment response. The findings of this research
provide useful insights for developing novel manage-
ment  and  personalized  therapeutic  strategies  for  pa-
tients with HCC.

2. MATERIALS AND METHODS

2.1. Data Extraction and Preprocessing
Clinical information and RNA sequencing data of

HCC from The Cancer Genome Atlas-Liver Hepatocel-
lular  Carcinoma (TCGA-LIHC) dataset  were  utilized
for the establishment of a prognostic model. Validation
cohorts included the International Cancer Genome Con-
sortium-Japanese  Liver  Cancer  (ICGC-LIRI-JP)  and
GSE14520 datasets. The latest expression statistics and
clinical  follow-up information,  comprising  RNA-Seq
(FPKM)  files  of  patients  with  HCC,  were  obtained
from the TCGA database. TCGA-LIHC cohort includ-
ed  371  tumor  samples  and  50  paracancerous  control
samples. After removing the data of samples without
information on survival status and time, the informa-
tion  of  365  HCC  samples  was  obtained.  The  ICGC-
LIRI-JP dataset (n = 203) was obtained from the ICGC
database.  Additionally,  the  GSE14520  dataset  (n  =
221) was acquired from the Gene Expression Omnibus
database.  VM-related genes (n = 182) were retrieved
from prior research [16].

2.2. Consensus Clustering
Consensus clustering analysis of VM-related Differ-

entially Expressed Genes (DEGs) associated with prog-
nosis was performed using the ConsensusClusterPlus
package to  construct  a  consistent  matrix  and classify
the samples. The following parameters were used: clus-
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terAlg=”km”; distance=”Euclidean”; 500 replications
with a sampling proportion of 80% each time.

The samples were classified using consensus clus-
tering. A Cumulative Distribution Function (CDF) plot
was employed to determine the optimal  cluster  num-
ber. The CDF delta area curve yielded stable clustering
results,  and the ideal number of clustering classifica-
tions was determined to be three.

2.3. Construction of Risk Models
DEGs across the various subtypes in the TCGA co-

hort  were  identified  utilizing  the  “limma”  package
based on the mentioned criteria: False Discovery Rate
(FDR)  <  0.05  and  |log2  Fold  Change  (FC)|  >  1;  p  <
0.05.  These  DEGs  underwent  univariate  Cox  regres-
sion analysis, after which the Least Absolute Shrink-
age and Selection Operator (LASSO) regression analy-
sis was conducted to decrease the gene number for con-
structing the risk model with R “glmnet” [17]. The VC
score was evaluated as mentioned below:

VC score = Σβi × Expi.
Patients  were  stratified  into  high  and  low-risk

groups as per the median VC score. The survival rate
was  evaluated  utilizing  the  Kaplan-Meier  (K-M)
method. Additionally, time-dependent Receiver Operat-
ing Characteristic (ROC) curves were generated.

2.4. Landscape of Cell Infiltration in TME
The data on immunocytes associated with both in-

nate  immunity  and  adaptive  immunity  were  sourced
from prior research [18]. Immune function was evaluat-
ed via R “GSVA”. The gene markers of 27 immune sig-
natures  were  downloaded  from  previous  studies
[19-21]. Single-sample Gene Set Enrichment Analysis
(ssGSEA) was performed to investigate the abundance
of immunocytes.

Estimation of Stromal and Immune cells in Malig-
nant Tumors using Expression data (ESTIMATE) is an
algorithm that infers the matrix and immune scores in
tumor  tissues  based  on  ssGSEA  [22].  This  research
made  use  of  ESTIMATE  to  examine  the  infiltrating
stromal and immune cell levels.

2.5.  Nomogram  Development  based  on  Clinico-
pathological Features

A nomogram was developed utilizing R “rms”, in-
corporating the risk score and American Joint Commit-
tee on Cancer (AJCC) stage. This nomogram serves as
a quantitative and reliable analytical tool for predicting
the  Overall  Survival  (OS)  of  patients  with  HCC.  To
evaluate its accuracy, a calibration curve was generat-
ed.

2.6. Evaluation of Immune Therapy Response
Tumor  Immune  Dysfunction  and  Exclusion

(TIDE), which is a computational framework that pro-
vides information on tumor cell dysfunction, was used
for  predicting  the  clinical  treatment  response  to  im-
munotherapy [23].

