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Abstract

Sea noise collected over 2003 to 2017 from the Perth Canyon, Western Australia was ana-

lysed for variation in the South Eastern Indian Ocean pygmy blue whale song structure. The

primary song-types were: P3, a three unit phrase (I, II and III) repeated with an inter-song

interval (ISI) of 170–194 s; P2, a phrase consisting of only units II & III repeated every 84–96

s; and P1 with a phrase consisting of only unit II repeated every 45–49 s. The different ISI

values were approximate multiples of each other within a season. When comparing data

from each season, across seasons, the ISI value for each song increased significantly

through time (all fits had p << 0.001), at 0.30 s/Year (95%CI 0.217–0.383), 0.8 s/Year (95%

CI 0.655–1.025) and 1.73 s/Year (95%CI 1.264–2.196) for the P1, P2 and P3 songs respec-

tively. The proportions of each song-type averaged at 21.5, 24.2 and 56% for P1, P2 and P3

occurrence respectively and these ratios could vary by up to ± 8% (95% CI) amongst years.

On some occasions animals changed the P3 ISI to be significantly shorter (120–160 s) or

longer (220–280 s). Hybrid song patterns occurred where animals combined multiple phrase

types into a repeated song. In recent years whales introduced further complexity by splitting

song units. This variability of song-type and proportions implies abundance measure for this

whale sub population based on song detection needs to factor in trends in song variability to

make data comparable between seasons. Further, such variability in song production by a

sub population of pygmy blue whales raises questions as to the stability of the song types

that are used to delineate populations. The high level of song variability may be driven by an

increasing number of background whale callers creating ‘noise’ and so forcing animals to

alter song in order to ‘stand out’ amongst the crowd.
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Introduction

Baleen whales commonly use low frequency, high intensity sounds to communicate over large

distances [1–3]. The purpose of these vocalisations remains uncertain and likely has multiple

functions. In humpback whales the complex song structures are produced by males as part of

reproductive displays [4–7], and it is likely that song serves some reproductive function in

other baleen whale species as well [6–8]. Vocalisations are population specific with subpopula-

tions defined by geographic range and song structure [9–13]. As such, the correct classification

of song-types is important for successful acoustic monitoring of populations. The detection of

specific song-types across protracted periods can indicate the migratory timing of individual

whales or the population, and may allow an understanding of population structure and

abundance [14]. Studying the communication of populations can provide clues as to the evolu-

tion of vocal systems and mechanisms for vocal learning within a population [6, 11, 15–19].

Changes to the vocal structure employed by a population can be indicative of large and small

scale processes that shape vocal repertoires at the species and population level [17]. Changes in

whale song may be in the form of the loss or addition of vocal elements or the modification of

existing vocal elements [17, 20, 21]. Changes to existing vocalisation structure can be defined

as changes to the duration and timing of song intervals, or composition and frequency changes

in elements of the song [17] above what normal variation can be expected. A number of factors

are thought to be responsible for shaping changes in song structure including physical pro-

cesses such as increases in ambient noise, social changes such as cultural drift within the popu-

lation, or through genetic drift [1, 13, 22, 23]. It is often unclear whether small scale variations

in song structure are part of population wide changes or can be attributed to individual whales

[24, 25]. A better understanding of the driving factors behind changes to vocal repertoires may

provide clues as to the purpose of particular vocal signals, such as whether they have a repro-

ductive or social context [7, 26–29]. It is thought that vocalisations within a familial group

with a social context are least susceptible to change whilst those songs with a reproductive con-

text are most likely to change [6, 27, 28, 30].

Population specific vocalisations are useful in the monitoring and management of cryptic

or offshore species such as the Australian pygmy blue whale population (Balaenoptera muscu-
lus brevicauda) or termed here, the South Eastern Indian Ocean (SEIO) pygmy blue whale, a

part of which traverses the Western Australia coast each year [31–33]. The use of passive

acoustic monitoring (PAM) for assessing the abundance of pygmy blue whales in a quantita-

tive fashion requires knowledge of the vocal repertoire, song structure and natural variability

in the cue rate or proportion of animals vocalising. Blue whale song-types are categorised

based on differences in song phrasing, inter song interval (ISI) or the time between phrase rep-

etitions, unit frequency, duration, modulation or total song length [12, 24, 34, 35]. This paper

explores the considerable on-going song variability found in the SEIO pygmy blue whale song

(referred to as pygmy blue whale hereafter for brevity). This variability in song structure has

implications for passive acoustic census techniques and for understanding the social and exter-

nal features which may drive song function, structure and variability. Relative abundance esti-

mates are derived from passive acoustics data using some measure of song production per unit

time across seasons. Underlying these measures is the assumption that song production, struc-

ture and song repeat intervals are persistent over years, but this is not quite the case, as demon-

strated by this study.

Methods

Long term data was collected from a passive acoustic observatory located in the Perth Canyon

area to the north-west of Rottnest Island by Curtin University or as part of the Australian,
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Integrated Marine Observing System (Fig 1). Data was collected under Curtin University Ani-

mal Ethics Committee permit AEC_2013_28—Passive acoustic recording of marine animal

(mammal and fish) vocalisations. Permits for deploying sea noise recorders were not required.

Each passive acoustic observatory consisted of one to four Curtin University CMST-DSTO sea

noise recorders (see www.cmst.curtin.edu.au\products or [36] for instrument and deployment

details) set over 2003 to 2017 (Table 1). On occasion three or four instruments were deployed

simultaneously in a tracking configuration, with three instruments in an approximate equilat-

eral triangle of 5 km sides, and a fourth recorder in the triangle centre. The noise recorders

were deployed on the seabed at a depth of 430 to 490 m. The recorders were set to collect sea

noise samples of between 200–500 s every 900 s at a sample rate of 6 kHz with a low pass anti-

aliasing filter at 2.8 kHz and a roll off applied below 8 Hz to flatten the sea noise spectra and so

increase the effective dynamic range. All instruments were calibrated using white noise injec-

tion with the hydrophone in series to the noise generator output, allowing the full system fre-

quency response to be corrected for in post processing (2 Hz to anti-aliasing filter frequency).

The system clocks were set to UTC time before deployment and the clock drift was measured

after recovery, allowing absolute time accuracy of ± 0.25 s, this driven by the jump in water

temperature on deployment and recovery (see [36] for calibration details). Sea noise recorders

were deployed for between eight and twelve months at which point they were retrieved in

order to upload data and change batteries. When using hydrophone arrays for passive acoustic

tracking, the accuracy of sound source localisations depends largely on the accuracy of the

hydrophone positions and internal clocks. The GPS locations of the touch-down positions

were recorded upon deployment of the hydrophones while instrument clocks were synchro-

nised in accordance with the procedures outlined in [37].

Data analysis for this paper focused on the northern migration of pygmy blue whales from

February to June, coinciding with peaks in acoustic presence in the Perth Canyon. Logger

Fig 1. Location of Perth Canyon sampling area. The area sampled within Australia is shown by the rectangle in a),

the Perth Canyon is shown on b), centred at 32˚ S 115˚ E, the general area of sea noise moorings is shown by the red

triangle and the 1000 and 200 m depth contours are shown by the black curves (west and east curves respectively).

