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Abstract

During the course of a viral infection, virus–host protein–protein interactions (PPIs) play a critical role in allowing viruses to
replicate and survive within the host. These interspecies molecular interactions can lead to viral-mediated perturbations of
the human interactome causing the generation of various complex diseases. Evidences suggest that viral-mediated
perturbations are a possible pathogenic etiology in several neurodegenerative diseases (NDs). These diseases are
characterized by chronic progressive degeneration of neurons, and current therapeutic approaches provide only mild
symptomatic relief; therefore, there is unmet need for the discovery of novel therapeutic interventions. In this paper, we
initially review databases and tools that can be utilized to investigate viral-mediated perturbations in complex NDs using
network-based analysis by examining the interaction between the ND-related PPI disease networks and the virus–host PPI
network. Afterwards, we present our theoretical-driven integrative network-based bioinformatics approach that accounts
for pathogen–genes–disease-related PPIs with the aim to identify viral-mediated pathogenic mechanisms focusing in
multiple sclerosis (MS) disease. We identified seven high centrality nodes that can act as disease communicator nodes and
exert systemic effects in the MS-enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways network. In addition,
we identified 12 KEGG pathways, 5 Reactome pathways and 52 Gene Ontology Immune System Processes by which 80 viral
proteins from eight viral species might exert viral-mediated pathogenic mechanisms in MS. Finally, our analysis highlighted
the Th17 differentiation pathway, a disease communicator node and part of the 12 underlined KEGG pathways, as a key
viral-mediated pathogenic mechanism and a possible therapeutic target for MS disease.
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protein–protein interactions

Introduction
Neurodegenerative diseases (NDs) are chronic degenerative
diseases of the central nervous system (CNS), and currently,
there are no effective pharmacotherapies for their treatment,
thus highlighting the need for novel therapeutic interventions.
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Several etiologies have been identified to contribute to their
development and are considered to be multifactorial diseases
involving the complex interaction of both genetic and envi-
ronmental factors [1]. The ‘multiple hit’ hypothesis states that
their development requires the combination of several factors;
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Table 1. Viruses associated with NDs

Neurodegenerative
disorder

Associated viruses References

AD Herpes simplex virus 1 (HSV-1), human immunodeficiency virus (HIV), herpes simplex
virus 2 (HSV-2), human cytomegalovirus (HCMV/HHV-3), Epstein–Barr Virus
(EBV/HHV-4), varicella-zoster virus (VZV/HHV-5), human herpesvirus 6 (HHV-6), human
herpesvirus 7 (HHV-7), hepatitis C virus (HCV)

[5–10]

MS EBV, HHV-6, HSV-1, measles Morbillivirus virus, rubella virus, VZV, human endogenous
retrovirus W (HERV-W), human T-cell leukemia virus type 1 (HTLV-1), John Cunningham
virus (JCV)

[11–20]

PD West Nile virus, Japanese encephalitis B virus, Saint Louis encephalitis virus, HIV, HSV,
EBV, HCMV, VZV, influenza virus type A, measles Morbillivirus virus, coxsackievirus,
poliovirus

[5, 21–24]

ALS HIV, HTLV-1, human endogenous retrovirus K (HERV-K), enteroviruses (poliovirus,
coxsackievirus, echovirus, enterovirus-A71 and enterovirus-D68)

[5, 25–27]

however, how the interplay of these factors contributes to their
development remains elusive [2]. A growing body of evidences
has associated pathogenic organisms, such viral infections, as
possible risk factors for the development of several NDs as
described in Table 1 [2–4].

The viral infectious hypothesis of NDs is best supported in
the case of MS as viral infections are the strongest environmen-
tal risk factor associated with its development, with Epstein–
Barr virus (EBV) infection showing the strongest association
[18, 28]. Several other viruses have been also implicated in the
development and/or progression of MS, as described in Table 1.
Neurotropic viruses that belong to the Herpesviridae family,
such as herpes simplex virus (HSV) and EBV, have also been
associated with the development of Parkinson’s disease (PD) as
they can cause acute and chronic parkinsonism [21]. In addition,
infection with West Nile virus (WNV), a neurotropic virus of
the Flaviviridae family that causes meningoencephalitis, can
also result in the development of Parkinson-like symptoms that
usually resolve over time [29, 30]; however, in some cases, the
symptoms can persist, resulting in chronic PD [31]. Similar to
WNV, parkinsonian-like symptoms can also be caused by other
viruses of the Flaviviridae family [21, 32], including Japanese
encephalitis virus [33] and Saint Louis encephalitis virus [34].
Amyloid lateral sclerosis (ALS) is a deadly ND involving the
degeneration of motor neurons in the brain and spinal cord.
Enteroviruses, including poliovirus and coxsackievirus, are sus-
pected to be involved in the development of ALS as they can
target motor neurons and can cause TAR DNA-binding protein-
43 pathology in vivo, which is a major pathological hallmark in
sporadic ALS [25, 35, 36]. Moreover, analysis of blood and brain
samples of patients with ALS indicated increased expression
of HERV-K, and experimental evidence revealed that infection
of neurons with HERV-K can result in motor dysfunction in
transgenic mice [37, 38]. Alzheimer’s disease (AD) is a progressive
ND and the most common form of dementia in the elderly, with
its main pathophysiological hallmarks being the formation of
amyloid plaques and neurofibrillary tangles in the brain. Individ-
uals seropositive to HSV-1 show increased risk of developing AD,
and increased presence of HSV-1 was found in AD post-mortem
brains, including in Aβ plaques, especially in apolipoprotein E4
gene carriers, a major susceptibility gene in sporadic AD [7, 39,
40]. The presence of infectious agents in the brain of AD has led
to the emergence of the ‘antimicrobial protection hypothesis of
AD’, which suggests that increased microbial burden in the brain
might lead to the disposition of β-amyloid due to the role of Aβ in

innate immune responses against pathogens, leading to sustain
neuroinflammation that propagates neurodegeneration [41].

Viruses can induce neuronal degeneration via direct and/or
indirect actions, for example they can cause neuronal dysfunc-
tion directly through their cytolytic effects and indirectly via
various mechanisms such as by expressing viral genes that
interfere with the host’s immune system and cellular processes,
via bystander inflammatory reactions, or by inducing apoptosis
[42, 43]. Viruses are intracellular obligate parasites that lack their
own replication machinery, thus to ensure their survival and
reproduction they rely on the host, and via physical interac-
tions they manipulate and exploit the host’s cellular machinery
[44, 45]. In addition, through the evolutionary process, viruses
have developed an array of adaptive immune evasion strategies
including interfering with antigen presentation and mimicking
immune processes [43]. Several evidence indicates that neuroin-
flammation is involved in the progression of NDs, by directly
or indirectly contributing to neuronal loss; however, whether
the immune system participates in the initiation of these dis-
eases remains undetermined [5, 46]. Immune system activation
within the CNS can also be elicited by viral infections, either
by neurotropic viruses that infect the CNS or by viruses that
infect peripheral tissues and can cause a strong inflammatory
response, resulting in the infiltration of peripheral leukocytes
into the CNS and the subsequent activation of resident microglia
cells [47]. Infection by certain neurotropic viruses can also lead to
the formation of neuropathological and/or immunopathological
lesions with the pattern of the resulting lesions having similar
distribution as that of the common NDs [48, 49]. It is therefore
possible that viruses may be directly or indirectly involved in
the development of NDs, by either causing dysregulation of the
immune system and/or by interfering with the host’s cellular
and immune system components.

However, despite the association of viral infections with
NDs, it is highly unlikely that viruses are solely responsible for
the development and/or progression of NDs, as the prevalence
of viruses that are linked to NDs is very common in the
general population, whereas the rate of individuals with NDs
is significantly lower [42]. Therefore, it is unlikely that viral
infections are the self-determining factor in the pathogenesis of
NDs, and other factors particularly genetic susceptibility or other
environmental factors could contribute in association with viral
infections. Genetic susceptibility is not only associated with NDs,
but is also an important factor that determines how a person’s
immune system responds to a pathogen and how efficiently
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Figure 1. A schematic representation of the multifactorial origin of a group of pathologically distinct but related neurological diseases. NDs are complex disorders that

are caused by the combination of environmental and genetic factors; however, how the interplay of these factors contributes to their development still remains unclear.

One hypothesis is that NDs might be caused by the combinatorial effects of viral infections, other environmental factors and genetic susceptibility. The combination

of these factors contributes to the clinical heterogenicity and histopathological diversity of the central nervous lesion that characterizes these diseases, as they differ

in the subset of neurons and anatomical structures that are affected and have both common and distinct pathological abnormalities. Figure contains illustrations

obtained from Servier medical art (https://smart.servier.com/), provided free and licensed under the Creative Commons Attribution 3.0 Unported License.

it can eliminate acute viral infections or control chronic
viral infections [42, 46]. Therefore, the individual’s genome
determines the genetic sensitivity of the immune system
towards different pathogens. However, genetic sensitivity
to infections does not imply that there is a general weak
immune surveillance towards pathogens [42], but rather that
the individual’s ‘immunogenome’ is more susceptible towards
specific pathogens. The ‘immunogenome’ can change virus–
host symbiosis and predispose an individual to certain viral-
mediated immune-associated diseases by various mechanisms
such as altering immune response to specific viruses, shifting
viral cell tropism and changing neurovirulence [50–52]. In
addition to genetic susceptibility, viruses can lead to the
development of NDs in combination with other environmental
factors [4]. For example, advanced age is considered as a major
environmental risk factor in most NDs [53], and it can possibly
act as a cofactor in the microbial-mediated pathogenesis of NDs.
Aging causes alterations on the blood-brain barrier (BBB) and is
also associated with increased oxidative stress in the brain,
these age-mediated effects make the brain more permeable
to viruses and neurons more vulnerable to viral insults [3].
Therefore, understanding the interaction between viruses, genes
and environmental factors is not only essential for elucidating
the role of viruses in the pathogenesis of NDs but can also aid to
determine how the combinatorial effects of different risk factors
can lead to the development of NDs (Figure 1).

