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Background: Brown adipose tissue (BAT) is present in humans and rodents, and
contributes to energy expenditure by converting energy stored in lipids and glucose
into heat. Beta adrenergic receptor (b-AR) agonists have been proposed as
pharmacological tools to activate BAT, but they lack selectivity for this tissue. This
study aimed to investigate the possibility to apply electrical neurostimulation as a novel
approach to activate BAT by promoting the sympathetic outflow towards BAT.

Methods: Male C57BL/6J mice were treated with either unilateral electrical
neurostimulation of interscapular BAT or with the b3-AR agonist CL316,243.
Thermogenesis, nutrient uptake by BAT and downstream signaling of adrenergic
receptors in BAT were examined.

Results: Electrical neurostimulation and b3-AR agonism acutely increased heat
production by BAT, as evidenced by an increase in local temperature in BAT, without
influencing the core body temperature. Both treatments acutely increased tyrosine
hydroxylase content in the nerve terminals thereby confirming enhanced sympathetic
activity. In addition, we identified increased phosphorylation of hormone-sensitive lipase
coinciding with reduced intracellular lipids in BAT, without affecting acute nutrient uptake
from plasma. The increased BAT temperature as induced by electrical neurostimulation
was reversed by b3-AR antagonism.

Conclusion: Electrical neurostimulation acutely promotes thermogenesis in BAT as
dependent on b3-AR signaling. We anticipate that electrical neurostimulation may be
further developed as a novel strategy to activate BAT and thereby combat (cardio)
metabolic diseases.

Keywords: brown adipose tissue, neurostimulation, thermogenesis, beta-3 adrenergic receptor signaling, brown
adipose tissue temperature
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INTRODUCTION

Brown adipose tissue (BAT) is a metabolically active tissue with a
crucial role in thermogenesis in small rodents and infants, but is
yet also present and active in human adults (1, 2). Human studies
identified a negative correlation between BAT activity and BMI/
fasting glucose, suggesting that BAT is an important tissue for
glucose homeostasis and a potential therapeutic target to combat
(cardio)metabolic diseases (3, 4).

The physiological activator of BAT is cold exposure (5, 6).
Mechanistically, upon cold exposure, sympathetic outflow to
BAT increases local norepinephrine production and release,
which activates b-adrenergic receptors (b-AR) on the brown
adipocyte to promote an intracellular signaling cascade. Via the
production of cyclic AMP (cAMP) and activation of protein
kinase A (PKA), b-AR signaling stimulates lipolysis as well as the
transcription of genes involved in thermogenesis (7). Fatty
acids (FAs) that are released upon intracellular lipolysis
allosterically activate uncoupling protein-1 (UCP1) and serve
as fuel for non-shivering thermogenesis (8). To replenish lipid
stores, brown adipocytes take up large amounts of triglyceride
(TG)-derived FAs and glucose (9). In addition, accelerated TG-
rich lipoprotein turnover stimulates reverse cholesterol transport
(10). The combined effect is attenuated dyslipidemia and
atherosclerosis development.

The b3-adrenergic receptor (b3-AR) is the dominant
adrenergic receptor in murine BAT, while the b2-adrenergic
receptor is most likely responsible for promoting thermogenesis
in human BAT (11). Independent of the ongoing debate about
the relative contributions of the various b-ARs in human BAT
function, targeting any of the b-ARs with the goal to activate
BAT will be challenging given their critical involvement in the
cardiovascular and pulmonary systems. Thus, a different
approach to selectively activate BAT to combat (cardio)
metabolic diseases is highly warranted.

As an alternative for the use of sympathomimetics, one
might think of promoting endogenous sympathetic outflow to
BAT. Previous studies demonstrated that electrical stimulation
of specific hypothalamic nuclei can promote sympathetic
outflow and as a results BAT thermogenesis (12, 13). In
addition, electrical field stimulation of the dorsal surface of
interscapular BAT was shown to cause an acute increase in
BAT temperature (14). Moreover, others have used local
optogenetics to selectively promote activity of the tyrosine
hydroxylase (TH)-expressing neurons innervating BAT,
which suggested that stimulation of the sympathetic nerves is
sufficient to elicit thermogenesis in BAT (15). However, the
main disadvantage of optogenetics is the hurdle to take such an
approach to the clinic.