Bathymetry from [38].

https://doi.org/10.1371/journal.pone.0208619.g001
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deployments from all sample years cover these peak months making data suitable for compari-

son between years (Table 1).

All data sets were initially checked for major noise sources using an approach where 5–18

day spectrograms were produced and dominant sources identified [39]. Detection algorithms

for pygmy blue whale signals were run across all data sets and the outputs of these manually

checked. During the checking process the presence of all source types was noted.

Pygmy blue whale songs were detected using a search algorithm initially defined in [5],

which searches for the fundamental frequency of 20–23 Hz and the third harmonic of 60–70

Hz of the type II unit in the three unit pygmy blue whale phrase-type as shown in Fig 2 [12, 33,

35, 40]. The type II unit of the pygmy blue whale song was present in all song varieties. The

detection algorithm had miss-detection and false-detection rates of less than 5% as described

in [5]. The search algorithm isolated the signal by locating the frequency sweep based on a

multivariate analysis of spectrogram features of the recorded signal [5]. In many data sets (all

from which manual song analysis was carried out) each detection was checked manually by

viewing the spectrogram with detections marked. Song structure, duration and frequency

were analysed for each detection where signals could be easily isolated from surrounding

noise. Where continuity of song structure, duration, the animal’s track (where available) and

the ISI of songs was observed within a single recording, the signals were assumed to be pro-

duced by the same vocalising animal.

Classification of phrase structure was carried out using two approaches, the first was manu-

ally based by viewing spectrograms, and identifying the phrase based on hierarchical structure

and presence or absence of particular units, as shown in Fig 3. The pygmy blue whale song

type has three units, type I, II and III as shown on Fig 2a. The sequence in which these units

were repeated was used to classify phrase structure, and where repeated phrases were available

for analysis, song structure was classified. For most songs, only one phrase structure was

repeated in sequence, though combinations of phrase structures were repeated in hybrid song

types. A K means cluster analysis was used in the R statistical environment to sort song events

Table 1. Details of sea noise logger primary deployments.

Set Lat. (˚ ’ S) Lon. (˚ ’ E) Start End Len (s)

2615 31˚ 53.77’ 115˚ 1.00’ 18-Feb-2003 07-Jun-2003 205.3

2656 31˚ 50.86’ 114˚ 59.92’ 26-Feb-2004 14-Jun-2004 205.3

2672 31˚ 52.12’ 115˚ 0.04’ 30-Dec-2004 08-Jul-2005 205.0

2724 31˚ 54.08’ 115˚ 1.14’ 01-Jan-2007 25-Apr-2007 204.9

2802 31˚ 53.86’ 114˚ 59.73’ 26-Feb-2008 21-Apr-2008 204.9

2823 31˚ 54.47’ 114˚ 59.08’ 24-Feb-2009 11-Oct-2009 512.1

2884 31˚ 55.04’ 115˚ 1.86’ 13-Nov-2009 22-Jul-2010 460.9

2962 31˚ 54.14’ 115˚ 1.61’ 06-Aug-2010 08-May-2011 409.7

3006 31˚ 51.98’ 115˚ 0.05’ 14-Jul-2011 18-Jun-2012 307.3

3007 31˚ 53.07’ 114˚ 59.96’ 14-Jul-2011 16-Jun-2012 307.3

3004 31˚ 54.35’ 115˚ 1.54’ 14-Jul-2011 19-Jun-2012 307.3

3154 31˚ 53.05’ 115˚ 0.81’ 10-Aug-2012 14-Jun-2013 306.3

3376 31˚ 50.53’ 115˚ 0.82’ 28-Nov-2013 03-Nov-2014 307.3

3445 31˚ 52.66’ 115˚ 0.66’ 05-Jan-2016 30-Dec-2016 307.3

3444 31˚ 51.77’ 115˚ 1.74’ 23-Sep-2016 26-Aug-2017 307.3

Listed are: set number; Latitude (degrees and minutes S); longitude (degrees and minutes E); start day (UTC); end day (UTC); and sample length (s). All sets used a 6

kHz sample rate.

All samples were repeated every 15 minutes. Only one of the instruments used in the tracking grids is included.

https://doi.org/10.1371/journal.pone.0208619.t001
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Fig 2. Spectrograms of pygmy blue whale song variants. All spectrograms made with 1024 point Fast Fourier Transform, 0.8 overlap using a 1 kHz

sample rate (0.977 Hz and 0.205 s frequency and time resolution, respectively). The x-axis is time, in s, the y-axis is common for all panels. Shown are: a)

one version of the normal, three unit song (P3) with the Type I (0–50 s), II (50–75 s) and III (100–125 s) units; b) the ‘song’ which repeats only the type

II unit (P1); c) the song which repeats only the type II and III units (P2); d) a P3A song-type displaying a three unit song sequence followed by a two

unit song sequence; e) a P2B song structure showing a two unit sequence followed by a lone type II unit and then another type II unit which marks the

start of the next sequence; and f) a P3B song-type showing a three unit song sequence followed by a type I and type II unit and then another complete

three unit phrase.

https://doi.org/10.1371/journal.pone.0208619.g002

Fig 3. Song structure classification. The SEIO pygmy blue whale song type has three defined units combined in

different sequences to produce phrases that are then linked together in song. Phrases are categorised by the order that

units appear with temporal variations in the length of phrase types. Songs are generally composed of the same phrase

repeated over and over, though combination songs comprised of two different phrases in sequence have been

observed.

https://doi.org/10.1371/journal.pone.0208619.g003
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based on the type and order of the first three song units. Clustering analysis was run with a set

seed of 20, and six categories. The resulting analysis sorted 3,239 song events into the six song

structures with 100% accuracy. A song catalogue was subsequently produced describing each

of the three known song units, the five phrase variations including three structural variations

and two temporal variations, and six song sequence variations. The validity of this catalogue

for classification of SEIO pygmy blue whale song was assessed using an inter-rater reliability

test, an established protocol for classification of cetacean vocalisations [41–44]. A randomly

selected subset of 22 signal spectrograms displaying different phrase and song variations was

presented to five untrained observers. Spectrograms were produced with a 1024 FFT, Hanning

window with no overlap, and 1 kHz sample rate. Each spectrogram was presented on a single

slide and viewed by the observers in PDF format. All observers were supplied with a hard copy

of the SEIO PBW song catalogue and asked to classify the signals based on the appearance of

the spectrographic contour, phrase organisation and duration [43]. A Fleiss unweighted

Kappa analysis was used to statistically test the agreement of song classification between the

five untrained observers [45].

The time between successive phrase production, or ISI, was measured from manually

derived data to classify the phrase structure, although there was a bias here as periods of high

numbers of simultaneously calling pygmy whales could not be analysed manually because of

the difficulty of identifying individual singers. For this reason, manual analysis was only car-

ried out on song events where a solitary animal was vocalising. For the manual processing,

data was pre-processed in the MATLAB environment to calculate the power spectral density

of sea noise for each sea noise sample using the software package CHORUS [39]. Spectro-

grams were produced using a 6000 point FFT and Hanning window with no overlap. Spectro-

grams of each sample were stacked and displayed in batches of 5–20 days for quick perusal for

pygmy blue whale presence, then perused individually where pygmy blue signals were

present.