Integration of virus–host PPIs and host PPIs in
ND interactomes for the investigation of
virus-mediated pathogenesis
During the course of a viral infection, virus–host PPIs are a key
infection mechanism that allows viruses to evade host immune
responses, replicate and hence survive within the host. These
molecular interactions can lead to the dysregulation of normal
biological processes within the host, causing numerous diseases
from cancer to NDs [54]. These interspecies PPIs can be repre-
sented as a network, where the nodes represent the proteins
and the edges their interactions [55]. This physical interaction
network between viral proteins and host’s cellular targets can
be used to provide further insights in the disease etiology [56].
Understanding pathogen–host PPIs might enable the identifi-
cation of mechanisms that directly or indirectly lead to the
development of certain diseases.

Human PPI networks exhibit a scale-free behavior, where the
majority of proteins in the network have few connections to
other proteins whereas few ones, termed ‘hubs’, are connected
with multiple proteins [57]. Viruses can be classified based on
their genome. Comparative interactome analysis between DNA
versus RNA viruses, revealed that the DNA viruses-human PPI
network follows a scale free behavior, whereas the RNA viruses-
human PPI network does not follow a scale free behavior [58].
In addition, unlike the cooperative nature of the evolutionary

https://smart.servier.com/
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Figure 2. Schematic representation of the construction of the integrated virus–host–ND PPI network, where the virus–host PPI network is merged with a ND-related

PPI network. Figure contains illustrations obtained from Servier medical art (https://smart.servier.com/), provided free and licensed under the Creative Commons

Attribution 3.0 Unported License.

principles that govern PPIs of the host’s biological processes,
the evolutionary trajectories of PPIs in the virus–host interaction
network are antagonistic, as there is a constant competition
between virus and host interactions where a change in a protein
of the virus might result in a reciprocal counterchange in a
host’s protein and vice versa [59, 60]. This constant arm race
of evolutionary actions and counteractions between virus–host
processes determines the evolutionary nature of the virus–host
PPI network, which is not static and hence its topology changes
over time.

Topological analysis studies of virus–human PPI networks
revealed several important characteristics about the interaction
of viral proteins with human targets. Viral proteins have a prefer-
ence to target human proteins that are hubs, have high between-
ness (bottlenecks), are articulation points and belong to rich
clubs [61–64]. Hub proteins play an essential role in maintaining
the connectivity of the network. The removal of hub nodes
causes network failure, a property known as lethality–centrality,
whereas the deletion of a random node with few connections
does not influence the topology of the network [65, 66]. Between-
ness centrality enables the identification of nodes that act as
bridges (bottlenecks) between other nodes in the network and
hence are important in influencing the communication between
nodes within the network [67]. Viruses through the evolutionary
processes have evolved strategies that allow them to efficiently
adapt to the scale-free nature of the human interactome and
via targeted attacks interact with essential proteins (hubs, bot-
tlenecks) that are highly connected, allowing them to influence
multiple functions and pathways simultaneously [68].

Viral-mediated perturbations of the host’s interactome that
lead to the generation of complex diseases involve the inter-
action of viral proteins with the host’s PPIs network, therefore

merging the virus–human PPI and the human disease PPI net-
works can enable to understand viral-induced pathogenesis [54,
56, 68, 69]. In the context of NDs, the virus–host PPI network
can be merged with the ND-related PPI networks, creating an
integrated virus–host–ND PPI network allowing to identify viral-
mediated pathogenic mechanisms in NDs (see Figure 2 for a
schematic representation).

Resources and computational analysis of the
virus–host–disease PPI network
The analysis of virus–host–disease interactions can involve sev-
eral approaches with the most commonly used bioinformatics
pipeline approach involving the following steps: (i) reconstruc-
tion and visualization of the virus–host–disease PPI network, (ii)
topological network analysis and (iii) Gene ontology (GO) [70]
and pathway enrichment analysis. There are several reviews
that have extensively described databases and tools that can
be implemented to investigate these central steps [71, 72] . In
this section, we summarize some of the recourses that can be
utilized at each step for the investigation of virus–host–disease
PPIs, which are also illustrated in Figure 3.

Reconstruction and visualization of the
virus–host–disease PPI network

Data for the reconstruction of the virus–host PPI network can
be collected from several databases such as VirHostNet 2.0 [73],
Viruses.STRING [74], PHISTO [75], VirusMentha [76] and HPIDB
3.0 [77]. The main approaches utilized for the reconstruction
of disease PPI networks are using disease genes obtained from
gene to disease association databases, such as MalaCards [78]

https://smart.servier.com/
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Figure 3. Illustration of the most commonly used approach for the investigation of virus–host–disease PPIs highlighting recourses and tools that can be utilized at

each step. The first step involves the collection of data, and virus–host PPIs can be collected from several databases such as VirHostNet 2.0 [73], Viruses.STRING [74],

PHISTO [75], VirusMentha [76] and HPIDB 3.0 [77]. Disease data can be collected from databases such as the STRING: disease query app in Cytoscape [81], MalaCards

[78], DisGeNET [79], OMIM [237] and ClinVar [238]. The second step involves the visualization of the integrated network, which can be performed with Cytoscape [85],

the igraph package in python and R [86] and the NetworkX package in python [87]. The third step involves network topological analysis that can be performed with

several plugins offered by Cytoscape such as NetworkAnalyzer [88] and CytoHubba [89], as well as clustering analysis apps, such as CytoCluster [112] and ClusterViz

[113]. The final step involves enrichment analysis that can be performed either on the whole network or on subnetworks using the ClueGO [96] plugin in Cytoscape

[98] and enrichR [105], an R interface to the Enrichr database [106, 107]. Pathway enrichment analysis can be performed form several databases including the KEGG [99],

Reactome [100] and WikiPathways [101]. Figure contains illustrations obtained from Servier medical art (https://smart.servier.com/), provided free and licensed under

the Creative Commons Attribution 3.0 Unported License.

and DisGeNET [79], or using gene expression data from disease
patients obtained from the NCBI GEO database [80], and then
converting these genes into the corresponding protein products.
Another approach is to use the STRING: disease query app in
Cytoscape [81], which provides directly disease-associated pro-
teins instead of genes, therefore overcoming the problem of
having to convert genes into proteins. The STRING: disease data
are obtained from the DISEASES database [82] that obtains gene
to disease associations from automatic text mining, manually
curated databases such as UniProt Knowledgebase (UniProtKB),
genome-wide association studies and cancer mutation data. The
different types of evidence are then unified by assigning them a
confidence score, with 5 stars been the highest confidence and 1
star the lowest. Virus–host and human intra-species PPI data can
also be obtained from the PISCQUIC Web Service Client app in
Cytoscape, an integration tool that provides data from multiple
databases [83]. Visualization and integration of the virus–host

and disease PPI networks can be performed with several open
source software such as Gephi [84], Cytoscape [85], the igraph
package in python and R [86] and the NetworkX package in
python [87].

Topological and enrichment analysis of the
virus–host–disease PPI network

Cystoscope offers numerous plugins, such as NetworkAnalyzer
[88] and CytoHubba [89] for topological network analysis.
Topological properties allow to identify the most important
interactions within the network. The most common properties
used for the investigation of virus-host interactions are: node
degree, degree centrality, betweenness centrality, shortest path
and modularity score [62, 63, 67, 90, 91].

GO and pathway enrichment analysis of pathogen–host
PPIs have been used in several studies to identify common

https://smart.servier.com/
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and unique infection strategies, as well as pathogen-mediated
pathogenic mechanisms that might lead to disease [58, 63, 91–
93]. Therefore, enrichment analysis can be used to identify
highly targeted biological pathways by viral proteins, providing
insight into the mechanisms of pathogen obstruction of the
host’s immune system and cellular processes [94]. For example,
GO enrichment analysis can be performed to identify functional
terms that are significantly targeted by pathogens in the three
ontologies terms: biological process, molecular functions and
cellular components [95]. Functional analysis of the viral-
targeted human proteins can be performed via the ClueGO
[96] and BINGO [97] plugins in Cytoscape [98]. The ClueGO
app also allows to perform pathway enrichment analysis from
several databases including the Kyoto Encyclopedia of Genes
and Genomes (KEGG) [99], Reactome [100] and WikiPathways
[101]. Other available pathway enrichment analysis web tools
are the KEGG Orthology-Based Annotation System [102], the
Database for Annotation, Visualization and Integrated Discovery
[103, 104] and enrichR [105], an R interface to the Enrichr
database [106, 107].

In addition, the PathwayConnector web tool [108], which
was created by our group, can be used to create a complemen-
tary network of the KEGG enrichment analysis results, allowing
to identify missing nodes (pathways) that interact with the
enriched pathways. GO and pathway enrichment analysis can
be performed either on the whole network or in clusters of sub-
networks. Clustering algorithms such as MCODE [109], the com-
munity clustering algorithm [110] and K-means clustering can
be used for subnetwork identification, which can be performed
with several clustering apps in Cytoscape such as ClusterMaker
[111], CytoCluster [112] and ClusterViz [113].