Immunophenoscore (IPS) was calculated to evalu-
ate the differential immune treatment responses using
the IOBR package [24]. Four immunophenotypes (anti-
gen presentation,  effector  cells,  suppressor  cells,  and
checkpoint markers) were quantified with diverse im-
mune biomarkers. IPS represents the overall score and
can predict immunotherapeutic efficacy. The IPS value
is  positively  correlated  with  the  immunogenicity  of
samples.

The IMvigor210 cohort is an immune therapy co-
hort of late metastatic urothelial carcinoma. The gene
expression  profile  and  clinical  information  from  the
IMvigor210 cohort were incorporated to identify inde-
pendent  prognostic  factors  for  HCC and estimate the
predictive capability of the risk score for immunothera-
peutic sensitivity.

2.7. Functional Enrichment Analysis
GSEA was  conducted  utilizing  the  “clusterProfil-

er”,  and  the  analysis  was  based  on  the  “h.al-
l.v7.5.1.symbols.gmt”  gene  set  [25].  Pathways  were
deemed significant if they exhibited a p  value < 0.05
and FDR < 0.05.

2.8. Cell Culture
The  hepatoma  cell  line  (HepG2  cells)  and  the

healthy hepatocyte cell line (LO2 cells) were sourced
from the Chinese Academy of Sciences (Shanghai, Chi-
na). HepG2 cells were grown in Dulbecco’s modified
Eagle’s  medium  (Gibco,  USA),  while  Roswell  Park
Memorial Institute-1640 medium was utilized for LO2
cells  (Gibco,  USA).  Both  media  were  supplemented
with  10%  fetal  bovine  serum  (Gibco,  USA)  and  1%
penicillin/streptomycin  (Beyotime,  China).  The  cul-
tures were kept at 37°C under 5% CO2 in an incubator.

2.9. RNA Extraction and Quantitative Real-time Po-
lymerase Chain Reaction (qRT-PCR)

Total RNA was extracted from the cells employing
the  RNA easy  mini  kit  (QIAGEN,  China),  following
the provided protocol. The RNA then underwent rev-
erse  transcription  into  complementary  DNA utilizing
the  PrimeScript  RT  master  kit  (Takara,  Japan).  TB
Green Premix (Takara, Japan) was used for DNA am-
plification. The relative mRNA expression levels were
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Fig (1). Consensus clustering of patients with Hepatocellular Carcinoma (HCC) based on Vasculogenic Mimicry (VM)-related
genes. (A) The intersection of Differentially Expressed Genes (DEGs) identified from the Cancer Genome Atlas-Liver Hepato-
cellular Carcinoma (TCGA-LIHC) cohort with VM-related genes. (B) 22 prognosis-related genes. (C) K-M survival analysis
of TCGA-LIHC cohort. (D) K-M survival analysis of the GSE14520 cohort. (A higher resolution / colour version of this figure
is available in the electronic copy of the article).

determined  utilizing  the  2−ΔΔCT  method.  GAPDH was
utilized as the internal reference. The primers are given
in Table S1.

2.10. Statistical Analysis
The research employed a range of statistical analys-

es,  including  Spearman  correlation  analysis,  univari-
ate/multivariate Cox regression analysis, and ANOVA
test. Student's t-test was used to assess the difference
in relative mRNA expression levels between the hepa-
toma cell line and the hepatocyte line. These analyses
were  carried  out  employing  R  3.6.0  and  GraphPad
Prism 8.0.1,  with differences deemed significant  at  a
threshold of p < 0.05.

3. RESULTS

3.1. Consensus Clustering of VM-related Genes
Analysis  of  the  data  of  HCC  and  adjacent  non--

cancerous samples in the TCGA-LIHC cohort revealed
2862 DEGs. Next, 182 VM-related genes were inter-
sected with 2862 DEGs to obtain 44 genes (Fig. 1A).
Then,  22 prognosis-related genes  (p  <  0.01),  such as
SPP1,  EZH2,  METTL3,  USF1,  FOXK1,  and  CDK5,
were identified from univariate Cox regression analy-
sis (Fig. 1B). Consensus clustering analysis of 22 VM-
related  DEGs  in  TCGA-LIHC  cohort  revealed  three
molecular subtypes of HCC (Fig. 1C). The prognosis
of Cluster 3 (C3) could be distinguished from that of
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Cluster 1 (C1), which was also verified in the external
validation dataset GSE14520 (Fig. 1D).