A second analysis approach was used to study the ISI values and relative proportions of

song types across each season. This technique used all data available from the Perth Canyon

(thirteen seasons over 2003–2017, with 2006 and 2015 not sampled, Table 1). A brief summary

of this technique is listed below, details are given in S1 File. The search algorithm for locating

the type II unit of pygmy blue whale songs was run across all Perth Canyon data sets, with the

detector output of several data sets fully manually checked. Each pygmy blue whale detection

(the type II unit) was assigned an arrival time within a sample using a consistent technique to

define arrival time (the time at which 5% of the whale unit energy arrived) and the sound pres-

sure level derived for the type II upper frequency unit, by band pass filtering the calibrated

data. If more than one pygmy blue whale type II unit was present within a single sea noise sam-

ple, the difference of received level and arrival time of all combinations of type II units in that

sample was derived. The same process was repeated for each sea noise sample and the time

and level difference data assembled for all samples within each season. This gave a series of

arrival time difference values (or potentially song repetition interval since the same unit in

repeated songs may have been found) each with a level difference, for all type II to type II song

unit combinations, for each season. The set of values was treated as a feature space and gridded

for counts of unit-to-unit time and level differences which fell within set bounds, that is

bounds of level and time differences were set and the number of values within these bounds

counted (Fig 4a). One would expect that for the same animal vocalising within a sample, the

level difference of the repeat type II unit (song ISI) would be within a few dB of the prior type

II unit and that the same unit-to-unit time differences would be similar between phrases.

Thus, common inter-song intervals, as given by the type II separation for individuals, would

Pygmy blue whale song variation
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sum in the feature space at small level differences while the time and level differences for differ-

ent animals would essentially be random noise and so not sum. This was the case and is

observed on Fig 4.

By summing counts for values less than 2.7 dB of type II to type II unit level differences in

the gridded feature space, curves of song repetition intervals were derived for each season in

the Perth Canyon (termed ISI-curves, with an example shown in Fig 4b). Peaks in the ISI-

curves occurred at the mean ISI for the respective phrase-type, and at multiple repetition

intervals of the shorter phrase-types. The peak values in time windows of 30–60 s, 70–100 s

and 160–200 s were found which gave the ISI for the three major phrase-types, noting that in

Fig 4 the fourth peak at 140–150 s is a multiple of the first song type observed (ie the peak at

140–150 s represents the time between P1 to P1 to P1 phrases, see S1 File for elaboration of

how this is dealt with). The windows used to derive ISI values were relatively wide time

spans as the ISI spacing was found to shift across years. The ISI-curve peaks were gentle

and had some ‘noise’ in terms of small scale fluctuations associated with them. To remove

Fig 4. Inter-song-interval analysis. Density distribution (a) of song-to-song time and level differences for consecutive

type II units, for 2016 with (b) the curve derived by summing data< 2.7 dB (blue is raw data, red is linearly smoothed

data). Panel a) was derived using a 0.25 s and 0.1 dB time and level difference, respectively.

https://doi.org/10.1371/journal.pone.0208619.g004
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this ’noise’ the ICI curves were smoothed, using a running, linear fit encompassing ± 5

points either side of the point in question, to give a smoothed value for that point. These

smoothed curves were used for obtaining peak time and count values. A resolution of 0.1 s

and 0.25 dB was used in the gridded feature space which derived these curves, with the

respective x or y value for each ‘bin’ used to develop the 2D feature space, placed in the centre

of the bin.

The magnitude of the ISI-curve peaks combined with the sea noise sample length also gave

information on the proportion of song-types encountered each year. Details of how this was

done are given in S1 File. Briefly the technique compared the magnitude of the peaks of the

ISI-curves, after accounting for the expected number of calls of that ISI length in that sample

length, the ‘noise’ and by accounting for multiples of a shorter ISI song type adding into a lon-

ger ISI song-type. Several models were built to verify how well the ISI analysis technique was

able to predict data sets with different ratios of P1, P2 and P3 songs present, with root mean

squared errors of input ratios compared with derived ratios at< 1%.

In order to better understand the movement patterns and presence of pygmy blue whales in

the Perth Canyon area, vocalising animals were localised in space based on the time difference

of arrival (TDOA) of the vocal signal at the noise recorders of the passive acoustic observatory.

Tracking analysis could only be carried out for 2010, 2011 and 2012 where data sets had been

collected successfully from four recorders within the observatory.

Localisation of pygmy blue whale vocalisations was based on the type II song unit as defined

in [37]. Spectrogram correlation was used for TDOA estimates rather than waveform correla-

tion in an attempt to lessen the effects of multipath propagation. The Levenberg-Marquardt

least square method was used for localisation and is explained in detail in [37].

Whale localisation results were filtered to only include individual locations with errors of

less than 0.5 km (an error ellipse was derived for each location). The filtered results were sorted

into individual days and viewed one day at a time. Spectrograms of whale sounds for each loca-

lisation event were viewed, checked manually and classified based on song structure and song

repetition interval. Each localised detection was compared with the previous localisation event

and based on the signal characteristics from the spectrogram, as well as the location of the

detected vocalisation, it was manually determined whether it was likely to be the same vocalis-

ing animal. It was assumed that the average swimming speed of a pygmy blue whale was less

than 20 km per hour when comparing locations across longer time scales. A track consistent

with a single whale combined with a common ISI amongst songs was used as a criterion for

the likelihood of detections being from the same animal. Whale tracks were numbered chrono-

logically and where possible were carried over from the previous sample. Where a consistent

signal was lost for more than one sample (greater than 1800 s), or the location of the source

did not fit the criterion above, the successive vocalisation was classified as a new vocal animal.

The start and end time of each track, length of time calling, song-type, track direction and dis-

tance travelled was recorded for each whale track. While each song sequence was unique for

an individual whale, many of the sequences were potentially produced by the same whale due

to normal breaks in calling. Thus, the manual analysis considers events that occurred indepen-

dently in time for an individual whale but which may have been replicated at a later time by

the same individual.

Quantitative analysis of population wide variability in song structure was carried out using

the statistical program R [46]. Repeated measures multivariate techniques were used to test for

significant differences in calling duration, song repetition interval and song structure between

the sampled years. Unless otherwise stated, errors about mean values are of 95% confidence

limits.

Pygmy blue whale song variation
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Results

Song structure and variants

Across the five years of manually analysed samples (2010 to 2016), 2,627 song events from

SEIO pygmy blue whales were analysed and identified to song structure. No calls from pygmy

blue whales of other Indian Ocean stocks were detected or noted. The highest number of song

events analysed were in 2010 and 2011 with 509 and 598 records respectively (Fig 5). Peaks in

the number of identified vocal events (Fig 5) were consistent with the northern (February to

June) and southern (November to January) migratory pulses of the SEIO pygmy blue whale,

which occur along the Western Australian coast at this latitude [15, 16, 47–49]. The largest

peak in pygmy blue whale song events was over March and April coinciding with the northern

migratory pulse [31] where in some years animals are known to linger in the Perth Canyon

engaging in feeding behaviour [37, 31, 50].