In the current study, we have taken a state of art approach by
applying electrical neurostimulation to specifically promote
outflow of the postganglionic sympathetic nerves that innervate
BAT in mice. This is the first step toward the use of implantable
devices that can very specifically promote BAT thermogenesis.
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MATERIALS AND METHODS

Animals
Male C57Bl/6J mice at the age of 12 to 16 weeks were housed
under standard conditions with a 12-h light/dark cycle (lights on
07.00h; lights off 19.00h) with ad libitum access to regular
chow diet and water. At the beginning of the experiments,
mice were randomly divided into the respective groups.
Animal experiments were performed under approval by the
Ethics Committee on Animal Care and Experimentation of the
Leiden University Medical Center and following the regulations
of the Dutch law on animal welfare.

Temperature Recording
Mice were anesthetized by inhalation of isoflurane (4%, v/v air)
for 3 min, and their backs were shaved. Because anesthesia affects
thermoregulation, the mice were placed on a heating plate (HP-
4M Small Animal Heating Plate, Physitemp) that was connected
to a temperature controller (TCAT -2LV; Physitemp), while
being kept under anesthesia by isoflurane (<2.5%, v/v air)
during the whole subsequent intervention period. A rectal
temperature probe (RET-3 Rectal Probe, Physitemp) connected
to the temperature controller was inserted into the rectum of
mice to measure their core body temperature. Their core body
temperature was set to be stable at approx. 36.6°C by
automatically switching the heating plate on and off.
Approached from the back, both pads of interscapular BAT
(left and right) were exposed by a midline incision in the skin and
white fat along the upper dorsal surface. Flexible probes (IT-18
Flexible Implantable Microprobe, Physitemp) were plugged into
both the left and right BAT pad to monitor the local temperature
in BAT. The core body temperature and temperature in BAT
were recorded per second during the whole intervention by a
sensitive temperature data acquisition system (THERMES-USB;
Physitemp) connecting to a laptop using Dasylab software
(Version 12.0).

Pharmacological Stimulation of BAT
10 min after starting temperature monitoring, mice received
either the b3-adrenergic receptor (b3-AR) agonist CL316,243
(CL; Tocris Bioscience Bristol, United Kingdom; 20 mg/mouse)
or vehicle (phosphate-buffered saline; PBS) by subcutaneous
injection (100 µl/mouse).

Electrical Neurostimulation of BAT
For unilateral electrical neurostimulation of interscapular BAT,
the sympathetic nerves of the left BAT pad were connected to an
electrical stimulator by using a homemade hook electrode.
10 min after the start of temperature monitoring, mice
received continuous sympathetic neural stimulation with 4 V,
2 ms pulses at 6 Hz for 60 min. The sympathetic nerves of the
right BAT pad were just exposed by sham operation (control).
The experimental procedure is depicted in Figure 1E. When
indicated, mice received the b3-AR antagonist SR59230A
September 2020 | Volume 11 | Article 567545
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FIGURE 1 | Electrical neurostimulation acutely increases the thermogenic activity of BAT. After recording local BAT temperature for 10 min (baseline), mice received
vehicle (A, B), CL316243 (CL treatment) (C, D), or electrical sympathetic neural stimulation (E-stimulation) of the left BAT lobe with the right lobe as unstimulated
control (schematically shown; E) for 60 min (F, G), during which BAT temperature was still recorded. The temperature changes (A, C, F) and average temperature
changes within the intervention periods (B, D, G) were calculated. Differences between groups were determined with a two-tailed Student unpaired t-test. Data are
shown as average curves (A, C, F) or mean ± SEM (B, D, G) (n=4 mice per group). ***P<0.001.
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(Sigma-Aldrich; 1 mM; 100 µl/mouse) by subcutaneous injection
after 30 min of electrical stimulation.