3.2. VM-related Subtypes had Distinct Immunoge-
nomic Patterns and Dysregulated Pathways

The clinicopathological characteristics, encompass-
ing age, gender, grade, and AJCC stage, were compara-
tively  analyzed among patients  with  HCC in  the  C1,
C2, and C3 subtypes. The C1 subtype exhibited a high-
er proportion of patients with advanced-stage cancer,
which was associated with poor prognosis. Moreover,
the C1 subtype showed upregulated expression levels
of DEGs related to VM (Fig. 2A). To elucidate the dif-
ferential  immune characteristics across different  sub-
types, the TME was examined using various published
methodologies.  As  shown  in  Figs.  (2B-C),  the  im-
mune/ESTIMATE  scores  and  adaptive/innate  scores
were  high in  the  C1 subtype.  Subsequent  analysis  of
immune infiltration unveiled an upregulation in the in-
filtration levels of various immunocytes, such as Den-
dritic  Cells  (DCs),  follicular  helper  T  cells  (Tfh),
macrophages,  T  helper  1  (Th1)  cells,  Th2  cells,  and
regulatory T cells (Tregs) in the C1 subtype. Further-
more, immune functions, including Antigen-presenting
Cell  (APC)  co-inhibition,  checkpoint  activity,  Major
Histocompatibility  Complex  (MHC)  class  I  expres-
sion, and T-cell co-inhibition, were found to be upregu-
lated in the C1 subtype. The infiltration levels of Natu-
ral Killer (NK) cells and the type I/II Interferon (IFN)
response  were  upregulated  in  the  C3  subtype  (Fig.
2D).  Moreover,  functional  enrichment  analysis  was
conducted utilizing GSEA (p.adjust  < 0.05).  In  com-
parison to the C2 and C3 subtypes, the expression lev-
els of genes related to pathways, such as E2F targets,
G2M  checkpoints,  and  mitotic  spindle  MYC  targets,
were found to be upregulated in the C1 subtype (Fig.
2E).  These  findings  indicated  that  tumor  cells  in  the
C1  subtype  exhibited  a  strong  proliferative  potential
and that the mechanism underlying immune escape of
C1 subtype may be related to the downregulation of im-
munogenicity.

3.3.  Establishment  of  the  VC Score Model  for  the
Prediction of the Prognosis of Patients with HCC

The DEGs between the following pairs were identi-
fied  employing  the  limma  package:  C1  subtype  and
other subtypes; C2 subtype and other subtypes; C3 sub-
type and other subtypes (FDR < 0.05; |log2FC| >1). Th-
ese  DEGs  were  intersected  to  obtain  25  overlapping
genes (Fig. 3A). Univariate Cox analysis identified 19
genes that could affect the prognosis of patients with
HCC (p < 0.05). Furthermore, the LASSO regression
analysis of these 19 genes was carried out to decrease

the  number  of  prognostic  genes.  This  resulted  in  the
identification of the following five key genes: TPX2,
CDC20, CFHR4, SPP1, and NQO1. These five genes
were employed for the construction of the risk scoring
system (VC score) (Fig. 3B). The VC score was calcu-
lated using the following formula:

VC  score  =  [(0.21  ×  TPX2  expression  level)  +
(0.048 × CDC20 expression level) + (−0.053 × CFHR4
expression level) + (0.075 × SPP1 expression level) +
(0.044 × NQO1 expression level)]

The VC scores  of  all  the  patients  were calculated
based on the expression level of the genes and the risk
coefficient.  The  prognostic  value  of  the  VM-derived
risk  score  was  examined  in  the  TCGA-LIHC cohort.
Taking the median value of the VC score into account
(1.50527), patients with HCC were stratified into high-
-risk  (n  =  182)  and  low-risk  (n  =  183)  subgroups.
Time-dependent ROC analysis implied that the model
had a high area under the ROC curve value, suggesting
a  high  prognostic  accuracy  of  the  VC  score  model
(Fig. 3C). K-M survival analysis demonstrated that the
high-risk group exhibited a lower OS in comparison to
the low-risk group (p < 0.0001) (Fig. 3D). The mortali-
ty rates (46%) in the high-risk group were considerab-
ly elevated relative to the low-risk group (26%) (Fig.
3E). The prediction performance of the VC score mod-
el  in the ICGC-LIRI-JP (Figs.  3F-H)  and GSE14520
(Figs. 3I-K) cohorts was similar to that in the training
cohort. The AUC values of 0.72, 0.78, and 0.79 for 2,
3, and 4 years in the ICGC-LIRI-JP cohort confirmed
the feasibility of the VC score.