The full pygmy blue whale song, or "typical" song, (termed here P3) consists of a phrase of

three units (sounds) repeated in a sequence with approximately 180–200 s (the value differs

amongst years, below) between the start of one phrase and the start of the next (the ISI value,

Fig 2a). The first song unit (type I) is the longest with energy centred in the 20 Hz frequency

band and harmonics up to 80 Hz. The type I unit starts with a 19 Hz tone that lasts for 21s

before jumping to 21 Hz for a further 22 s. This is followed five to ten s later by the type II unit,

a frequency modulated upsweep, which for example in 2010 swept upwards from 20 Hz to 26

Hz over a period of 23 s, with energy centred around 24.7 Hz and strong harmonics up to 72

Hz. The last unit of the song, type III, follows ~ 23 s later and is a constant frequency tone

Fig 5. Identified singers per year. Distribution events where song structure was identified throughout the calendar

year.

https://doi.org/10.1371/journal.pone.0208619.g005
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between 18 Hz and 19 Hz that lasts between 26 and 28 s. It is accompanied by strong harmon-

ics and a secondary pulsed tone of 60 Hz-65 Hz. Of the total number of analysed song events

with identified song-types in the manual analysis, 931 were classified as belonging to the P3
variant (Table 2). This represented 35.4% of vocalising whales with recognisable song struc-

tures. Whilst there were no statistical differences in the proportion of song types between

years, there appeared to be a slight decreasing trend in the number of whales producing this

song-type through time in the manually processed data.

A number of variations to the pygmy blue whale P3 phrase and song type were found. For

the purpose of this study, a phrase was defined as one sequence of units where none of the

units are repeated, while a song was two or more repetitions of any phrase structure. Songs

that consisted of only one phrase type share the name of the phrase. Common variations

included shortening of the phrase to a one (P1, unit II only) or two (P2, units II and III only)

unit phrase and repeating the shortened phrase at a reduced ISI compared to that of the typical

song. Combinations of different phrase structures were also identified and termed hybrid

song-types. Hybrid song types were named based on the base phrase structure. In 2016 another

variation was observed with different units of the song pulsed or broken. Temporal variations

to the P3 song sequence in the form of long or short repetition ISI times were also observed.

Details of the phrase and song variants are summarised in Table 2, and discussed below.

The complete P3 song consists of a repeated phrase with three temporal variants: a) the nor-

mal variant; b) a variant with a longer repetition interval than the typical song (P3L); and c) a

variant with a shorter than normal ISI (P3S). The long variation of the P3 song followed the

same basic structure but with 220 to 280 s intervals between the start of one sequence and the

start of the next. The extra length of ISI in the song appeared in the length of time between the

end of the previous phrase’s type III unit and the beginning of the type I unit of the next phrase

sequence. The time between the successive units within the sequence remained consistent

between P3L and P3 phrase. The P3L variation was identified on 11 (0.4%) occasions making

it one of the least common song variants. P3L was only recorded in 2010 and 2011.

The P3S variation followed the same structure as the P3 phrase but had only a 120 to 160 s

interval between the start of one phrase sequence and the next. The phrase appears to be short-

ened in the type I unit and the time between the type I and type II units. The time between the

end of the third and start of the first unit of the next sequence did not vary greatly from the

repeated P3 phrase structure. The P3S song was uncommon and only identified 67 (2.6%)

Table 2. Details of pygmy blue whale song variants described from manual analysis.

Code Description N % of identified call type ~ ISI (s)

P3 I, II & III repeated (’typical’) 931 35.4 180–200

P3L I, II & III with longer ISI to next 11 0.4 220–280

P3S I, II & III with shorter ISI to next 67 2.6 120–160

P1 II only repeated 91 3.5 50

P2 II & III repeated 1220 46.4 80–100

P3A I, II & III then II & III repeated 263 10 ~ 300

P2A P2 phrase then II repeated 41 1.6 ~ 150

P3B P3 phrase then I & II repeated 3 0.1 ~ 280

Given are: the code used throughout; a description of the phrase makeup with the song units involved (types). For

P1, P2 and P3 songs the respective phrases are repeated in a song sequence; the number of occurrences of this song-

type; the % of this song-type; and the approximate inter-song interval (s) or the repeat time between type II to the

next song-type II unit.

https://doi.org/10.1371/journal.pone.0208619.t002

Pygmy blue whale song variation

PLOS ONE | https://doi.org/10.1371/journal.pone.0208619 January 22, 2019 10 / 26

https://doi.org/10.1371/journal.pone.0208619.t002
https://doi.org/10.1371/journal.pone.0208619


times, occurring in the 2010, 2011, 2012 and 2014 datasets. The production of P3S was limited

to March, April and May, months with the highest number of song events analysed overall.

The one unit phrase variation (Fig 2b, P1) was the simplest variation with the shortest ISI

with the first and last units of the P3 phrase dropped leaving only the type II unit repeated in a

sequence with ~ 50 s intervals. The P1 phrase was one of the least common variations in the

manually processed data, identified on 91 (4.3%) occasions. Comparisons across the sample

years revealed that the number of P1 song events appeared to increase between 2009 and 2011.

In the manual data, after 2011 the number of whales producing the P1 song remained relatively

constant. Analysis of song structure by month showed the highest number of P1 song events

in March, April and May.

The two unit phrase (Fig 2c, type II and III units repeated, P2) was the most common vari-

ant of the P3 phrase in the manual analysis. The subsequent P2 song sequence is repeated at ~

80 to 100 s ISI. There were 1,220 P2 song events extracted from the manually analysed data,

which represented 57.7% of sampled song events. The proportion of the P2 song events

remained stable across sample years with peaks in 2010 and 2014 coinciding with peaks in the

number of song events recorded.

The appropriateness of song classification was tested with a Fleiss unweighted Kappa analy-

sis on the classification of 22 spectrograms by five untrained observers. The analysis found

substantial agreement between observers (K = 0.76, z = 25.7, p = 0) based on the provided song

catalogue. The greatest disagreement between observers was in identifying temporal variations

of the P3 phrase type, P3S where the P3 phrase was repeated with an unusually short ISI value

and P3L where the ISI between consecutive phrases was unusually long. When temporal varia-

tions were ignored, and observers were asked to classify signals into one of the three phrase

structures or two song sequence variations, the agreement between observers was almost per-

fect (K = 0.83, z = 23.4, p = 0). Based on the results of the Fleiss Kappa Analysis, it can be said

that the classifications assigned to phrase and song variations are consistent and appropriate.