Computational analysis of virus–host–ND PPIs using a
knowledge-based approach

Although several studies have investigated the role of viral-
mediated perturbations in the generation of human diseases
based on PPIs networks [54, 56, 61, 90], there is lack of studies
that focus specifically on viral-induced pathogenic mechanisms
in the generation of NDs. A recent study by Costa Sa et.al. [114]
has investigated the mechanisms of viral-induced pathogene-
sis in NDs, but at the transcriptomic level by comparing the
gene expression profiles of AD or PD patients with three viral
infection datasets and was able to identify shared pathways
between these NDs and viruses. However, despite the lack of
studies that explore virus–ND PPIs, there are several studies that
have investigated NDs based on PPI networks. Although NDs
encompass a large group of diseases that share as a common
pathological component the degeneration of neurons, there is
heterogenicity in the subset of neurons, anatomical structures
and pathological abnormalities that are affected in each of these
diseases [115, 116]. Nonetheless, these diseases share several
common pathological mechanisms including protein misfolding
and aggregation [117], apoptosis [118], impaired bioenergetics
[119], neuroinflammation [120], oxidative stress and decreased
antioxidant activity [121].

Therefore, NDs are a group of pathologically distinct but
related diseases and two different directions have been used
to investigate NDs using PPI networks by either focusing on
a specific ND or analyzing a group of NDs, with the majority
considering a specific disease [122–124]. The few studies that
have investigated a group of NDs have primarily concentrated
in identifying common molecular mechanisms by identifying
direct protein/genes commonalities and pathways among NDs

and indirect network relationships between NDs via topological
association by identifying common modules in these diseases
[125–128]. There is also lack of specific ND databases with
NeuroDNet being one of the few available databases that
contains information for genes and SNPs associated with 13
NDs and also allows the reconstruction and analysis of these
NDs networks using PPI, regulatory and Boolean networks;
however, it was last updated in 2016 [129]. In the next part
of our paper, we aim to describe a simple methodology that
integrates approaches for the investigation of NDs based on
PPIs and elements from the investigation of virus–host PPI
networks. Our approach aims to incorporate knowledge-based
information about a group of NDs with the aim to focus
in the molecular pathology of viral-mediated perturbations
in MS disease.

The case of multiple sclerosis
MS is a complex chronic immune-mediated demyelinating
disease of the CNS, characterized by the presence of both white
and grey mater lesions in the CNS, accompanied by immune
cell infiltration of autoreactive T and B cells [130, 131]. Although
the etiology of MS pathogenesis still remains unknown, two
major opposing hypotheses have been formulated on its origin.
The ‘outside-in’ model, which suggests that an unknown
trigger leads to the activation of peripheral lymphocyte cells
that migrate into the CNS via the BBB though cell adhesion
molecules [132, 133]. The peripheral immune cells then lead to
the destruction of oligodendrocytes and the release of myelin
antigens causing the activation of resident microglia cells and
the subsequent formation of autoreactive T cells [132, 133].
The alternative hypothesis is the ‘inside-out’ model, where
an initiating event within the CNS leads to the release of
myelin antigens, causing the activation of resident microglia
cells and the recruitment of immune cells [132–134]. The CNS-
derived myelin antigens are then drain out of the CNS into the
periphery inducing a secondary adaptive immune response in
peripheral tissues [132–134]. Evidences for and against both
models have been reviewed [130, 132–134]; however, it still
remains undetermined if the primary initiator of MS disease
is oligodendrocyte degeneration or peripheral immune system
dysfunction, which are caused by an unknown trigger. As
already mentioned above, viral infections can act as triggers
under both the ‘outside-in’ and the ‘inside-out’ models of
MS pathogenesis.

In the following section, we aim to identify possible
mechanisms of viral-induced pathogenesis in MS disease, using
a theoretical-driven integrative network-based bioinformatics
pipeline approach, with the main steps illustrated in Figure 4.
In this paper, we focus on the ND component of the disease
by comparing MS with a group of NDs that are also associated
with viral infections. In addition, we will briefly explore the
autoimmune component of MS. Our pipeline includes the
following approaches: (i) reconstruction and visualization of
the integrated virus–host–MS PPI network, (ii) topological and
knowledge-based subnetwork identification, (iii) pathway and
GO enrichment analysis, (iv) a filtering process of the enriched
results, (v) comparison and identification of direct common
pathological pathways in NDs and autoimmune diseases, (vi)
construction of the ND-based MS-enriched KEGG pathway-
to-pathway network, (vii) topological analysis, (viii) similarity
calculations and clustering analysis and (ix) tissue-specificity
enrichment analysis.



Identification of viral-mediated pathogenic mechanisms 7

Figure 4. Schematic representation of the methodology applied in this paper to investigate the interaction between virus-host-MS PPIs using a network-based approach

with the aim to identify viral-mediated pathogenic mechanisms that might be involved in the development of MS. (A) Reconstruction of the virus-host-MS PPIs network.

(B) Subnetwork identification,enrichment analysis and filtering process of the enriched results. (C) Construction and topological analysis of the ND-based MS enriched

KEGG pathway to pathway network and comparison with the post filtering enriched pathways obtained from each subnetwork. Figure contains illustrations obtained

from Servier medical art (https://smart.servier.com/), provided free and licensed under the Creative Commons Attribution 3.0 Unported License.

Methods
Reconstruction and visualization of the integrated
virus–host–MS PPI network

A thorough literature review analysis has been performed to
identify viruses highly associated with MS disease (Table 1).
Eleven viruses have been identified. From them, HERV-W was
excluded due to lack of PPI data. Virus–host PPI data for the 10
selected viruses were collected from PHISTO database, which is
one of the most comprehensive databases for pathogen–human

host PPI data and contains only experimentally detected inter-
actions that are imported from several PPI databases [75, 135].
For the selected viruses, a unified virus–host PPI network was
constructed and visualized in Cytoscape [85]. The characteristics
of the 10 viruses and the number of virus–host PPIs for each of
the viruses included are indicated in Table 2. The StringAPP [81]
was then used to expand the interactome of the viral-targeted
human proteins and create edges between the human proteins,
in order to create an expanded interconnected virus–host PPI
network. The unified virus–host PPIs network contained 2101

https://smart.servier.com/
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Table 2. Viruses–human host PPI network data

Virus species Family Virus genome No. of strains No. of
PHIs

No. of viral
proteins

No. of human
proteins

HSV-1 Herpesviridae dsDNA 6 777 66 604
Varicella-zoster virus (HHV-3) Herpesviridae dsDNA 2 6 5 4
EBV Herpesviridae dsDNA 3 4644 148 1198
HCMW Herpesviridae dsDNA 4 110 32 90
HHV-6A Herpesviridae dsDNA 2 3 3 3
HHV-6B Herpesviridae dsDNA 1 4 3 4
JCV Polyomaviridae dsDNA 1 51 5 49
Rubella virus Togaviridae +ssRNA 3 60 4 59
Human T-cell leukemia virus

type 1 (HTLV-1)
Retroviridae +ssRNA-RT 5 195 15 178

Measles Morbillivirus virus Paramyxoviridae -ssRNA 6 529 14 487
Total 33 6379 295 2676

different viral-targeted human proteins, which were expanded
by maximum of 10 additional interactors using the STRING:
protein query, and the confidence cut-off for the interactions
between the human proteins was set at 0.8. The confidence
cut-off score determines the nature and quality of the support-
ing evidence of the interaction between proteins and ranges
from 0 (low) to 1.0 (high), with interactions with high confidence
score being more likely to be true positives. Expansion of the 2101
viral-targeted human resulted in the import of an additional
238 human proteins. Then, the expanded interconnected virus–
host PPIs network, containing 2339 human proteins and 295 viral
proteins, was integrated with the MS disease PPI network that
contained the 200 disease-associated proteins with the highest
disease score obtained from the STRING: disease query of the
StringApp. Since we are interested in constructing an integrated
virus–host–MS disease PPI network, we choose STRING: disease
to obtain the disease-associated proteins for MS because it pro-
vides directly proteins instead of genes and it has a unified
disease scoring scheme for the different types of evidences. In
addition, because the virus–host PPI network was constructed
using STRING: protein, the protein identifiers are synchronized,
allowing the virus–host and MS disease PPI networks to be
merged. Merging of the two networks resulted in the construc-
tion of an integrated virus–host–MS PPI network of 2807 nodes
and 33 741 edges.

Topological and knowledge-based subnetwork
identification in the virus–host–MS PPI network

Due to the size and the complexity of the integrated virus–host–
MS PPI network, it is important to identify subnetworks that
reveal important virus–host interactions that could directly or
indirectly affect disease proteins. Three subnetworks were iso-
lated that account for pathogen–genes–MS disease interactions:

(i) The first neighbors of the intersection nodes between the
expanded virus–host PPI network and the MS disease PPI
network: merging of the expanded virus–host PPI network
with the MS disease network indicated 27 intersection
nodes, which are MS disease-related proteins, and 21 nodes
are also human viral targets. This subnetwork includes the
27 intersection nodes and their first neighbors.

(ii) The first neighbors of MS-related proteins: the second sub-
network includes the 200 MS disease-associated proteins
and their first neighbors.