In Vivo Triglyceride and Glucose
Clearance
TG-rich lipoprotein (TRL)-like particles (80 nm), radiolabeled
with glycerol tri[3H]oleate (3.7 MBq) were prepared as described
before (16), and stored at 4°C under argon until use at the second
day after preparation. TRL-like particles were mixed 2-[1-14C]
deoxy-D-glucose ([14C]DG) in a 4:1 ratio (3H:14C). 15 min
before the end of the pharmacological or electrical
intervention, mice were intravenously injected via the tail vein
with the combination of TRL-like particles (1 mg TG) and
deoxyglucose (200 µl/mouse). After 15 min, mice were killed
by CO2 inhalation, perfused with ice-cold PBS, and both left and
right interscapular BAT was collected and a piece of each BAT
pad was dissolved in 500 µl of Solvable (Perkin Elmer) overnight
at 56°C. The uptake of 3H and 14C activity by BAT was
determined using scintillation counting (Ultima Gold XR,
Perkin Elmer).

BAT Histology
At the end of the pharmacological or electrical neurostimulation,
both left and right interscapular BAT were harvested and
another piece of each BAT pad was snap-frozen in liquid N2

and subsequently stored at −80°C until histological analysis. BAT
cryostat sections (10 µm) were cut and stained with hematoxylin
and eosin (H&E) using a standard protocol, and stained for
tyrosine hydroxylase (TH, 1/2000; Ab112; Abcam) and phospho-
hormone sensitive lipase (HSL, Ser563, 1/2000; #4139; Cell
Signaling). The areas occupied by intracellular lipid vacuoles,
TH and HSL (positive area per total area) were quantified using
Image J software.

Western Blotting
Pieces of BAT were lysed in RIPA buffer (25 mM Tris-HCl pH 7.6,
150 mM NaCl, 1% NP-40, 1% sodium deoxycholate and 1% SDS;
Thermo Fisher Scientific) supplemented with Complete Protease
and phosSTOP phosphatase inhibitors (Roche Diagnostics) with the
Qiagen TissueLyser II (Qiagen). Protein concentrations were
determined using a bicinchoninic acid (BCA) assay (Thermo
Fisher Scientific). Western blots were carried out on the Wes
system (ProteinSimple) following the manufacturer’s instructions
using the primary antibody of tyrosine hydroxylase (TH, 1/250;
Ab112; Abcam) and phospho-hormone-sensitive lipase (HSL,
Ser563, 1/500; #4139; Cell Signaling). Protein expression levels
were normalized to GAPDH (1/1000; #25778; Santa Cruz)
housekeeping protein expression. Western blot quantifications
were done with Image J software.

Statistical Analysis
Differences between the groups were determined with a two-
tailed Student unpaired t-test. Data on temperature changes are
shown as average curves, and average temperature changes per
period are calculated and shown as mean ± SEM (n=4 mice per
group). Statistical analysis was performed using GraphPad Prism
8. P-values <0.05 were considered significant.
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RESULTS

Electrical Neurostimulation Acutely
Increases the Thermogenic Activity of BAT
To test our experimental set-up, we first evaluated the effect of
pharmacological activation on the thermogenic capacity of
intrascapular BAT. Thereto, mice were sedated, connected to the
temperature maintenance recording system and received a
subcutaneous injection with either b3-AR agonist CL316243 (CL
treatment) or PBS (vehicle). While the temperature of both BAT
pads was not affected by vehicle treatment (Figures 1A, B), CL
treatment acutely increased the temperature in the tissue (right
BAT: +1.53°C, left BAT: +1.56°C, Figures 1C, D). Core body
temperature was not affected by the treatment, which was
expected as the mice were sedated and body temperature was
kept stable using an automated heating plate combined with a
rectal temperature probe (Figures S1A, B).

Next, to assess the effect of electrical neurostimulation (E-
stimulation) on the thermogenic activity of BAT, a hook
electrode was unilaterally connected to the sympathetic nerves
innervating the left interscapular BAT as schematically shown in
Figure 1E. During E-stimulation, the temperature of the
stimulated left BAT pad was consistently increased by on
average +0.42°C when compared to baseline recordings. In
contrast, the temperature of the unstimulated right BAT pad
was not increased during this period (Figures 1F, G). Similar to
the pharmacological stimulation of BAT, E-stimulation did not
influence core body temperature (Figure S1C).