Aside from variations in the P3 song arising from changes in song repetition interval and

dropping off different elements, three hybrid song patterns were identified. The P3A song pat-

tern (P3A, Fig 2d) is a combination of a P3 phrase followed by a P2 phrase. The song repetition

interval for the P3 & P2 song is a combination of the repetition interval for each of the separate

sequences, so roughly 300 s as the song comprises a P3 phrase with ISI of approximately 200 s

and a P2 phrase with ISI of approximately 100 s. The P3A song was the most common of the

hybrid song patterns with 263 detected whales (10.0%) producing this song variation. The P3A
variant appeared to be increasing over years, with more than twice the number of occurrences

in 2016 (189), compared with the other sample years combined (74). Instances of mixed P3A
and P3 song sequences were observed but were rare.

The P2A song pattern (Fig 2e, P2A) was first found in the 2014 data set and is a hybridisa-

tion combining the P2 (type II & III), followed by the P1 (type II only) phrase structure. The

song repetition interval conforms to that of the P2 and P1 phrases with the time between type

II units approximately 100 and 50 s respectively, resulting in a total song length of approxi-

mately 150 s. The P2A song variation is slightly less common than the P3A variant with 41

occurrences (1.6%) of this song variant over the sample years. Where followed in time the P2A
song was consistently repeated (P2 & P1 repetitions).

The P3B song pattern (Fig 2f, P3B) was the rarest song variation detected thus far, only

found in the 2010 and 2011 data sets. Along with the P1 phrase, the P3B song structure is the

only other variant with the absent type III unit. The song consists of a complete P3 phrase fol-

lowed by a two unit sequence consisting of only the type I and type II unit. The length of the

song is approximately 280 s, with the P3 section lasting approximately 180 s and the following
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two units approximately 100 s. There have been very few occurrences of the P3B song variant

(< 0.2%).

A breakdown of song variant production across all sample years from the manually pro-

cessed data shows that the proportion of analysed song events containing the different phrase

types remained relatively consistent year to year (Fig 6), though P3 and hybrid song events

appeared to be increasing in the 2016 data set. The greatest diversity in song structure was

found in the years with the largest sample sizes (Fig 6). The two and three unit songs were con-

sistently the most prominent song variants in the manual analysis.

There was no trend in the timing of different song variations throughout a season (Fig 7). A

larger number of detections of particular song variants in any given month were correlated

with a larger sample size. Aside from an exceptionally large number of P2 songs in 2014, likely

due to the high sample number in this year, the number of vocal events identified manually to

each song variant in each month of the year was consistent across all sample years.

Post 2015, variations in pygmy blue whale vocal behaviour have extended to variability in

the production of the song units themselves. All three extant song units were observed as

being modified with breaks or pauses mid-way through the production of a unit in data from

2016 and 2017. The broken song units occurred across a variety of song structures, with one or

more units in the phrase broken in two. The unit containing the break remained consistent

within a song event, but varied between song events (ie. Fig 8a–8d). Broken song units

Fig 6. Proportion of song variants each year. Ratio of the number of vocal events displaying each song variant, as a

proportion of all identified song events for the sample year. P3 refers to the three unit phrase song, P2 to the repeated

phrase containing only the second and third units and P1 to a repeated type II unit only. P3A is a song combining the

P3 and P2 phrases, while P2A combines the P2 and P1 phrase types. P3B is a unique combination of a P3 phrase and a

single unit I and II. Unknown song events are those that are recognisable as SEIO pygmy blue whale vocalisations but

the signal is too poor or there are too many overlapping whale calls to identify the song structure.

https://doi.org/10.1371/journal.pone.0208619.g006
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occurred in all observed song structures in 2016 and were not observed prior to 2016. The

number of song events that were observed with a break in one or more song units compared

with similar counts for song events without breaks is shown on Fig 9. Song units containing

breaks were present in a large portion (~ 25%) of song occurrences regardless of structure.

This trend in the occurrence of broken song units continued into 2017.

It needs to be noted that in the later years it became increasingly difficult to identify individ-

ual song events owing to the large number of whales calling and so overlapping song. Examples

of samples with multiple callers (between 5–7 callers evident) are shown on Fig 8e and 8f. The

high number of singers prevailed for several months and increased across seasons.

Feature space song inter-song interval analysis. When a season’s data set was assembled

and gridded using the time-level difference analysis, the technique discriminated ISI, as given

by the peaks of time between repeat type II song units, for the three predominant pygmy blue

whale song-types and multiples of the ISI of each. An example of the 2015 season’s analysis of

the ISI, as measured by time differences between consecutive type II units, was shown on Fig

4a, where peaks at the repetition intervals of different song-types appear. By summing values

in this time and level difference feature space for a type II unit to the next type II unit, with

level differences of< 2.7 dB, the ISI-curves shown on Fig 4b were derived. From the peaks in

these curves the time intervals between the P1, P2 and P3 unit songs were derived. The same

analysis is shown for 2003–2017 on Fig 10a, with the ISI values derived from peaks in the

summed curves for all years shown (Fig 10b). The thirteen-year analysis shown on Fig 10

involved 119,724 sea noise samples with multiple pygmy blue whale type II units and 545,607

type II to type II time and level difference pairs. The ISI value was increasing over time on

Fig 7. Proportion of song variants within a year. Distribution of song structures throughout the calendar year as a

proportion of the total number of song events each month.

https://doi.org/10.1371/journal.pone.0208619.g007
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Fig 10b for each song-type, at different rates (Table 3). The ISI values for each year along with

the ratio of time between the combinations of song variants are listed in Table 4. The ratio

between the P2 and P1, ISI (P2/P1) was consistent at 1.932 (95%CI 1.9113–1.9527) while the

ratio between the P3 and P2 ISI (P3/P2) was statistically the same, at 1.970 (95%CI 1.9401–

1.9999). Thus, the ISI for the three songs (P1, P2 & P3) were multiples of each other, each ~

1.951 times longer than the previous song-type according to the statistics. Given that the start-

ing resolution was 0.1 s in the ISI-curve analysis technique, then the ISI of P2 is approximately

twice the length of P1 while P3 is approximately twice that of P2.

To calculate the relative proportions of each song-type from the ISI-curve using equations

1–4 (S1 File) required the mean length of the type II unit, since at least half a type II unit was

required for the search algorithm to locate the unit. Based on the time for 90% of the unit

energy to pass this length was 20.9 s (95%CI 20.88–20.92) with a median of 21.0 s derived from

499,193 type II signals. The median value was used in the proportion analysis. The mean sea

noise sample lengths for each season were listed in Table 1. Using these values, the magnitudes

of measured ISI-curves each year and the technique described in S1 File, the relative propor-

tions of each song-type per year were calculated, assuming only songs of the P1, P2 and P3
types were present (hybrid song-types were ignored) and correcting for additions of multiples

of shorter song-types. The trends calculated across time are presented on Fig 10c with statistics

listed in Table 5. While the proportion of song-types has varied across the thirteen years, sys-

tematically but not linearly, the range is low and the proportions of different song-types fall

within a narrow band. Statistics of song proportions (Table 5), have the P1 (type I) only song

present on average across the seasons analysed 21.5% of the time (95%CI 17.30–25.70, all

data), the P2 song (type I & II) present 24.2% (95%CI 16.39–32.01, 2005 on) and the P3 song