(iii) The first neighbors of human proteins with MS-related vari-
ants: the MS-related variants subnetwork was isolated by
mapping on the integrated virus–host–MS PPI network, MS
disease-associated variant proteins, which were collected
from the DisGeNET database [79]. This mapping revealed
104 MS variant proteins on the network, which were then
selected with their first neighbors to highlight the third
subnetwork. Based on the local impact hypothesis, viral
host targets of the associated virus are located in proximity
of disease susceptibility genes within the network, and
the expression pattern of such genes changes significantly
[56, 65, 136]. Therefore, viral proteins that directly interact
with MS disease-associated variant proteins or indirectly
by affecting another protein within the same pathway of
the disease variant can lead to a shift from virus–host
equilibrium state to disease disequilibrium state, causing
viral perturbations.

The number of viral and MS disease proteins included in each
subnetwork can be found in Table 3.

Enrichment analysis of the three subnetworks

GO and pathway enrichment analysis was performed for the
human proteins contained in each of the three subnetworks
(Table 3) using the ClueGO plugin in Cytoscape [96]. The
enrichment analysis for each subnetwork included the following
three databases: (i) KEGG database pathways [99], (ii) Reactome
database pathways [100] and (iii) Gene Ontology Immune System
Processes (GO ISP), keeping only the terms with significant
P-value ≤0.05 (corrected with Bonferroni step-down).

Similarity and clustering analysis of viral
proteins–KEGG pathways interactions

To identify clusters of viral proteins that interact with similar
KEGG pathways, Reactome pathways and GO ISP, and vice versa,
we used the vegan package in R [137] to measure the Jaccard
similarity index. Then, we performed agglomerative hierarchical
clustering using the factoextra package in R [138].

Reconstruction and visualization of the MS-enriched
KEGG pathway-to-pathway network

NDs share several common pathological mechanisms; therefore,
common disease proteins shared between all NDs could reflect
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Table 3. Contents of the topological and knowledge-based subnetworks

Subnetworks inclusion criteria Total proteins in
subnetwork

No. of viral
proteins

No. of MS disease
proteins

No. of human proteins for
enrichment analysis

Intersection nodes first neighbors 615 43 89 572
MS disease proteins first neighbors 699 43 200 656
MS variants proteins first neighbors 681 69 131 612

Figure 5. Comparison results of the top 200 highest disease-associated proteins

between the four NDs: ALS, MS, PD and AD.

direct commonalities of pathological mechanisms and pathways
affected, whereas unique disease-associated proteins might
possibly reflect more specific disease phenotype. We selected
AD (DOID: 10652), ALS (DOID:332) and PD (DOID:14330) to be
compared to MS (DOID:2377) for the following reasons: (i) like MS,
their development has also been associated with various viral
infections, as indicated in Table 1; (ii) similar to MS, they affect
the CNS unlike other NDs that affect the peripheral nervous
system; (iii) they are also predominantly sporadic but also
have familial forms unlike other NDs like Huntington’s disease
and spinocerebellar ataxia, which are hereditary and (iv) most
importantly these four NDs share several common pathological
mechanisms. The STRING: disease query of the StringApp in
Cytoscape was used to collect disease-associated proteins for
the four NDs. The top 200 most disease-associated proteins
with the highest disease score for each disorder were collected,
with confidence cut-off set at 0.8. We used Venny 2.1 [139], to
compare the associated proteins among the four NDs to identify
the common disease-associated proteins between all four NDs
and those that are unique for MS compared to this specific group
of NDs (Figure 5).

We identified 17 common disease proteins between all four
NDs, 166 unique to MS and 17 that are shared between MS and
some of the other NDs. Enrichment analysis was performed for
each group of proteins with the ClueGO app [96] in Cytoscape
using the following three databases: (i) KEGG database [99], (ii)
Reactome database [100] and (iii) GO ISP, keeping only terms with
significant P-value ≤0.05 (corrected with Bonferroni step-down).
The enriched KEGG pathway results obtained from the 17 com-
mon ND proteins were then entered into the PathwayConnector
web tool [108] to discover a complementary network of pathways
that interact with the common ND pathways (Figure 6).

Moreover, PathwayConnector was used to reconstruct and
visualize the MS-enriched KEGG pathways network. Topological
analysis was performed using the CytoHubba app of Cytoscape
[89] with the aim to identify hubs and bottlenecks nodes in
the MS-enriched KEGG pathways network. The ClusterMaker
app [111] was then used to perform community clustering [110]
on the MS-enriched KEGG pathways network, which detects
clusters of nodes based on their connectivity, allowing to identify
community clusters of pathways that interact with the hub–
bottleneck nodes.

The autoimmune component of MS disease

MS is a complex disease having components from both ND and
autoimmune diseases. Similar to NDs, the pathogenesis of sev-
eral autoimmune diseases has also been associated with several
infectious agents, including viruses [140, 141]. Interestingly, EBV,
which is the strongest environmental factor in the development
of MS, has also been associated with other NDs (Table 1), but
also with several autoimmune diseases [142–145]. So how is
one virus able to cause different disease phenotypes? Therefore,
to identify commonalities between MS and other autoimmune
diseases, we used a similar approach as in the comparison
of MS with a group of NDs that were also associated with
viral infections. We selected systemic lupus erythematosus (SLE)
(DOID: 9074), rheumatoid arthritis (RA) (DOID: 7148) and type 1
diabetes (DOID: 9744) to be compared to MS (DOID:2377) because
(i) they are non-nervous system autoimmune diseases and (ii)
their development has also being associated with several viral
infections, as described in Table 4. Enrichment analysis was then
performed for each group of proteins using the KEGG database.
We then compared the obtained statistically significant KEGG-
enriched results with those identified in the comparison of MS
with the three NDs, with the aim to identify common path-
ways between the two major components that characterize MS
pathophysiology.

Tissue-specificity enrichment analysis of virus–disease
interactions

The final 12 KEGG pathways, 52 GO ISP and 5 Reactome pathways
are targeted by 80 viral proteins from eight viral species. We used
TissueEnrich web application (http://tissueenrich.gdcb.iastate.e
du/) [156] to perform tissue-specific gene enrichment analysis
to identify possible tissues where the virus–disease interaction
could manifest leading to the dysregulation of the identified
pathways. To perform the analysis, we used the human RNA-seq
data from the GTEx database [157], which is the largest dataset of
normal tissue expression, containing 56 different tissues. How-
ever, in the TissueEnrich application samples from sub-tissues
are grouped together, i.e. different brain areas are grouped under
brain, resulting into 29 human tissues. We considered genes
as tissue specific, using the ‘tissue enriched’ parameter, which
defines genes as tissue specific if they have at least five times

http://tissueenrich.gdcb.iastate.edu/
http://tissueenrich.gdcb.iastate.edu/
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Figure 6. Complementary network of the four common NDs KEGG pathways (IBD, HIF-1 signaling pathway, malaria and legionellosis) and their interactions with the

11 complementary nodes/pathways, created using PathwayConnector.

Table 4. Viruses associated with autoimmune diseases

Autoimmune disease Viruses References

SLE EBV, HCMV, HTLV-1, HIV-1, human endogenous retroviruses (HERVs),
parvovirus B19

[142, 143, 145–150]

RA EBV, parvovirus B19, HIV, hepatitis B virus, hepatitis C virus,
alphaviruses, HTLV-1, rubella virus, HCMV

[143–145, 150, 151]

Type 1 diabetes Enteroviruses (coxsackie B virus), EBV, HERVs, mumps virus, rubella
virus, hepatitis C virus, HCMV, rotavirus

[150, 152–155]
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Figure 7. Enriched KEGG pathway analysis results of the 166 unique MS disease proteins, obtained using the ClueGO app in Cystoscope, with the pathways classified

into groups and the percentage indicating the number of terms in each group.

higher expression levels in a particular tissue compared to all
other tissues. We also measured the statistical significance of
the tissue-specific genes using the fold-change test.

Results
Enrichment analysis results of the MS unique, MS
shared and ND common disease proteins

The enrichment analysis of the 17 common ND-associated pro-
teins indicated that only microglia cell activation is a statistically
significant common GO ISP, no Reactome pathways were found
and four KEGG pathways were identified: inflammatory bowel
disease (IBD), malaria, HIF-1 signaling pathway and legionellosis
pathways. Complementary network reconstruction of the four
KEGG pathways indicated that they interact with 11 comple-
mentary pathways (Figure 6). Enrichment analysis of the 166
MS unique disease-associated proteins revealed 49 KEGG path-
ways (Figure 7), 38 Reactome pathways and 188 GO ISP. The
49 KEGG pathways are either infectious disease or immune-
related pathways (see Supplementary File 1 available online at
https://academic.oup.com/bib), thus confirming the association
between pathogens and their interaction with the immune sys-
tem in the development of MS. Interestingly, 42.4% of the KEGG
pathways belong to the Rheumatoid arthritis group. The GO ISP
enrichment analysis results indicated that 92% of the significant
terms belong to the group of positive regulation of lymphocyte
proliferation, which is important for the development of adap-
tive immune responses against pathogens in the CNS [158]. The
Reactome results indicated that the majority of the terms belong
to interleukin (IL) signaling groups, to the chemokine receptors
bind chemokines group and the diseases of the immune system
group. The enriched group results of the Reactome and GO
IPS can be found in Supplementary File 1 available online at
https://academic.oup.com/bib.

In addition, the enrichment analysis results of the 17 disease-
associated proteins that are shared between MS and some
of the other NDs resulted in 2 Reactome pathways, the IL-10

signaling and IL-4 and IL-13 signaling pathways, 1 GO ISP, the
cytokine secretion involved in immune responses and 7 KEGG
pathways.