3.4. VC Score Served as an Independent Prognostic
Factor to Construct the Nomogram

To optimize the model, VC score and clinical fea-
tures (age, gender, AJCC stage, and tumor grade) were
included in the univariate and multivariate Cox regres-
sion analyses. VC score [p < 0.001, Hazard Ratio (HR)
= 2.51, 95% Confidence Interval (CI): 1.82-3.46] and
AJCC stage (p < 0.001, HR = 2.01, 95% CI:1.38-2.95)
were determined to be independent predictive factors
for the prognosis of patients with HCC (Figs. 4A-B).
To quantify and visualize the risk assessment and survi-
val  probability  of  patients,  the  VC  score  and  AJCC
stages  were  combined  to  establish  a  nomogram.  VC
score  exhibited  enhanced  performance  in  predicting
the survival  rate (Fig.  4C).  The calibration curve de-
monstrated  the  prediction  accuracy  of  the  VC  score
model  (Fig.  4D).  The  predicted  calibration  curves  of
the  1-year,  3-year,  and  5-year  OS  of  patients  were
close  to  the  standard  curve,  suggesting  the  favorable
prediction performance of the nomogram.
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Fig (2). Immune and signaling pathway characteristics of the three molecular subtypes. (A) Differential gene expression levels
and clinical characteristics between molecular subtypes. (B) Estimation of Stromal and Immune cells in Malignant Tumors us-
ing Expression data (ESTIMATE) scores. (C) Innate immunity and adaptive immunity scores. (D) Comparison of 27 immune
components  evaluated  using  single-sample  Gene  Set  Enrichment  Analysis  (ssGSEA).  (E)  Gene  Set  Enrichment  Analysis
(GSEA) of differentially expressed genes between the molecular subtypes. (A higher resolution / colour version of this figure
is available in the electronic copy of the article).
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Fig (3).  Establishment and validation of  the risk model  (VC score).  (A)  Venn diagram of Differentially Expressed Genes
(DEGs). (B) Least absolute shrinkage and selection operator and Cox regression analyses were executed to reduce the number
of genes. (C-K) Receiver Operating Characteristic (ROC) curve, K-M survival curves, and survival status of TCGA-LIHC (C-
E), International Cancer Genome Consortium-Japanese Liver Cancer (ICGC-LIRI-JP) (F-H), and GSE14520 (I-K) cohorts. (A
higher resolution / colour version of this figure is available in the electronic copy of the article).

3.5. Differential TME Landscapes among the Risk
Groups

To  determine  the  potential  pathways  associated
with VC score, the correlation between VC score and
VM  formation-related  mechanisms,  including  EMT,
Cancer  Stem  Cells  (CSCs),  and  tumor  proliferation
rate, was examined (Fig. 5A). VC score was positively
related to the tumor proliferation rate (Spearman's rho
= 0.75,  p  <  0.001).  To further  clarify  the  differential
TME landscapes across both risk groups, the infiltra-
tion  levels  of  immunocytes  in  HCC tissues  were  ex-
amined in the TCGA-LIHC cohort.  The immune and
adaptive/innate  scores  were  elevated  in  the  high-risk
group,  implying  a  high  overall  immune  level  in  the

TME (Figs. 5B-C). ssGSEA of 27 immune signatures
revealed  that  the  abundance  of  activated  DCs,
macrophages, DCs, Th2 cells, and Tregs was upregulat-
ed in the high-risk group. Meanwhile,  the abundance
of  various  immunocytes,  encompassing  B  cells,  NK
cells, and mast cells, was upregulated in the low-risk
group.  The  activity  of  some  immune  functions  and
some immune components, including APC co-inhibi-
tion, chemokine receptors, APC co-stimulation, check-
point,  human  lymphocyte  histocompatibility  antigen,
T-cell co-inhibition, MHC class I, and T-cell co-stimu-
lation, was upregulated, whereas that of type I/II IFN
response  was  downregulated  in  the  high-risk  group
(Fig.  5D).



Clinical Significance of a Novel Vasculogenic Model in HC Current Medicinal Chemistry, 2025, Vol. 32, No. 19   3933

Fig (4). Construction and identification of nomogram. (A-B). Results of univariate and multivariate Cox regression analyses.
(C) Nomogram constructed with American Joint Committee on Cancer (AJCC) stage and VC score. (D) The calibration curve
of the nomogram model. (A higher resolution / colour version of this figure is available in the electronic copy of the article).