Fig 8. Spectrograms of pygmy blue whale song phrases showing broken units and periods of many singers. Spectrograms of pygmy blue whale

song with broken units (a-d) and 5–7 overlapping callers (e-f), made with a 2048 point FFT, 0.8 overlap using a 1 kHz sample rate (0.488 Hz and 0.41

s frequency and time resolution, respectively). The x-axis is time in s, the y-axis is common for all panels. Shown are: a) a P3 phrase with all three song

units broken; b) a P3 phrase variation with only the type I and type II units broken; c) a P2 phrase variant with both units broken; d) a P3 phrase with

the type I and II units broken; and e) and f) multiple singers (matched 300 s samples).

https://doi.org/10.1371/journal.pone.0208619.g008
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Fig 9. Comparison of phrase-types with normal or broken song units which appeared from 2015 onwards.

https://doi.org/10.1371/journal.pone.0208619.g009

Fig 10. ISI-analysis for all seasons. (a) Density distribution of type II repeat interval for all years (normalised with the colour scale from 0 = blue to

1 = red), (b) peak time interval across years over 30–60 s (red circle, P1 song ISI), 70–100 s (blue square, P2 song ISI) and 160–200 s (black cross (P3
song ISI), and c) proportion of song-repeat values with year (same symbols and colours as b). The solid lines on b) are linear fits. The resolution used in

a) was 0.1 s and 0.25 dB.

https://doi.org/10.1371/journal.pone.0208619.g010
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(type I, II & II) present 56.0% of the time (95%CI 48.81–63.19, 2004 on). Note the earlier years

had relatively short sea noise sample lengths compared to the P2 and P3 song length plus fewer

whales singing, so early years have been excluded from calculations of statistics of the propor-

tions of P2 and P3 songs.

Table 3. Fitted curves to ISI-spacing across seasons for P1, P2 and P3 songs (ISI-curve analysis).

Song-type Linear Fit 95% CI of coefficient (SE) Correlation coefficient, r2 F (DF), p
P1
Unit II only

t = 0.305 Y– 565.5 0.083 (0.038) 0.86 65.9 (1/11), << 0.001

P2
Units II & III

t = 0.843 Y—1602.8 0.185 (0.084) 0.90 100.5 (1 /11), << 0.001

P3
Units I, II & III

t = 1.826 Y—3491.5 0.435 (0.198) 0.86 85.4 (1/11), << 0.001

Details of linear fits of song repetition interval for the three pygmy blue whale song-types across seasons from the Perth Canyon. The fit values give t, the song repetition

interval in seconds, for Y, the year, with fit statistics given.

https://doi.org/10.1371/journal.pone.0208619.t003

Table 4. ISI-spacing for the P1, P2 and P3 songs each year (ISI-curve analysis).

Year II song (P1) II & III song (P2) I, II & III song (P3) P2/P1 P3/P1 P3/P2
2003 44.55 84.15 169.75 1.889 3.810 2.017

2004 45.65 85.75 172.05 1.878 3.769 2.006

2005 45.55 86.25 167.75 1.894 3.683 1.945

2007 45.75 89.45 173.75 1.955 3.798 1.942

2008 46.55 89.65 168.05 1.926 3.610 1.875

2009 46.05 90.75 179.35 1.971 3.895 1.976

2010 46.85 88.95 177.95 1.899 3.798 2.001

2011 48.45 94.45 178.85 1.949 3.691 1.894

2012 47.05 90.55 184.45 1.925 3.920 2.037

2013 47.55 93.35 183.75 1.963 3.864 1.968

2014 48.85 94.25 188.65 1.929 3.862 2.002

2016 49.25 96.35 186.65 1.956 3.790 1.937

2017 48.45 96.15 193.75 1.985 3.999 2.015

Mean,

95% CI

1.932,

1.911–1.953

3.807,

3.743–3.871

1.970,

1.940–2.000

Song to song repeat interval (s) given by feature space analysis and ratios of these for each year, with: year; (P1) time between consecutive type II only songs (s); (P2)

time between consecutive type II & III only songs (s); (P3) time between consecutive type I, II &III songs (s); ratio P2/P1; ratio P3/P1; ratio P3/P2.

https://doi.org/10.1371/journal.pone.0208619.t004

Table 5. Proportions of P1, P2 and P3 song-types given by ISI-curve analysis.

Song Min.–max. Mean, 95% CI, (median) Years included (N)

P1 Type I only 8.6–32.7 21.5, 17.30–25.70 (21.0) 2003–2017 (13)

P2 Type I & II 11.8–54.3 24.2, 16.39–32.01 (21.3) 2005–2017 (11)

P3 Type I, II & III 37.2–71.8 56.0, 48.81–63.19 (60.7) 2004–2017 (12)

Statistics on proportions of each song-type as given by the feature space analysis of type II to type II time-level

differences.

https://doi.org/10.1371/journal.pone.0208619.t005
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Discussion

The song structure of SEIO pygmy blue whale has been shown to be variable and changing

across time, while still retaining its uniqueness when compared with the song types of other

Southern Hemisphere pygmy blue whale stocks. The fundamental song structure is three units

repeated in a phrase (P3), but with a further two common variations (P1 and P2) in which not

all units are repeated per phrase, sections where phrases combining different combinations of

units are repeated and recently, the alteration of units by splitting them into two sections.

The high level of agreement in the classification of different song events by multiple

untrained observers provides support for the classification of phrase and song structures out-

lined in this analysis. The temporal variations of the P3 song type, delineated from P3 by a lon-

ger or shorter than average phrase repeat interval, proved to be the most difficult for untrained

observers to identify. Removal of the temporal element of song event classification resulted in

a near perfect agreement between observers. This in part may be due to an inconsistency in

the length of sample times which often precludes the recordings of multiple phrases for longer

song variants. As such it is recommended that longer recording times be utilised in future

studies to capture the variability in phrase repeat times. Additionally, further investigation into

the temporal variability of song structures may help to better identify temporal song and

phrase variants.

The observed changes in song structure were in the form of variations to: 1) the structure of

units with broken or split units observed in recent years; 2) variability in phrase composition

where different units were omitted (P1, P2 or P3) or where a consecutive song had a different

arrangement of units to the previous phrase-type (hybrids); 3) the duration of a phrase cycle;

and 4) the interval between consecutive phrases within a song, which increased yearly. In the

context of this discussion, the P1, P2 and P3 phrase type refer to singular sequences of these

phrases while the P1, P2 and P3 song variations refer to repeated sequences of the respective

phrase types. Hybrid song types are those which alternate between two different phrase struc-

tures. There are a number of adaptive processes by which song changes can occur and a num-

ber of factors that may be driving these changes. Gradual changes to song structure over a long

period of time may be attributed to slow evolutionary processes such as genetic or cultural

drift [16], whereas rapid changes to characteristic vocalisations may reflect changes in environ-

mental or physical conditions [51]. Further short-term shifts in the structure or content of

songs may be indicative of the social or behavioural context of the caller [28]. It must be under-

stood in interpreting song variation that at this point in time, we have no information as to the

sex of singers for pygmy blue whales and it would be wrong to automatically assume all singers

are males. However, given the large body of information on song production in other species

of whale, along with other taxa, it is suspected song may have some function in mate attraction

and selection [4, 52, 53].