Comparison between MS ND-derived pathways versus
MS autoimmune-derived pathways

We identified 45 common disease-associated proteins between
MS and the three autoimmune diseases SLE, RA and type I
diabetes, 102 unique to MS and 53 disease-associated proteins
that are shared between MS and some of the other autoim-
mune diseases. The enrichment analysis of the 45 common
disease-associated proteins resulted in the identification of 47
statistically significant KEGG pathways, which belong to nine
groups, as indicated in Figure 8. The KEGG pathway groups are
either infectious diseases, autoimmune diseases or immune
system components, which highlights the association between
infectious diseases and the immune system in the development
of autoimmune diseases [159]. In addition, 23.75 and 15.0% of
the pathways belong to the malaria and IBD groups, respec-
tively. These pathways have also been identified in our compar-
ison of MS with the three NDs (AD, ALS and PD), as common
ND pathways. In addition, Legionellosis was also identified in
both the common MS ND-derived pathways and the common
MS autoimmune-derived pathways, whereas the HIF-1 signaling
pathway was only identified in the MS common ND-derived
pathways. Therefore, malaria, IBD and legionellosis could repre-
sent possible crossroad points between the MS ND component
and the MS autoimmune disease component.

The enrichment results of the 53 disease-associated proteins
that are shared between MS and some of the other autoimmune
diseases resulted in 31 statistically significant KEGG pathways,
with 48.78% of the pathways belonging to the EBV infection
group, as indicated in Figure 9. Similar to MS, EBV infection has
been associated as an environmental factor in the development
of the other three autoimmune diseases SLE, RA and type 1
diabetes [142–145, 150]. Therefore, the results confirm that EBV
infection is a shared pathogenic mechanism in these diseases,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab141#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab141#supplementary-data
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Figure 8. KEGG enrichment analysis results of the 45 common disease proteins between MS, SLE, RA and type 1 diabetes, with the pathways classified into groups and

the percentage indicating the number of terms in each group.

Figure 9. KEGG enrichment analysis results of the 53 disease proteins that are shared between MS and some of the other autoimmune diseases (SLE, RA, type 1 diabetes),

with the pathways classified into groups and the percentage indicating the number of terms in each group.

but the results also indicate that the pathogenic effects of EBV in
these diseases are possibly mediated through different biological
mechanisms.

Topological and clustering analysis of the MS-enriched
KEGG pathways network

Reconstruction and topological analysis of the MS-enriched
KEGG pathways network allowed to identify the most important
bottleneck and hub pathways within the network. Topological
analysis revealed seven hub–bottleneck nodes/pathways that
can act as a bridge of communication between the rest of
the pathways in the network. These high centrality nodes
were identified by using the average score of the top 10
bottleneck, degree and closeness centrality pathway results
obtained via the CytoHubba app [89]. We also examined the
topological characteristics of the four common ND pathways in
the MS-enriched KEGG pathways network, which indicated that
malaria, HIF-1 signaling pathway and legionellosis pathways are
non-hub–non-bottleneck nodes, whereas the IBD pathway acts
as a hub–non-bottleneck node.

Clustering analysis of the MS-enriched KEGG pathways net-
work using the community clustering algorithm [110] allowed
to identify four clusters of community nodes that interact with
the seven hub–bottleneck nodes. The clustering results indicate
that the majority of viral infectious disease pathways are clus-
tered together with the hub–bottleneck nodes Toll-like receptor
signaling pathway and JAK-STAT signaling pathway (Figure 10A),
whereas few viral infectious disease pathways are located in
cluster c, with the hub–bottleneck nodes Th17 cell differentia-
tion and NF-kappa B signaling pathways (Figure 10C).

Filtering process of the topological and
knowledge-based subnetwork enrichment results

The enrichment analysis of the human proteins contained in
each subnetwork (Table 3) revealed multiple significant GO
ISP and pathways (KEGG and Reactome). A filtering process
(Figure 11) was performed on the enriched terms for each of
the three subnetworks in an effort to isolate the most relevant
GO ISP and pathways. The selection criteria are listed below:
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Figure 10. Community clustering of the MS-enriched KEGG pathways network resulted in the formation of four community clusters (a-d). Orange color nodes represent

the four common ND pathways between ALS, MS, PD and AD. Hub–bottleneck nodes are represented in color purple, and blue color nodes represent infectious disease

pathways of some of the viruses we included for the reconstruction of our virus–host–MS PPIs network.

(i) Criterion 1: Only pathways and GO ISP containing human
proteins that are targets of immunogenic viral proteins
were selected. To identify the immunogenic viral proteins,
immune epitope data for the selected viruses that are found
in humans during viral infection were obtained from the
Immune Epitope Database (IEDB) [160].

(ii) Criterion 2: The results obtained from the first filtering pro-
cess were then filtered by using immune epitope data found
in humans with MS disease. Immune epitope data found
in MS disease individuals, which have MHCI- or MHCII-
restricted antigen recognition, meaning that T cells will only
respond to the antigens from this protein only when they
are bound to the relevant MHC molecules, were obtained
from the IEDB [160]. The epitope data contained few epi-
topes against viral proteins where their human targets were
selected as in criterion 1, but the majority were self-epitopes
against human proteins which were also selected.

(iii) Criterion 3: Finally, the filtering results obtained were fil-
tered to select pathways containing MS variants proteins
collected previously from the DisGeNET database [79].

This three-criteria filtering process was applied on the inter-
section subnetwork and the MS disease protein subnetwork,
whereas for the MS variant protein subnetwork only the first
two criteria were applied. The filtering process aims to account
for the immunogenicity, autoimmunity and genetic components

of MS disease as the final pathways obtained contain immuno-
genic viral proteins and their human targets, host proteins with
self-epitopes and MS disease variants proteins.

Identification of post-filtering enrichment results that
are also MS-enriched terms

The filtering process significantly reduced the number of
enriched pathways (KEGG and Reactome) and GO ISP for the
three subnetworks, allowing possibly to isolate the most relevant
pathways. More specifically, the enriched KEGG pathways
before the filtering process for the intersection subnetwork
that contains nodes that are both human viral targets and
MS-related proteins were 94, for the MS disease proteins and
MS variants protein subnetworks 91 and 94, whereas after
the filtering process 36, 34, 28 KEGG pathways remained,
respectively. The number of enriched Reactome pathways and
GO ISP for each subnetwork before and after the filtering
process can be found in Supplementary File 2 available online at
https://academic.oup.com/bib. Comparison of the post-filtering
enrichment results for each of the three subnetworks with the
MS unique, MS shared and common ND pathways that were
previously found, allowed to identify and select enriched terms
from the three subnetworks that are also MS disease-related
terms.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab141#supplementary-data
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Figure 11. Filtering process applied on the enriched analysis results of the three

subnetworks.

Comparison of the enriched pathways between the
three subnetworks

The three subnetworks represent the triangle to pathogenesis
by accounting the importance of three elements, pathogen–
genes–disease interactions, and their role in the pathogenesis of
MS disease (Figure 12A). To identify the KEGG pathways, Reac-
tome pathways and GO ISP that fall within the pathogen–genes–
disease triangle, we compared the post-filtering enrichment
results that are also MS disease-related terms between the three
subnetworks, which resulted in the identification of 12 KEGG
pathways shown in Figure 12B, 5 Reactome pathways and 52 GO
ISP, which can be found in Supplementary File 2 available online
at https://academic.oup.com/bib.

Analysis of the complementary network of the final 12
KEGG pathways

Pathway-to-pathway network reconstruction of the 12 KEGG
pathways using the PathwayConnector tool indicated that only
Th17 cell differentiation pathway, HIF-1 signaling pathway and
pathways in cancer functionally interact, whereas the rest 9
KEGG pathways are disconnected with each other. A comple-
mentary network was therefore created by using the missing
pathway approach to identify proximal pathways that interact
with the 12 KEGG pathways, which led to the identification
of 7 complementary pathways, shown in Table 5. Comparison
of the complementary pathways with the MS disease-related
pathways showed that four out of the seven pathways are also
MS unique pathways, whereas three of the complementary path-
ways, namely TGF-beta signaling, Calcium signaling and MAPK
signaling pathway, do not belong to the MS disease pathway
terms (Table 5).

Topological analysis of the MS-enriched KEGG pathways
network indicated seven hub–bottleneck nodes that act as a
bridge of communication within the network, five of these hub–
bottleneck nodes are found in the complementary network, of
which four are complementary nodes and one is part of the 12
KEGG pathways. A schematic visualization (Figure 13) illustrates
the complementary network of the 12 KEGG pathways.

Similarity and clustering results of viral proteins–KEGG
pathways interactions

The final 12 KEGG pathways are targeted by 67 viral proteins
from eight viral species, more specifically EBV, HCMV, HHV-6A,
HHV-6B, HSV-1, HTLV-1, Measles and Rubella, with the majority
being EBV strains. The final step of our analysis involved iden-
tifying clusters within the 67 viral proteins that target similar
KEGG pathways and clusters within the 12 KEGG pathways that
are targeted by similar viral proteins. Similarity analysis was
performed using the Jaccard similarity index and hierarchical
clustering analysis for both dendrograms was performed using
the average distance (also called mean) method as it had the
highest correlation coefficient value in both cases. The clus-
tering dendrogram in Figure 14 indicates the presence of 16
clusters of viral proteins based on pathway target similarity
with the 12 KEGG pathways. The clustering dendrogram of the
12 KEGG pathways and a heatmap plot indicating the inter-
actions between the 67 viral proteins with the 12 KEGG path-
ways can be found in Supplementary File 2 available online
at https://academic.oup.com/bib. The clustering dendrograms
and the heatmap plots of the 5 Reactome pathways and the 52
GO ISP indicating the interactions between their viral targets
can also be found in Supplementary File 2 available online at
https://academic.oup.com/bib.