Fig (5). Prediction of differential immune landscapes across high and low-risk groups. (A) Scatter plot of the correlation be-
tween VC score and Epithelial-mesenchymal Transition (EMT), Cancer Stem Cells (CSCs), and tumor proliferation rate. (B)
The immune score was derived through the ESTIMATE algorithm. (C) Innate immunity and adaptive immunity scores. (D)
Comparison of 27 immune components. (A higher resolution / colour version of this figure is available in the electronic copy
of the article).
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3.6.  Immunotherapeutic  Benefits  Predicted by the
VC Score

Afterward, the ability of VC score to predict the re-
sponse  to  immunotherapy  was  examined.  The  TIDE
scores among the subgroups were comparatively ana-
lyzed to assess potential immune dysfunction in HCC.
Compared  to  those  in  the  high-risk  group,  the  TIDE
score was decreased (Fig. 6A) and the response to im-
munotherapy (60% vs. 27%) was higher in the low-risk
group (Fig. 6B). This indicated that patients with HCC
in the low-risk group can benefit from immune check-
point inhibitor therapy. IPS was used as a common in-
dicator  to  evaluate  the  immunogenicity  of  samples.
The proportion of HCC samples with a high IPS was
upregulated  in  the  low-risk  group,  indicating  the  pa-
tients in this group to be sensitive to immunotherapy
(Figs.  6C-D).  In  the IMvigor210 immunotherapy co-
hort,  survival  analysis  revealed  that  patients  with  a
high VC score were associated with short survival time
(HR = 1.65; 95% CI = 1.24-2.21; Figs. 6E-F). Inhibit-
ing  immune  checkpoints  utilizing  monoclonal  anti-
bodies that function by blocking the T-cell suppressor
PD-L1 is a novel and potent anti-cancer treatment [26].
Hence, data from patients undergoing anti-PD-L1 im-
munotherapy  in  the  IMvigor210  cohort  were  used  to

predict  treatment  response.  Compared  to  that  in  the
high-risk group, the proportion of patients with Com-
plete  Response  (CR)  and  Partial  Response  (PR)  was
higher in the low-risk group (Fig. 6G). The values of
the VC score in the stable disease/progressive disease
group were higher in comparison to the CR/PR group
(Fig. 6H). This outcome implied that the novel prog-
nostic biomarker VC score can predict the results of im-
munotherapy.

3.7.  Biological  Pathways  and  Functional  Enrich-
ment Analysis

GSEA  was  conducted  for  further  clarification  of
the signaling pathways enriched in the risk subgroups.
Five pathways with the highest normalized enrichment
score  were  chosen  for  visualization.  Cell  cycle  and
DNA replication signaling pathways were enriched in
the high-risk group (Fig. 7A), while some metabolis-
m-related pathways, including fatty acid degradation,
retinol metabolism, drug metabolism, and xenobiotics
metabolism by cytochrome P450 were enriched in the
low-risk  group  (Fig.  7B).  Thus,  cell  cycle  regulation
and  metabolic  activity  may  be  the  potential  mech-
anisms through which VC score can predict the progno-
sis of patients with HCC.

Fig (6). Prediction of immunotherapy response using the VC score. (A-B). Differential Tumor Immune Dysfunction and Exclu-
sion (TIDE) scores and response ratios. (C-D) The fan diagram shows the differential Immunophenoscores (IPSs) between
high- and low-risk groups. (E-F) ROC and K-M curves of the IMvigor210 cohort. (G-H) The relationship between VC score
and efficacy of immunotherapy. Abbreviations: CR, complete response; PR, partial response; SD, stable disease; PD, progres-
sive disease. (A higher resolution / colour version of this figure is available in the electronic copy of the article).
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Fig 7. Enrichment of biological functions and the results of quantitative Real-time Polymerase Chain Reaction (qRT-PCR).
(A-B) The results of GSEA in different risk subgroups. (C) The expression levels of five signature genes that were used to con-
struct the VC score. (A higher resolution / colour version of this figure is available in the electronic copy of the article).