It is tempting to relate the observed long term, linear decline of the frequency of the type II

unit in pygmy blue whale songs (a decrease of 0.12 Hz/year in the call fundamental frequency

[47]), with the long term, linear increase in the song repetition interval as found here. There is

growing evidence to support a relationship between annual changes in frequency and ISI, par-

ticularly in the songs of fin whales [52, 53]. However, we could find no simple association

between increased ISI values and a decrease in call frequency across time, suggesting further

investigation is needed to identify any relationship between the frequency and temporal

domains of song production for the pygmy blue whale. Song structure is likely to confound

any attempt to relate the two parameters in this study as tonal frequency is measured from the

type II song unit and not the overall song, while ISI takes into consideration the repetition

interval for the entire phrase sequence. The findings of this study indicate that the rate of
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change in ISI is variable between song variants with an average increase of 0.30 ± 0.083 s/year,

0.84 ± 0.185 s/year and 1.73 ± 0.466 s/year for the P1, P2 and P3 songs respectively. How or if

the increase in ISI through time observed here and the decrease in call frequency through time

observed by [47] relate to each other is not yet clear.

Changes to song repetition interval may result from an increase in ambient noise, primarily

here from the chorus of other pygmy blue whales singing in the same area. In the most recent

data sets the largest obstacle to identifying the song structure of vocalising animals in the man-

ual analysis was other vocalising animals which flooded samples with pygmy blue whale sig-

nals. As population numbers increase ([48, 49] for EIO pygmy blue), it may be a natural

adaptation for song repetition intervals to increase. Whether this may be because animals do

not have to call as frequently to attract a mate, or the benefit of producing more signals in a

shorter time period is outweighed by the energetic cost, or competition due to increases in

vocal activity of other animals, would require more investigation. Such density dependent

singing dynamics have been studied widely in other taxa such as birds and frogs [6, 7, 54, 55].

There is also the possibility that changes in the body size of individual whales may have

occurred post whaling, with the proportion of larger animals increasing as the population

increases. An increase of larger animals may correlate with the observed increase of ISI time

separation, but, as we have no data on comparative body size across years this cannot be

verified.

The three primary phrase-types defined all contained the type II unit, indicating that this

unit seems to underlie song structure of the SEIO pygmy blue whale population. Intriguingly,

the time between consecutive songs seemed to almost double for renditions of each song-type

(Table 4). Given that the resolution used in the analysis to obtain these ISI values was 0.1 s, the

ratios of ISI between the three song-types is close to two for P1 to P2 and P2 to P3, ISI values

respectively. This suggests that inter-song interval may be set by a common oscillator or inter-

nal clock, sampled at integer multiples. Further to this, vocal animals displaying the hybrid

song structures demonstrated a strict timing conformity with the second phrase of the

sequence lasting half the time of the first phrase. For instance, an animal producing a P3A
song with the first P3 phrase lasting ~ 180 s was followed by a P2 phrase of ~ 90 s length, again

suggesting a fixed ratio relating to phrase intervals.

The proportion of each song-type calculated from the manual analysis of song events and

the ISI-curve analysis technique utilising time and level differences between all type II units in

a sea noise sample, differed significantly (4.3, 52 and 44% for P1, P2 and P3 song occurrence

from manual measures, and 21.5, 24.2 and 56.0% for P1, P2 and P3 song occurrence respec-

tively from the ISI-curve analysis when averaged across all seasons). The ISI-curve analysis

method was largely independent of biases, although: 1) the curves produced for each song-

type will be slightly smeared due to different ISI values between song events; and 2) was

sensitive to sample length pre 2009 (samples < 300 s). For the samples of shorter length the

proportions of the longer song-types which could be detected in that sample length dropped

significantly, thus lowering curve peak values and so increasing errors in determining curve

peak values and baseline noise levels (since the peak level may have been close to that of back-

ground noise or the background noise was sloped downwards for longer ISI times as it

approached the sample length). But, the trends in the ISI-curve analysis technique were largely

consistent across seasons which were treated independently, the expected proportion of third

multiples of the P1 ISI were identified correctly by the technique, and the equations used gave

the correct ratio of song proportions within < 1% when comparing derived proportions from

set proportions using a simulator (S1 File). The manual method will be subject to biases, pri-

marily because the songs that were analysed had few background callers present to reduce con-

fusion in following the same vocalising animal. There may also be inherent biases where
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during periods with multiple singers present, animals are more likely to produce songs similar

to the other vocalising animals resulting in a shift towards one particular song structure. The

proportions derived from the ISI-curve analysis would be preferred when using the values to

manipulate song counts into abundance measures.

Either analysis technique indicates that song occurrence is not a direct reflection of calling

whale abundance. The presence of shorter ISI values than the P3 phrase-type means that sim-

ply counting the presence of type II units across time (song/time) will not directly equate to

the number of animals present at the time. The ISI-curve analysis shows that while across the

13 years of sampling available the relative proportions of each song-type does not change in

any systematic way, suggesting phrase production per unit time may be comparable for relative

abundance, the proportions have considerable variation in ranges amongst years of up to ± 8%

for the 95% CI of any song-type (Table 5). Thus, comparing rates of phrase per unit time as

given by the presence of one call unit, may not be directly valid without correcting for changes

in ISI values and the relative proportion of song-types. For using song as a measure of abun-

dance in pygmy blue whales then some discrimination of song-type (P1, P2 or P3) needs to be

made. One technique utilised by the authors is to split a sea noise sample into time windows

less than the P2, ISI (96.4 s in 2017, 70 s is a window length commonly used), count the num-

ber of type II units within each window and use the maximum value in any window as an esti-

mate of the number of vocalising whales. Using the manual ISI analysis song-type proportions

suggest this is correct for 96% of songs, while using the ISI-curve analysis technique for pro-

portions of song-types averaged across seasons suggests this is correct for 80% of songs.

The large degree of variability in ISI values demonstrates that differences exist in timing

and phrase production even within similar song structures. This indicates the possibility that

variability in phrase structure may be attributed to individual callers and reflects important

social information such as identity, sex or size [29, 56]. The importance of song in individual

identification has been explored in bird song as well as the signature whistles of dolphins and

dialects of killer whales [57–58]. However, studies of individual variability are more limited in

baleen whales. The ability to identify individual animals by their song would likely be benefi-

cial in any population of social animals where the mechanisms and cognition exists to allow

this to happen. It is unclear whether individualisation in bird song results from physical or

social differences in song learning and production, though studies in cetaceans suggest that

individualisation may be a social process [58]. The consistency in the proportion of detected

vocal animals producing the less common song varieties would suggest that there may be an

individual or familial link between the song variant produced and the vocalising animal.

Familial linkages can occur through genetic or learned processes, which are often intrinsically

entwined in maternal animals that exhibit social behaviour [59–61].