Tissue-specificity analysis results of virus–disease
interactions

We performed tissue-specific gene enrichment analysis on two
groups: (i) the 200 MS disease-associated proteins and (ii) on
the 1771 human protein targets of the 80 viral proteins that
interact with our identified pathways (12 KEGG pathways, 52
GO ISP and 5 Reactome pathways). The aim was to identify
common tissues between the two groups that might represent
the virus–disease interaction areas where the identified eight
viral species might exert their pathogenic effects in MS. The 200
MS disease-associated proteins showed statistically significant
tissue-specific enrichment in 13 tissues, indicated in Figure 15,
using the GTEx dataset, based on the fold-change test. Figure 15
contains the spleen, which is part of the lymphatic system,
the nerve and brain tissues, which represent the two major
pathophysiological characteristics of MS, that of neuron degen-
eration in the brain and immune system activation. We also
observe multiple tissues related to the lower gastrointestinal (GI)
system (colon, liver, small intestine, pancreas), which is consis-
tent with the clinical manifestation of MS disease, as almost
two-thirds of MS patients have at least one chronic GI-associated
symptom, including irritable bowel syndrome and constipation
[161]. The results also include the breast and cervix uteri, which
are female reproductive organs; females have increased risk
compared to men in developing MS [162]. In addition, female MS
patients can have breast discomfort or pain and patients under-
taking immunomodulatory drugs have an increased risk of cervi-
cal cancer [163, 164]. Other tissues identified are the muscle, skin

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab141#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab141#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab141#supplementary-data
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Figure 12. (A) Pathogen–genes–disease triangle. (B) Comparison of the post-filtering KEGG pathways enriched results that are also MS disease-related terms between

the three subnetworks, indicating the 12 KEGG pathways that fall within the pathogen–genes–disease triangle.

Table 5. Comparison of the seven complementary pathways (∗) identified in the 12 KEGG pathways complementary network with the MS
disease pathways terms

KEGG pathway name MS unique, MS shared,
NDs common

Average P-value Whole network P-value
<0.05

Whole network
P-value >0.05

Tuberculosis MS unique 4.05E−14 5.29E−05 –
Kaposi’s sarcoma herpesvirus (KSHV)

infection
MS unique 2.87E−17 9.03E−08 –

Th17 cell differentiation MS unique 3.00E−14 4.08E−05 –
HCMV infection MS unique 6.57E−16 7.79E−10 –
Hepatitis B MS unique 6.02E−22 1.27E−13 –
HTLV-1 infection MS unique 1.65E−15 3.98E−17 –
Chemokine signaling pathway MS unique 1.02E−09 – 8.09E−01
HSV-1 infection MS unique 4.42E−27 5.68E−28 –
Pathways in cancer MS unique 9.92E−14 3.16E−05 –
Pertussis MS shared 1.40E−06 – 6.86E−01
Legionellosis MS unique, MS shared,

NDs common
6.31E−11 7.15E−08 –

Hypoxia-inducible factor 1(HIF-1)
signalling pathway

NDs common 1.03E−04 3.05E−02 –

Transforming growth factor beta
(TGF-beta) signalling pathway∗

– 1.01E−02 – 6.05E−02

T-cell receptor signaling pathway∗ MS unique 4.71E−12 7.08E−04 –
Calcium signaling pathway∗ – – – 1.00E+00

Janus kinase (JAK)-signal transducer and
activator of transcription (STAT) pathway ∗

MS unique 8.74E−10 – 3.90E−01

Mitogen-activated protein kinase (MAPK)
signalling pathway∗

– 1.97E−05 – 2.10E−01

Nuclear factor (NF)-kappa B signalling
pathway∗

MS unique 5.47E−17 1.32E−08 –

Toll-like receptor signaling pathway∗ MS unique 8.53E−19 6.67E−09 –

Average P-value obtained from the three subnetworks and whole network P-values of the 12 KEGG pathways and the 7 complementary pathways (∗).

and artery, which are also consistent with the clinical manifes-
tation of the disease, as MS patients have spasticity symptoms
due to impaired signaling between the nerves and the muscles,
altered sensation and itching, and vascular symptoms, such as
changes in major neck arteries [165–167]. The kidney tissue is
also included; some MS patients can develop kidney problems
due to urinary incontinence, which is a frequent symptom in
MS [168]. In addition, there is bidirectional crosstalk between the
kidney and the brain, with patients with chronic kidney disease
frequently developing neurological disorders [169]. Moreover, the

kidney is involved in the secretion of several hormones including
the active form of vitamin D, and interestingly, low levels of
vitamin D are associated with increased MS risk [170, 171].

The tissue-specific gene enrichment analysis of the 1771
human proteins targeted by the 80 viral proteins identified 14
tissues, shown in Figure 16, where the interaction of these viral
proteins with the host could manifested. Comparison with the
13 enriched tissues of the 200 MS disease proteins indicated
nine common tissues (spleen, nerve, liver, kidney, cervix uteri,
artery, muscle, skin and brain) that could represent possible
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Figure 13. Schematic visualization of the complementary network for the 12 KEGG pathways, which are indicated in circular nodes, and the 7 complementary nodes

shown in diamond shape. The orange nodes represent nodes that are also part of the four common ND pathways and purple nodes are hub–bottleneck nodes that

act as a bridge of communication between nodes/pathways in the MS disease KEGG pathways network. The green nodes are complementary nodes, which are not MS

disease-related pathway terms (MS unique, MS shared or NDs common).

interaction areas where the virus-induced dysregulation of the
identified pathways could occur. The 80 viral proteins belong to
18 viral strains from eight species (EBV, HCMV, HHV-6A, HHV-
6B, HSV-1, HTLV-1, Measles and Rubella), whose viral tropism
varies. Viral tropism defines the ability of different viral species
or viral strains to infect different cell types or tissues, which is
an important factor that defines the tissue specificity of virus–
host interactions [172]. Evidences described below confirm the
interaction of these eight viral species with these nine tissues
and indicates which species interacts with each of these tissues.

EBV, HCMV, HHV-6A, HHV-6B and HSV-1 belong to the her-
pesvirus family and are neurotropic viruses that can infect neu-
ronal cells and the brain and are associated with various neu-
rological disorders [49, 173]. Measles, Rubella and HTLV-1 can
also be neuropathogenic and can cause demyelinating diseases
in certain cases [49, 174–176]. EBV, HSV and HHV-6 have been
detected in higher frequency in the CNS of MS patients com-
pared to controls [177]. In addition, all members of the her-
pesvirus family can case mild liver disease [178] and members
of the betaherpesvirus, HCMV and HHV-6 can establish latent

infection in the kidneys [179]. Liver and kidney involvement
has also been found during Measles infection [180, 181]. Rubella
infection can also cause acute liver failure in rare occasions [182].
HSV-1 can cause oral skin herpes and eczema herpeticum [183].
Acute infections with measles and rubella viruses involve a char-
acteristic skin rash, and individuals infected with HTLV-1 can
develop several dermatological symptoms [184–186]. Infectious
mononucleosis, caused by EBV, can also be presented with a
rash and an enlarged spleen [187]. HTLV-1 proviral DNA has been
found in the liver, spleen, brain and in the blood in vivo [188].
Dissemination of the measles virus includes the skin, spleen
and the circulatory system [189]. HSV-1 and HCMV can target
endothelial cells and cause atherosclerosis, a cardiovascular
disease that involves narrowing of the arteries [190], and DNA
from EBV, HSV and HCMV has been found in arteriosclerotic
plaques [191].HTLV-1 is also associated with the development
of coronary artery diseases, and there is evidence of increased
seroprevalence of HTLV-1 in individuals with cardiovascular dis-
eases [192, 193]. Muscle pain is also a common symptom in
several viral infections, such as measles, and certain viruses can
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Figure 14. Clustering dendrogram of the 67 viral proteins from 8 viral species EBV, HCMV, HHV-6A, HHV-6B, HSV-1, HTLV-1, Measles and Rubella based on target similarity

of the final 12 KEGG pathways.

Figure 15. Tissue-specific gene enrichment analysis results of the 200 MS disease-associated proteins, using the GTEx dataset.

Figure 16. Tissue-specific gene enrichment analysis results of the human targets of the 80 viral proteins that interact with the 12 KEGG pathways, 52 GO ISP and 5

Reactome pathways, using the GTEx dataset.
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also infect muscles cells, such as HCMV that can infect smooth
muscle cells [194]. Moreover, HLTV-1 can cause inflammatory
myopathies in some individuals [195]. Several of the included
viruses can also infect the cervix, for example HSV-1 can cause
genital herpes, HHV-6 can infect cervical epithelial cells and both
EBV and HCMV have also been detected in the uterine cervix
[196–198]. Furthermore, both EBV and HTLV-1 are oncogenic
viruses, and evidence indicates that coinfection of the cervix
by any of this two viruses with human papillomavirus confers
increased risk for the development of cervical cancer, suggesting
the existence of synergistic oncogenic effects [199–202]. The
presence of measles virus and rubella viruses was also detected
in the uterine cervix [203–205].

Validation of the contribution of the 12 KEGG pathways
in MS

Our analysis revealed 12 KEGG pathways by which 8 viral species
associated with the development of MS might exert their viral-
mediated pathogenic effects. In this section, we evaluate the
contribution of the identified pathways in MS disease.

