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Abstract: Neuroblastoma, the most common extracranial solid tumor of childhood, continues to carry
a dismal prognosis for children diagnosed with advanced stage or relapsed disease. This review
focuses upon factors responsible for cell proliferation in neuroblastoma including transcription
factors, kinases, and regulators of the cell cycle. Novel therapeutic strategies directed toward these
targets in neuroblastoma are discussed.

Keywords: neuroblastoma; MYCN; kinases; cell cycle check point inhibitors

1. Neuroblastoma

Neuroblastoma, a tumor of neural crest origin, is the most common extracranial solid tumor of
childhood, accounting for 7% of childhood malignancies and 15% of childhood cancer mortality [1,2].
More than 50% of these tumors occur in children less than 2 years of age. The incidence of
neuroblastoma has increased in recent years and it continues to carry a poor prognosis in children over
two years of age with a survival of only 38% [3,4]. Overall 5-year survival was 74% from 1999–2005 [5].
Neuroblastoma exhibits a wide array of biological characteristics and behaviors, which are important
in predicting outcomes.

2. Cell Proliferation

Cell proliferation refers to an increase in the number of cells due to cell growth and division and is
necessary not only for growth and normal tissue function but also tumorigenesis. From embryological
development through senescence, cell proliferation is maintained by a strict coordination of cellular
signals and deregulation of cell proliferation is the defining feature of all tumors. The mechanisms of
deregulation vary but are inevitably via perturbations in signal transduction within the cell. Many of
these perturbations are in signaling pathways important for proliferation—those regulating cellular
growth, differentiation, and developmental signals—and are the result of mutations, amplifications,
gene overexpression, or chromosomal deletions [6]. Therefore, manipulation of cell proliferation
pathways may decrease the malignant potential of tumors, including neuroblastoma, making these
pathways an attractive target for novel therapeutics. Manipulation of the pathways involved in
cell differentiation can also decrease the malignant potential of neuroblastoma. Differentiation and
proliferation are separate but concurrent processes that are regulated independently by signaling
pathways, although some of the pathways overlap and crosstalk [7]. This review will discuss some
of the common cell proliferation proteins and pathways involved in neuroblastoma, including
transcription factors, kinases, and regulators of the cell cycle.

3. Neuroblastoma and Transcription Factors

Multiple transcription factors, which initiate and regulate gene transcription, have been implicated
in neuroblastoma pathogenesis via an increase in cell proliferation. These include N-MYC, nuclear
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factor kappa-light-chain-enhancer of activated B cells (NF-κB), paired-like homeobox 2b (PHOX2B),
and P53.

MYCN oncogene encodes N-MYC, a phosphoprotein in the MYC family of transcription factors.
N-MYC binds to the E-box sequences CACGTG and CATGTG predominantly in the MYCN-amplified
state [8,9]. When bound to these promoter sequences, N-MYC acts as a classical transcription factor,
increasing expression of individual genes that increase cell proliferation, and changes global chromatin
structure by DNA hypermethylation, which also increases cell proliferation. N-MYC is expressed early
in development up through a few weeks following birth [10]. After that, it is only found in adult B
cells. MYCN amplification is detected in approximately 20% of neuroblastoma tumors [11,12], and
amplification of greater than ten copies of MYCN is the strongest adverse prognostic indicator for
this disease [13]. The significance of MYCN amplification in neuroblastomas was first noted in the
1980s [13,14]. More recently, Molenaar et al. found that the majority of high-risk neuroblastoma tumors
had genomic amplifications of LIN28B, which suppresses LET-7 and resulted in increased N-MYC
protein expression [15].

Using in vitro studies, it has been demonstrated that the level of N-MYC expression correlates with
cell proliferation in neuroblastoma [16,17]. N-MYC has been shown to increase cell proliferation in
neuroblastoma via multiple mechanisms. Transient receptor potential cation channels M6 and M7 (TRPM6
and TRPM7) are transcriptional targets of N-MYC. These proteins promote cellular calcium and magnesium
uptake and enhance cell proliferation in neuroblastoma [18]. N-MYC upregulates high mobility group
protein of the A type 1 (HMGA1), an important regulator of cell growth which also leads to increased cell
proliferation [19]. E2F2 is transcriptionally activated by N-MYC and induces transcription activation and
progression through the cell cycle, with the ultimate effect of increasing cell proliferation [20,21]. N-MYC
also upregulates serine hydroxymethyltransferase 2 (SHMT2), which breaks down serine into glycine and
a one-carbon moiety. The glycine produced is an important source of methyl groups for biosynthesis, and
as such, SHMT2 leads to increased cell proliferation. Using a panel of diverse human cancer cell lines, it
was demonstrated that glycine consumption correlated with rapid cell proliferation in cancer cells [22].
SHMT2 has been found to be highly expressed in aggressive MYCN-amplified neuroblastomas [23].
MYC also regulates transcription of PHGDH, an enzyme upstream in the SHMT2 pathway that converts
3-phosphoglycerate to serine. Six of the eleven genes in this pathway have been identified as targets of
MYC [24]. The protein sulfatase 2 (SULF-2) is overexpressed in MYCN-amplified neuroblastoma cells
but expressed at a much lower level in MYCN-unamplified cells [25]. Suppression of SULF-2 using small
interference RNA (siRNA) decreased cell proliferation in MYCN-amplified neuroblastoma cells, indicating
that SULF-2 is a potential drug target. A SULF-2 small molecule inhibitor, OKN-007, has been developed,
but has yet to be examined in neuroblastoma.