Electrical Neurostimulation Reduces
Intracellular Lipid Droplets in BAT
After 1 h of pharmacological or electrical neurostimulation of
BAT, the mice were injected with radiolabeled lipoprotein-like
particles to determine TG-derived FA uptake by BAT and tissues
were collected for further analysis. We observed a marked
decrease of lipid droplet content in BAT of the mice receiving
CL treatment as compared with the vehicle (−25%, Figures 2A,
B). The BAT pad of mice that had received E-stimulation also
showed a significant decrease in lipid droplet content (−13%,
Figures 2C, D). Despite the decrease in lipid content, there was
no effect on the uptake of [3H]oleate or [14C]deoxyglucose by
BAT of the CL treated mice (Figures 2E, F), nor was there in the
E-stimulated BAT depot (Figures 2G, H).

Electrical Neurostimulation Acutely
Increases Tyrosine Hydrolase and
Hormone-Sensitive Lipase
Phosphorylation in BAT
To investigate whether norepinephrine production and
downstream signaling of adrenergic receptors were promoted
by E-stimulation, we next quantified protein levels of tyrosine
hydroxylase (TH), the rate-limiting enzyme in norepinephrine
production and phosphorylation of hormone-sensitive lipase
(HSL) Ser563, essential for the intracellular lipolysis of TG. CL
treatment increased the TH content (Histology: 9 fold, Figures
3A, B; Western blot: 3.6 fold, Figures S3A, B), possibly as part of
September 2020 | Volume 11 | Article 567545
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a positive feedback loop and explained by rapid axoplasmic
transport from the cell bodies to the terminals. This effect was
accompanied by a nonsignificant increase in phosphorylated
HSL (Figures 3C, D, S3D, E). E-stimulation resulted in an
increased TH level (Histology: 2.4 fold, Figures 3E, F; Western
blot: 3.6 fold, Figures S3A, C) and a significant increase in
phosphorylated HSL (Histology: 1.7 fold, Figures 3G, H;
Western blot: 3.1 fold, Figures S3D, F).

The Effect of Electrical Neurostimulation
on the Thermogenic Activity of BAT is
Dependent on b3-Adrenergic Receptor
Signaling
To confirm that electrical neurostimulation indeed results in
enhanced sympathetic outflow and thereby promotes
thermogenesis, we repeated E-stimulation while concomitantly
Frontiers in Endocrinology | www.frontiersin.org 5
administering a specific b3-AR antagonist. The b3-AR antagonist
SR59230A had no effect on BAT temperature in sham-operated
mice (Figures 4A, B), but acutely reduced the increased
temperature in the E-stimulated BAT pad (Figures 4C, D). There
was no effect on core body temperature during E-stimulation or
treatment with the b3-AR antagonist (Figures S2A, B).
DISCUSSION

Here, we have described a novel method of applying electrical
neurostimulation to selectively promote sympathetic outflow to
BAT in mice. In this proof of concept study, by using C57BL/6J
mice we demonstrated that electrical neurostimulation of BAT
promotes thermogenesis dependent on b3-AR signaling.
Although we are not the first to target BAT by electrical
A B

D

E F G H

C

FIGURE 2 | Electrical neurostimulation reduces intracellular lipid droplets in BAT. At 60 min of intervention with vehicle or CL316243 (A, B), or electrical neural
sympathetic stimulation (E-stimulation) of the left BAT lobe (C, D), BAT was collected and sectioned for HE staining. The lipid content within BAT was quantified
(A, C) with representative pictures shown (B, D). Lipid and glucose uptake by BAT was assessed by injection of glycerol tri[3H]oleate-labeled triglyceride-rich
lipoprotein-mimicking particles and [14C]deoxyglucose injection, 15 min before termination. The uptake of 3H and 14C-activity by BAT were assessed in mice
receiving vehicle versus CL316243 (E, F) and E-stimulation of the left lobe (G, H). Differences between groups were determined with a two-tailed Student unpaired
t-test. Data are shown as mean ± SEM (n=4 mice per group). *P<0.05.
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FIGURE 3 | Electrical neurostimulation acutely increases tyrosine hydrolase and hormone-sensitive lipase phosphorylation in BAT. After intervention with vehicle or
CL316243 (A–D), or electrical neural sympathetic stimulation (E-stimulation) of the left BAT lobe (E–H), BAT was collected and sectioned for immunohistochemical
staining. The protein expression of tyrosine hydrolase (TH) (A, B, E, F) and phospho-hormone sensitive lipase (HSL) (C, D, G, H) were quantified (A, C, E, G) with
representative pictures shown (B, D, F, H). Differences between the groups were determined with a two-tailed Student unpaired t-test. Data are shown as mean ±
SEM (n=4 mice per group). *P<0.05.
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stimulation, previous studies used techniques that were nonspecific
(i.e. electrical field stimulation of dorsal surface)) (14), very difficult
to translate to the clinic (i.e. with the use of optogenetics) (15) or a
combination of these two limitations (i.e. electrical stimulation of
hypothalamic nuclei) (12, 13). The method described in our
manuscript involves electrodes that are directly positioned around
the sympathetic nerves innervating BAT; this is the first step
towards the use of implantable devices to selectively promote
thermogenesis in BAT.