First, we performed pathway enrichment analysis on the 200
MS disease-associated proteins, using the same parameters as
before, which led to the identification of 71 statistically signifi-
cant KEGG pathways (see Table 1 of Supplementary File 3 avail-
able online at https://academic.oup.com/bib). The enrichment
results of the MS disease proteins indicated the presence of all 12
KEGG pathways (Figure 12B) in the 71 KEGG pathways, therefore
confirming the involvement of our 12 identified pathways in
MS disease. In addition, the 71 MS-enriched KEGG pathways
contained several infectious disease pathways, including 5 out
of the 8 viral species that were identified in our analysis to
interact with the 12 KEGG pathways, namely EBV, HTLV-1, HCMV,
HSV-1 and Measles. However, KEGG database does not con-
tain pathways for the other three viral species (HHV6A, HHV6B
and Rubella); hence their contribution in MS disease cannot be
excluded.

From the identified 12 KEGG pathways, 8 are infectious dis-
ease pathways and viral proteins from the 8 viral species can
interact with these pathways even though the pathway might
be of another infectious disease. For example, Q77M19_MEASW
protein of the Measles virus targets human proteins associated
with each of the eight infectious disease pathways even though
none of them is the Measles infectious disease pathway. This
is because viruses from different families or species within the
same family can have common and unique infection strategies;
therefore, viruses that interact with several similar human tar-
gets that participate in an infectious disease pathway might be
also able to exert the same perturbation that causes a certain
comorbidity. These 8 infectious disease pathways include HTLV-
1, HCMV and HSV-1 viruses which have been associated with the
development of MS, as shown in Table 1, and were also included
in our reconstructed virus-host-MS PPI network.

The 12 KEGG pathways also include the Chemokine signaling
pathway, which is involved in the recruitment of leukocytes
in inflamed or infected tissues [206] and the Th17 cell differ-
entiation pathway. Activation of Th17 cells also participates in
the recruitment of neutrophils and macrophage via the produc-
tion of proinflammatory cytokines [207]. Both chemokines and
Th17 cells have been shown to play an important role in the
immunopathogenesis of MS as they participate in the recruit-
ment of pathogenic immune system cells in the CNS [208–210].
Viruses to escape host immune system detection and destruc-
tion have developed an array of immune evasion strategies

including interfering with cellular components of the immune
response and immune effector functions [43]. Our analysis indi-
cated that viruses target human proteins from these immune
system pathways, therefore by interfering with these pathways
viruses can possibly lead to the dysregulation of immune system
process, which in turn propagates the emergence of autoim-
mune responses.

We also identified the HIF-1 signaling pathway, which is
involved in the regulation of hypoxia responses. Inflammation
can exacerbate hypoxia and vice versa, and the ‘hypoxia–
inflammation cycle’ has been hypothesized to play a role in
MS progression [211]. HIF-1 alpha can also be induced by a wide
range of infectious agents, and its expression influences infec-
tious disease outcome [212]. In addition, increased expression of
HIF-1 alpha is found in several cancers, and interestingly several
oncogenic viruses, including EBV and HTLV-1, can increase the
expression of HIF-1 [213, 214]. Pathways in cancer was also
one of the 12 KEGG pathways, and the pathway-to-pathway
network reconstruction indicated that Th17 cell differentiation
pathway, HIF-1 signaling pathway and pathways in cancer are
the only pathways that functionally interact with each other
from the 12 KEGG pathways. Immune system responses play an
essential role in cancer as they are involved in the elimination of
malignant cells. MS patients undertaking immunomodulatory
disease-modifying therapies (DMTs) have increased risk in
developing certain types of cancer [215]. Further investigation
is therefore warranted to understand the contribution of the
interaction between the identified viruses and the pathway-to-
pathway interactions between Th17 cell differentiation pathway,
HIF-1 signaling pathway and pathways in cancer in the develop-
ment of MS, but also how the effects of DMTs on these pathways
might contribute to the emergence of cancer comorbidities.

Discussion
In this study, we performed a theoretical-driven network-based
bioinformatics pipeline approach that utilizes various databases
and bioinformatics tools presented in the first part of this paper
with the aim to identify viral-mediated pathogenic mechanisms
that may be associated with the development and/or progres-
sion of MS disease. This disease is characterized by both a
neurodegenerative and an autoimmune component. Viral infec-
tions have been associated with both the development of NDs
and autoimmune diseases. In this paper, we investigated viral-
mediated perturbations in MS disease, by focusing on the neu-
rodegenerative component of the disease, by comparing MS
disease-associated proteins with three other NDs (ALS, PD and
AD) that have been also associated with viral infections in order
to identify MS unique, MS shared and ND common pathways. We
identified four common ND KEGG pathways that may represent
common pathological mechanisms in this group of NDs: the IBD,
HIF-1 signaling pathway, malaria and legionellosis pathways.
Interestingly, all four NDs have been associated with IBD, which
is characterized by chronic inflammation in the gastrointestinal
gut, and one main hypothesis is that abnormal brain–gut inter-
actions might be involved in its pathogenesis [216–220]. Accumu-
lating evidence suggests that microbiota dysbiosis facilitates IBD
genesis and the development and/or progression of several NDs,
including PD, AD, ALS and MS via the perturbation of the brain–
gut axis [221, 222]. For example, microbiota-induced pathological
mechanisms can cause increased BBB permeability, augment
neuroinflammation and affect the production of several neuro-
transmitters produced by gut microbiota, such as dopamine that
is dysregulated in PD [223, 224]. Interestingly, evidences suggest

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab141#supplementary-data
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that commensal microbiota can influence viral infections via
direct or indirect mechanisms as they can suppress or promote
certain viral infections [225, 226]. On the other hand, infec-
tion with several viruses can lead to microbiota dysbiosis [225],
which could also represent another possible pathological mech-
anism by which viruses could lead to NDs. Therefore, future
work will aim to investigate the interaction between viruses
and commensal microbiota and its possible contribution in the
development or progression of NDs using omics data analysis.
The HIF-1 signaling pathway on the other hand is involved in
the regulation of molecular signals during hypoxia, infection
and the stimulation of pro-inflammatory signals [212]. Hypoxia
and the HIF-1 signaling pathway have been associated with the
development and progression of wide range of diseases, with
hypoxia being a common characteristic in NDs [227]. Malaria
and legionellosis are infectious pathways, thus highlighting the
possible association between pathogens and NDs.

Statistically significant enrichment analysis of the 166
unique MS disease proteins also confirmed the association
between pathogens and their interaction with the immune
system in the development of MS. In addition, the KEGG
enrichment results indicate that 42.4% of the pathways belong
to the Rheumatoid arthritis group, suggesting the existence of
common pathogenic mechanisms between MS and Rheumatoid
arthritis [228–230]. The GO ISP enrichment analysis results also
indicated that 92% of the MS unique significant terms belong
to the group of positive regulation of lymphocyte proliferation.
The balance between positive regulation signals that mediate
the activation and proliferation of lymphocytes and negative
regulation signals that induce their termination is essential
in order to avoid autoimmune disorders, such as MS [231].
Homeostasis in the regulation of immune responses can be
disrupted when immune self-tolerance fails or when the
immune system fails to control chronic viral infections, resulting
in continuous stimulation of lymphocytes, and hence chronic
positive activation of immune responses [231]. Therefore, the
GO ISP results indicate that homeostasis in the regulation
of immune process in MS is dysregulated, and there is a
shift towards positive activation of lymphocytes that possibly
contributes to MS pathogenesis.

Topological analysis of the MS-enriched KEGG pathways net-
work allowed to identify seven hub–bottleneck nodes (Figure 17)
that can act as a bridge of communication between the rest
of the pathways in the network. Pathogens are known to tar-
get hubs and bottlenecks proteins in order to exert systemic
infectious effects [63, 68, 91]; therefore, hub–bottleneck nodes
can possibly act as disease communicator nodes bridging the
communication between infectious pathways and the rest of
the MS-enriched KEGG pathways network. Subsequently, any
dysregulation in a pathway that interacts with a hub–bottleneck
or dysregulation of a hub–bottleneck node directly can lead to a
cascade of events causing systemic dysregulation of a subset of
pathways, resulting possibly in the development of MS. In order
to identify communities of infectious disease pathways that
interact with the identified hub–bottleneck pathways, we per-
formed community clustering analysis of the MS-enriched KEGG
pathways network that indicated four clusters (Figure 10). More
specifically, the community clustering results showed that EBV,
HSV-1 and Measles viral infection pathways, which have being
linked as a risk factor for the development of MS interact with
the Toll-like receptor signaling pathway and JAK-STAT signaling
pathway hub–bottleneck nodes (Figure 10A). Whereas, HCMV
and HTLV-1 that are also associated with MS form a different
community cluster and interact with the NF-kappa B signaling

pathway and Th17 cell differentiation pathway hub–bottleneck
nodes (Figure 10C).

Our methodology also involved the reconstruction, sub-
network identification and pathway enrichment analysis
of the integrated virus–host–MS PPI network, where after
applying our filtering process and isolating pathways that
are also MS disease-enriched terms, we were able to identify
12 enriched KEGG pathways, (Figure 12B), 52 GO ISP and 5
Reactome pathways (Supplementary File 1 available online at
https://academic.oup.com/bib). The final list of GO ISP and
pathways obtained through our pipeline approach accounts
for pathogen–genes–disease interactions as they are pathways
that contain MS variants proteins, MS disease proteins and
virus–host PPIs. Furthermore, via our filtering process, the final
results account for the immunogenicity, autoimmunity and
genetic components of MS disease. Finally, via the filtering
process and the comparison with other NDs by obtaining only
pathways that are associated with MS unique, MS shared and
NDs common pathways, we were able to isolate the most
relevant MS disease pathways from a large pool of enriched
pathway results. The specificity of our processes in extracting
relevant MS disease pathways by which viruses might exert their
pathogenic effects is analyzed in Supplementary File 4 available
online at https://academic.oup.com/bib.