3.8. In Vitro Experimental Validation of Signature
Genes

The expression levels of five signature genes of the
VC score model in hepatoma cells (HepG2 cells) and
healthy hepatocytes (LO2 cells) were analyzed employ-
ing  qRT-PCR.  The  TPX2,  SPP1,  and  NQO1  mRNA
levels  in  HepG2  cells  were  higher  in  comparison  to
those in LO2 cells (Fig. 7C), and were in line with the
outcomes of bioinformatics analysis. TPX2, SPP1, and
NQO1,  which  are  reported  to  be  oncogenes,  are  in-
volved  in  tumorigenesis,  immunity,  and  metabolism
[27-30].  However,  the  CFHR4  expression  levels
lacked  any  remarkable  variation  when  assessed  be-
tween HepG2 and LO2 cells, which can be attributed
to  the  limitations  of  cell-level  experiments.  In  sum-
mary, the results of in vitro experiments supported our
novel prognostic model.

4. DISCUSSION
HCC,  a  common  carcinoma  of  the  digestive  sys-

tem, is one of the major contributors to cancer-associat-
ed fatalities globally [31]. The progression of HCC is
rapid with patients being generally diagnosed with mid-
dle-stage and advanced-stage tumors. Hence, the effica-

cy of conventional treatment for HCC is poor. Metasta-
sis and recurrence are the key factors affecting the sur-
vival  of  patients  with  HCC.  Recently,  breakthroughs
have been achieved in the treatment of HCC, including
locoregional  therapies  and  molecular  therapies  [32].
However, clinical decisions on HCC treatment and the
selection of personalized treatment are challenging as
effective methods are not available to stratify patients
with HCC according to their prognosis.

The invasiveness of HCC, a typical hyper-vascular
solid tumor,  is  closely related to microvascular  inva-
sion  [15].  Research  from  the  past  two  decades  has
suggested that the presence of VM, which enables pro-
gressive tumors to enter the blood circulation, in HCC
tissues, may be correlated with the invasion and metas-
tasis potential and adverse clinical prognosis of the dis-
ease [33,  34].  Alongside EMT and CSCs,  the forma-
tion  of  VM  is  regulated  by  various  signaling
molecules,  such as HIF1A, matrix metalloproteinase,
PTK2, PIK3CA, and CDH5 [35-38]. The mechanism
underlying VM formation involves the transformation
of tumor cell genotype, the interaction between tumor
cells and extracellular matrix, and the modification of
molecular  signal.  Hence,  a  reliable  prognostic  model
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can be developed based on VM-related genes. This re-
search combined such genes with clinical information
to establish a prognostic model with predictive value
for patients with HCC, providing valuable insights for
clinical management.

This research first identified 22 VM-related molecu-
lar  markers,  such  as  SPP1,  EZH2,  METTL3,  USF1,
FOXK1, and CDK5 using high-throughput sequencing
data  from  the  TCGA-LIHC  dataset  and  VM-related
genes. Past research has reported that the m6A methyl-
transferase  METTL3  is  upregulated  in  HCC  tissues
and promotes VM formation through the Hippo-YAP1
axis, enhancing the migratory and invasive capacities
of HCC cells in vitro and in vivo [39]. Thus, VM for-
mation is linked to adverse prognostic outcomes in pa-
tients  [10].  Yao  et  al.  performed  spatial  transcrip-
tomics  and  revealed  that  the  hypoxic  microenviron-
ment  promotes  the  expression  of  SPP1.  SPP1+  Tu-
mor-associated Macrophages (TAMs) and cancer-relat-
ed fibroblasts,  which are immunosuppressive cells  in
the  Tumor  Immune  Microenvironment  (TIME)  of
HCC, form a Tumor Immune Barrier (TIB) [29]. The
TIB limits the infiltration of immune cells in the tumor
center and suppresses the effect of immune checkpoint
blockade, contributing to poor prognosis. A 2023 study
reported the presence of SPP1-expressing TAM in al-
pha-fetoprotein-positive HCC tissues and demonstrat-
ed that SPP1 can inhibit  the anti-cancer activity of T
cells  by  binding  to  CD44  [40].  Other  VM-related
DEGs identified in this study have also been reported
to be involved in the growth, migration, and stemness
regulation of HCC and are closely correlated with the
survival outcome of patients [41-43].