Patterns in the timing of song production and as seen in the ISI analysis are reminiscent of

the phonology of speech and song in other species. Phonology, or the arrangement of sounds

within a language, allows for the interpretation of different song elements based on a hierarchi-

cal context [41, 62]. The ability of animals to display elements of complex phonology has been

demonstrated previously in studies of song-bird populations [41, 62, 63]. The findings suggest

that mechanisms underlying complex phonology likely evolved separately and prior to the

human linguistic traits of semantics and syntax [62]. It is therefore likely that these traits will

be present in the communicative abilities of other evolutionary lineages such as cetaceans.

For a number of cetaceans, it is nearly impossible to separate genetic linkages on the mater-

nal side and cultural processes as the cause of particular behaviours that are passed from

mother to calf [8, 12, 14, 32]. In baleen whales, song is believed to be a male only phenomena

though it is unclear whether it is learnt or inherited and it must be reiterated that the sex of

pygmy blue whale singers has not been confirmed. The existence of a large number of song
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variants combined with the low genetic diversity of pygmy blue whales [64, 65, 66], suggests

that it is unlikely that song variants are linked to genetic drivers alone. Genetic processes are

slow to act as they occur over the life cycle of an animal. Given the rapid appearance of phrase

and unit variations, which seem to appear within a season, it is implausible that genetic pro-

cesses are responsible for the variability in song production.

Culture is recognised as a driver of behaviour in cetacean species. Culture relies on the social

and familial networks of a species and in turn is a driver of social behaviours of a species such as

the production of song [11, 15, 19, 59, 67–69]. The hybrid pygmy blue song patterns, as well as

the broken song units that have appeared post 2015, reflect an increase in complexity of song

structure setting them apart from the P1 and P2 variants of the typical, P3 phrase song. Increased

complexity within songs is thought to be a reflective of cognitive fitness, which may be a favour-

able trait for sexual selection [6, 55, 70, 71]. Innovation is a cultural process whereby an individ-

ual makes a change to the song structure and this change is then copied by other whales and can

spread through the population [11, 15, 20, 30, 41]. Vocal learning is the primary mechanism by

which changes to song are proliferated throughout the population as well as the means by which

juveniles learn the characteristic vocalisations of the population [19, 23, 26, 58]. Similarly, errors

in vocal learning can result in variations to song structure, which may then be passed on to oth-

ers within the population [26, 30, 34, 58, 68]. Cultural processes are generally widespread as is

seen in humpback populations where changes proliferate through the population [68]. There

may be selective pressure for song variation and diversity within the population with females

displaying a preference for novel or complex song-types, as is frequently the case with bird song

[6, 55, 62, 72, 73]. Innovation and cultural proliferation would be a more reasonable explanation

for the rapid inclusion of unit variations in a significant portion of the pygmy blue whale song

phrases post 2015. The fact that broken units represent such a high level of variability suggests a

more complex mechanism of song learning and proliferation within the population.

Whilst not energetically costly, singing represents a cost to the animals in terms of the time

involved, as it is assumed to preclude other behaviours such as feeding [74, 75]. As such the

time demands of singing must be balanced with any benefits it provides such as increased

reproductive output [74, 75]. Where male whales dominate singing, song is presumed to have

a role in attracting female conspecifics as well as in competing with other males in the area [70,

75]. Sound source level analysis has revealed that the first unit of the P3, SEIO pygmy blue

whale phrase-type is the least intense and thus in high levels of ambient noise is the hardest to

detect [5, 37, 40, 47, 76]. The second unit is the most intense making it the easiest to detect [40,

76, 77]. The Perth Canyon is becoming noisier, largely as a result of the increased number of

pygmy blue whale vocalisations [36, 78]. Thus, focusing time and energy on producing the

song units that are best transmitted among high levels of ‘noise’ and removing the lower level

signals could potentially provide a benefit with the individual more likely to be heard by

females in the area, as well as by keeping the ‘noise’ down. Studies of humpback whale calling

behaviour suggest that female whales prefer more complex songs [4, 17, 70, 79] which is what

appears to be happening with the hybrid song-types and unit variations. There have been

observations for other mammals of the ability to change song structure dependent on environ-

mental conditions [2, 53]. For instance, audience effects (increasing source levels) have been

observed in the communication of close range gorilla calls whereby vocalisations were changed

dependent on the distance of the caller to the receiving animal [80]. Such a capacity to adapt

vocalisations based on target audience and environmental conditions would likely prove bene-

ficial to cetacean species as well, especially as their acoustic environment becomes more com-

plex [36, 78]. From the data analysed here, it would not appear that there are distinct patterns

in the production of particular phrase and song varieties at different times of the year or even

within single days as multiple variants were present within one 24 hour period. Whilst this
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does not negate the potential existence of a relationship between environmental conditions

and song production, a more detailed analysis of physical ocean properties, ambient noise and

dominant song varieties would need to be conducted to look for any relationship.

One of the most significant findings of this study is that variability exists in the characteris-

tic song of the SEIO pygmy blue whale subpopulation. Song structure has previously been

used as a diagnostic tool to separate populations of pygmy blue whale (McDonald). Variability

in what were previously considered to be static signals raises questions as to the validity of

song structure as a diagnostic for sub populations. Consequently, it is recommended that a

global study on variability within and between the vocalisations of all sub populations of

pygmy blue whale be conducted.

Conclusion

Through long term passive acoustic monitoring we found three distinct variations to the

South Eastern Indian Ocean pygmy blue whale phrase structure in the Perth Canyon, Western

Australia, and a further three song pattern variations. Within these phrase structures there

exist variations in the inter-song interval resulting in two further temporal variations on the

three unit phrase structure. Further, the most recent data sets include variations to the units

where they are split, or ‘broken’, within the existing song structures, which adds an additional

level of complexity. The mechanisms behind the increase in song diversity are unclear though

the rapid appearance of new phrase variants that represent progressive changes to the original

phrase structure is consistent with cultural evolution. Such rapid change, with new variants

appearing within a migratory season, indicate that the levels of variability cannot be attributed

to genetic processes. Variability in song and phrase structure is not prolific throughout the

population with all the variations present within one year. This sets pygmy blue whales apart

from the well-studied humpback whales where changes in song structure are generally propa-

gated through the entire population and supersede earlier song-types. This raises the question

as to whether physical environmental conditions may influence song production as has been

documented for other baleen whale populations [53]. Peaks in the number of calling animals

displaying various phrase-types and the relative stability of the number of detected song events

with rare structures across the sample years suggests that song variation may be linked to indi-

vidual animals though further studies are needed to explore this. It is unclear whether physical

environmental processes (noise produced by the whales singing) or cultural processes are at

play as the concept of culture has only been explored in odontocete and humpback whale pop-

ulations. There is also the potential for a level of signal plasticity to exist allowing for context-

specific production of vocal cues. Further studies utilising passive acoustic techniques and

visual observations, as well as genetic analysis are recommended to elucidate the function of

pygmy blue whale song and the driving forces behind changes in phrase structure that are

directly translatable to song structure. It is also recommended that a detailed study of fine scale

vocal parameters, including temporal variability be conducted to identify the level of variability

between vocalising animals. Finally, it is evident that there is a need for comparative studies

between pygmy blue whale populations to assess widespread variability in song production.
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