In contrast to other organs such as white adipose tissue and
liver, BAT is densely innervated. Almost every single brown
adipocyte is in close proximity to a sympathetic nerve ending, as
also reflected by the abundant TH staining shown in the present
study. This not only suggests that BAT is under stringent control
of the nervous system, but is also consistent with the critical role
of BAT in the acute response and tolerance to cold. Indeed, in
line with the previous studies showing that the activation of BAT
acutely increases intracellular lipolysis to release FA that serve as
fuel for thermogenesis (8), in the current study we demonstrated
that electrical neurostimulation of BAT acutely increases the
thermogenic capacity of BAT. Although 1 h of electrical
stimulation was seemingly insufficient to already promote
Frontiers in Endocrinology | www.frontiersin.org 7
uptake of lipids and glucose from the circulation, given that
both acute CL injection and electrical neurostimulation did lead
to decreased lipid content in BAT, and chronic CL treatment
does attenuate diet-induced adiposity, hyperlipidemia and
atherosclerosis (10, 16), we anticipate that prolonged
neurostimulation would be a feasible alternative to activate
BAT and prevent (cardio)metabolic diseases as shown for the
use of sympathomimetics (9). More studies are needed to further
explore the potential application of prolonged electrical
neurostimulation of BAT preferably in free-living animals by
using cuff electrodes connected to a swivel.

Electrical stimulation of peripheral nerves is already applied in a
variety of conditions in humans (17, 18). Evidently, the approach
used in the current study, which involves surgery to expose the
nerves innervating BAT and wired connections to a pulse generator,
is not suitable for clinical application yet. In addition, important
questions related to the similarities between BAT physiology of
humans (19) and rodents (20), as well as the effects of prolonged
and/or repeated neurostimulation have to be addressed first.
Interestingly, a human study involving vagus nerve stimulation,
used to treat refractory epilepsy, also demonstrated increased energy
expenditure and weight loss in association with increased BAT
A B

DC

FIGURE 4 | The effect of electrical neurostimulation on the thermogenic activity of BAT is dependent on b3-adrenergic receptor signaling. After recording local BAT
temperature for 10 min (baseline), mice were sham-operated as control (A, B) or received electrical neural sympathetic stimulation (E-stimulation) of specifically the
left BAT lobe for 60 min (C, D), during which BAT temperature was still recorded. After 30 min of intervention, all mice in addition received a b3-adrenergic (b3-AR)
antagonist by subcutaneous injection. The temperature changes (A, C) and the average temperature changes in different intervention periods (B, D) were calculated
in control mice (A, B) and in mice receiving E-stimulation (C, D). Differences between the groups were determined with a two-tailed Student unpaired t-test. Data are
shown as mean ± SEM (n=4 mice per group). *P<0.05, **P<0.01.
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activity (21), highlighting the potential of neurostimulation in the
clinical treatment of cardiometabolic disorders.

In summary, we demonstrated that direct electrical stimulation
of the sympathetic nerves innervating BAT potently induces heat
production, which is dependent on b3-AR signaling. Future
studies should show whether prolonged and/or repeated
neurostimulation of BAT, preferentially using implantable
devices, can protect from (cardio)metabolic diseases.
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