Clustering  analysis  of  22  VM-related  DEGs  re-
vealed three molecular subtypes (C1, C2, and C3) of
HCC. The survival time, clinicopathological features,
and immune infiltration status varied across the three
subtypes. The prognosis of the C1 subtype was worse.
The C1 subtype was enriched in DNA replication path-
ways, such as E2F targets, G2M checkpoints, and mi-
totic spindle MYC targets. Immune infiltration analy-
sis revealed that the tumor cells in the C1 subtype ex-
hibited strong proliferation ability and immune evasion
owing to the downregulation of immunogenicity.

Afterward, DEGs between the three molecular sub-
types were identified. LASSO Cox regression analysis
was executed after univariate Cox regression analysis
to prevent overfitting. Five key genes (TPX2, CDC20,
CFHR4,  SPP1,  and  NQO1)  were  employed  for  the
establishment of the novel prognostic VC score model.

The five genes used to construct the VC score model
have been reported to be closely correlated with tumori-
genesis, and some of them have been used to construct
prognostic  models  in  previous  studies  [44,  45].
Fuqiang et al. reported that TPX2 could be stabilized
by  CDK5-mediated  phosphorylation,  promoting  the
proliferation,  migration,  and  tumorigenicity  of  HCC
cells [43]. NQO1 is upregulated in HCC cells and pro-
motes  EMT,  cell  proliferation,  and  angiogenesis
through the NQO1/p53/SREBP1 axis [46]. Min et al.
suggested that CDC20 regulates HIF1A activity by pro-
moting  the  polyubiquitination  and  degradation  of
P3H3 and  is  associated  with  the  OS of  patients  with
HCC [47]. CFHR4, a secreted plasma protein synthe-
sized by hepatocytes, is an important component of in-
nate  immunity  with  a  critical  role  in  the  TIME [44].
The important role of SPP1 in the TME suggests the
potential  of  VC score  to  predict  immune  infiltration.
Thus, these key genes are strongly associated with VM
and  the  prognosis  of  patients  with  HCC,  validating
their selection to build the prognostic model in this re-
search.

The predictive performance of the VC score model
was verified using the ICGC-LIRI-JP and GSE14520
datasets. These findings may aid in guiding the prog-
nostic evaluation and predicting the pathological fea-
tures of HCC. As per the median VC score value, pa-
tients with HCC were stratified into high- and low-risk
groups.  Survival  analysis  demonstrated  the  ability  of
VC score to predict the OS of patients as satisfactory.
Multivariate  Cox  regression  analysis  and  nomogram
demonstrated VC score as an independent risk factor
for  the  prognosis  of  patients  with  HCC.  Correlation
analysis  demonstrated  VC  score  as  associated  with
EMT,  CSCs,  and  tumor  proliferation  rate.  The  high-
and low-risk groups exhibited different immune infil-
tration  characteristics  and  immunotherapy  responses.
Furthermore, the ability of VC score to predict the sen-
sitivity to immune checkpoint inhibitors was validated
using the IMvigor210 immunotherapy cohort. Patients
with HCC in the low-risk group were anticipated to ex-
perience  positive  outcomes  from  anti-PD-L1  im-
munotherapy. Functional enrichment analysis revealed
that  cell  cycle  regulation  and  metabolic  activity  may
be the potential mechanisms through which VC score
could predict the prognosis of patients with HCC. Addi-
tionally, the results of qRT-PCR analysis (at the cellu-
lar level) were consistent with those of bioinformatics
analysis.

VM-related  DEGs  between  molecular  subtypes
were identified in this investigation to establish a novel
model  for  stratifying  patients  with  HCC.  The  VC
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score,  an  independent  prognostic  indicator,  exhibited
excellent performance in predicting the prognostic out-
comes,  immunosuppressive  status,  and  treatment  re-
sponse.  This  study,  which  analyzed  public  datasets,
has involved some limitations. The performance of the
VC score should be validated using a real-world clini-
cal cohort. Moreover, additional research is warranted
to  elucidate  the  potential  molecular  mechanisms  that
underlie  the  correlation  between  VC score  and  HCC
prognosis, either in vivo or in vitro.

CONCLUSION
In conclusion, our study has identified three molecu-

lar subtypes (C1, C2, and C3) with different survival,
clinicopathological, and signaling pathways and TIME
features based on VM-related genes. A novel gene sig-
nature  (TPX2,  CDC20,  CFHR4,  SPP1,  and  NQO1)
from  the  VM-derived  subtypes  has  been  constructed
and  used  to  provide  valuable  clinical  references  for
HCC patients in predicting prognosis and immunother-
apy effect.
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