To investigate pathway-to-pathway interactions of the final
12 KEGG pathways, a complementary network was created as
it can provide possible pathways of communication of the 12
KEGG pathways with other pathways, particularly MS disease-
related pathways and hub–bottleneck disease communicator
nodes. The complementary network, shown in Figure 13,
indicates seven proximal complementary nodes with JAK-
STAT signaling pathway, Toll-like receptor signaling pathway,
NF-kappa B signaling pathway and T-cell receptor signaling
complementary nodes being also MS disease-related pathways
and hub–bottleneck disease communicator nodes in the MS-
enriched KEGG pathways network. All the 12 KEGG pathways
directly interact with one or more of the hub–bottleneck
disease communicator nodes; therefore by interacting with
disease communicator nodes, they can exert systemic effects
within the MS-enriched KEGG pathways network (Figure 13). In
addition, the three complementary nodes, Calcium signaling
pathway, MAPK signaling pathway and TGF-beta signaling
pathway that are not MS disease-related pathways interact
with the Th17 cell differentiation pathway, which is part of
the 12 final KEGG pathways and a disease communicator
node in the MS-enriched KEGG pathways network; therefore,
they might indirectly contribute to the development of MS
(Figure 13). The Th17 cell differentiation pathway acts as
a key disease communicator node in the complementary
network of the final 12 KEGG pathways as it interacts with
all seven of the complementary nodes of which four are also
disease communicator nodes. Moreover, it interacts with the
HIF-1 signaling pathway which was identified through our
analysis as one of the four common ND pathways. This makes
the Th17 cell differentiation pathway a key viral-mediated
pathogenic mechanism and a possible therapeutic target for MS
disease. The relapsing–remitting MS phase of MS involves the
infiltration of CD4+ T cells with Th1 and Th17 proinflammatory
phenotypes [208, 209], thus highlighting the role of the Th17
cell differentiation pathway in the immunopathogenesis of
MS. Th17 cells are also involved in the immunopathogenesis
of multiple other autoimmune diseases including IBD and
Rheumatoid arthritis [232]. In addition, interferon beta, which
is used as a first line of treatment for MS patients at the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab141#supplementary-data
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Figure 17. Schematic illustration of the possible viral-mediated pathogenic mechanisms obtained through our pipeline approach indicating how the resulting 67 viral

proteins (lilac color) targeting the 12 identified KEGG pathways in the MS-enriched KEGG pathways network, which in turn interact with the hub–bottleneck disease

communicator nodes (purple color), can exert systemic effects within the network and lead to the development of MS. The ND common pathways are indicated in

orange.

relapsing–remitting MS phenotype, has shown to exert its
pharmacological effects by inhibiting indirectly Th17 cell
differentiation [233–235].

The final 12 KEGG pathways, 52 GO ISP and 5 Reactome path-
ways are targeted by 80 viral proteins from 8 viral species (EBV,
HCMV, HHV-6A, HHV-6B, HSV-1, HTLV-1, Measles and Rubella).
Therefore, viruses by targeting the identified pathways in the
MS-enriched KEGG pathways network, illustrated in Figure 17,
which in turn interact with the hub–bottleneck disease com-
municator pathways, may be able to exert systemic pathogenic
effects, thus leading to the development of MS. By performing
similarity and clustering analysis, we were able to identify the
group of pathways (KEGG or Reactome) and GO ISP that can be
targeted by each viral protein, but also clusters of viral proteins

from different species that can target similar pathways. The
clustering analysis also indicates viral proteins that can possibly
exert similar effects in the MS disease pathways network by
affecting the same group of pathways.

Tissue-specific gene enrichment analysis led to the identi-
fication of nine common tissues (spleen, nerve, liver, kidney,
cervix uteri, artery, muscle, skin and brain) that could rep-
resent possible interaction areas where the virus–MS disease
interactions could occur. The cervix uteri had the highest fold
change value in the tissue-enrichment analysis of the human
targets of the 80 viral proteins, and literature evidence indicates
that all of the 8 viral species have been detected in the cervix,
including the oncogenic viruses EBV and HTLV-1. Female MS
patients undertaking immunomodulatory drugs have increased
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risk of cervical cancer [163, 164]. Therefore, infection of the
cervix uteri by these viruses in association with other cofactors
particularly immunosuppressive drugs that are known to cause
viral reactivation could contribute to increased cervical cancer
risk in MS. Our analysis also indicated that KEGG pathway-
to-pathway interactions between Th17 cell differentiation
pathway, HIF-1 signaling pathway and pathways in cancer
that are targeted by the identified eight viral species and are
part of our final 12 KEGG pathways might contribute to cancer
comorbidity in MS. Therefore, further investigation is warranted
to understand how the interaction of viruses, particularly
known oncogenic viruses, with these three pathways in
combination with immunomodulatory drugs might contribute
to the development of cervical cancer.

Finally, we briefly explored the autoimmune component of
MS by comparing disease-associated proteins between MS and
three other autoimmune diseases SLE, RA and type 1 diabetes
that are also associated with viral infections. All of these dis-
eases are associated with EBV infection, and the enrichment
analysis of the 53 MS disease-associated proteins that are shared
with some of these other autoimmune diseases indicated that
48.78% of the shared KEGG pathway enriched results belonging
to the EBV infection group. These results confirm the role of
EBV infection in the pathogenesis of these four autoimmune
diseases, but also indicate that the pathogenic effects of EBV
are possibly mediated through different biological mechanisms
in these diseases. This finding might provide a possible expla-
nation on how the same virus might be able to cause different
disease phenotypes.

Pipeline limitations

One important limitation of our study is the imbalance of avail-
able experimental virus–host PPIs data, as more studied viruses
like EBV have more available data, which accounts for 72.8% of
the virus–host PPI data included in our integrated virus–host–
MS PPI network, than less studied viruses, such as HHV-6A and
HHV-6B. A current approach used to overcome this limitation is
to use computationally predicted virus–host PPIs obtained from
machine learning algorithms, but such methods are not without
drawbacks due to the high false-positive and false-negative rates
[236]. Another limitation inherent to pathway enrichment anal-
ysis is that the standard approach is to select only statistically
significant pathways with P-value ≤0.05. However, pathways
that are not revealed through the current analysis as statistically
significant could also be important as viral proteins also interact
with human protein targets in these pathways and therefore
might be able to cause disease effects via non-statistically signif-
icant pathways. Furthermore, in this paper, we explore the effect
of several viruses, with different cellular and tissue tropism,
in the development of MS using an integrated heterogeneous
network. Another limitation of our approach is that it does not
account for tissue-specific interactions of these viruses with the
host. However, viral tissue-specific interactions with the host
can be investigated when having a single virus or viruses that
infect the same cell types or tissues, which is not the case here.

Conclusion
In this paper, we initially reviewed databases and tools that
can be utilized to investigate viral-mediated perturbations of
the host’s interactome that lead to the generation of complex
diseases, such as NDs. We then presented our integrative
network-based bioinformatics pipeline approach that accounts

for pathogen–genes–disease PPIs with the aim to identify
possible viral-mediated pathogenic mechanisms in MS disease.

Comparison between disease-associated proteins of four NDs
(ALS, MS, PD and AD) associated with viruses confirmed the
role of pathogens in the development of NDs and led to the
identification of the HIF-1 signaling pathway as a possible com-
mon pathogenic mechanism in NDs. Reconstruction and topo-
logical analysis of the MS-enriched KEGG pathways network
that includes MS unique, MS shared and ND common pathways
enabled us to identify seven hub–bottleneck nodes that can act
as disease communicator nodes and exert systemic effects.

Through the reconstruction of the virus–host–MS PPIs net-
work and the application of our methodology, we were also
able to identify 12 KEGG pathways, 52 GO ISP and 5 Reac-
tome pathways that are targeted by 80 viral proteins from 8
viral species. These viruses might exert their viral-mediated
pathogenic mechanisms by interacting with these 12 KEGG path-
ways, which in turn interact with the hub–bottleneck disease
communicator nodes, allowing them to exert systemic effects,
hence affecting several MS disease pathways.

Finally, our analysis highlights the Th17 differentiation path-
way, which is part of the 12 underlined KEGG pathways as a key
viral-mediated pathogenic mechanism and a possible therapeu-
tic target for MS disease as it is a central hub–bottleneck disease
communicator node in the MS disease-enriched KEGG pathways
network. To further elucidate the role of these pathways in
MS disease, computational modeling can be used to determine
if the viral proteins that target a specific pathway can shift
the pathway into a disequilibrium state causing viral-mediated
perturbations in the host interactome.

Key Points
• NDs are chronic degenerative neurological diseases,

and currently, there are no effective pharmacothera-
pies for their treatment.

• Although several environmental and genetic factors
have been implicated to their development, the exact
underlying mechanisms are still unclear.

• Viral infections have been associated with sev-
eral NDs, with virus–host PPIs representing a key
pathogenic mechanism that can lead to the genera-
tion of perturbations within the human interactome.

• This work illustrates how network-based approaches
used for the investigation of NDs and virus–host
PPIs can be integrated to identify viral-mediated
pathogenic mechanisms in MS.
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