Many researchers have targeted MYCN transcription in the development of anti-tumor therapies.
Using antisense oligonucleotides directed against human MYCN in MYCN-amplified human
neuroblastoma cells yielded approximately half as much N-MYC protein expression compared
to control and in vivo led to decreased tumor growth in transgenic MYCN mice [26]. Antisense
oligonucleotides are quickly degraded by nucleases, limiting their clinical potential, but more recently,
morpholino antisense oligomers have been developed. These are more stable and function to knock
down genes by modifying the splicing of pre-mRNA. However, to our knowledge, these have not yet
been utilized to target MYCN in neuroblastoma. Kang et al. used siRNA directed against MYCN and
found a downregulation in N-MYC protein expression in MYCN-amplified neuroblastoma cells but
not in MCYN unamplified cells [27]. Additionally, proliferation in MYCN-amplified neuroblastoma
cells was decreased with siMYCN treatment. The delivery method to the target cells and off-target
effects in the clinical setting remain challenges for the clinical application of siRNA technology. An
anti-gene peptide nucleic acid (PNA) conjugated with a nuclear localization signal peptide targeted
against a sequence of MYCN DNA was determined to decrease N-MYC expression. Additionally,
in MYCN-amplified and MYCN-unamplified/low-expressed human neuroblastoma cell lines cell
proliferation decreased significantly, but in MYCN-unamplified/unexpressed cells there was no
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decrease in cell proliferation [28]. PNA therapy is promising given the strong binding between PNA
and DNA, but PNAs are hydrophobic and difficult to deliver to target cells. MicroRNAs (miRNAs)
occur naturally in humans and regulate expression of genes by binding to mRNAs and inhibiting
protein production. Using miRNAs targeted against MYCN mRNA, Buechner and colleagues noted
reduced endogenous N-MYC expression and significantly impaired proliferation in MYCN-amplified
neuroblastoma cell lines [29]. In contrast to siRNAs, miRNAs’ complementarity to the target mRNA is
not exact, so each miRNA may target many different mRNAs and concerns remain regarding off-target
effects. Recently, Puissant showed that bromodomain inhibition suppressed MYCN transcription in
neuroblastoma [30]. Using a novel ligand, JQ1, which competitively displaced bromodomain and
extra-terminal domain (BET) bromodomains from chromatin, MYCN transcription was decreased
in vitro. Additionally, in a MYCN-amplified neuroblastoma murine model, JQ1 treatment significantly
decreased tumor volume and increased survival compared to controls. Other BET bromodomain
inhibitors are in preclinical trials including I-BET762 [31]. OTX015 is a BET bromodomain inhibitor
which decreased cell proliferation in MYCN-amplified neuroblastoma cells in preclinical trials and is
currently in Phase I clinical trials for other solid tumors [32].

Other researchers have targeted the N-MYC protein. In order for N-MYC to act as a transcription
factor, it must localize to the nucleus and dimerize with MAX protein. This dimer then binds to a
specific E-box sequence in DNA to transcribe genes important for cell proliferation. However, when
cells have higher levels of MAX, there is not enough N-MYC available to form heterodimers, so MAX
homodimerizes. Instead of stimulating proliferation, MAX homodimers stimulate transcription of
genes important for cell differentiation [33]. An inhibitor of N-MYC/MAX dimerization, 10058-F4,
caused cell cycle arrest, apoptosis, and differentiation in vitro, and increased survival in MYCN
transgenic mice [34]. MAD is another protein that forms heterodimers with MAX. However, as opposed
to N-MYC, which is expressed in proliferating tissues, MAD is a protein expressed in differentiated
tissue. When MAD forms a heterodimer with MAX, it binds to the same E-box sequence, but this
dimer represses transcription, thereby inhibiting cell proliferation [35,36].

NF-κB is another important transcription factor that may be activated in neuroblastoma [37]. In cells
other than B cells and macrophages, NF-κB is sequestered in the cytoplasm through an interaction with
inhibitor of κB (IκB) proteins [38]. It is not until IκB is phosphorylated that NF-κB is free to translocate
to the nucleus where it binds to promoter sequences to induce transcription [39]. When phosphorylated,
IκB is ubiquitinated and then degraded by proteasomes. Bortezomib is a reversible inhibitor of the 26S
proteasome [40]. By inhibiting the proteasomal degradation of a host of proteins including IκB, bortezomib
decreased cell proliferation in neuroblastoma cells and decreased growth and the number of mitotic cells
in murine neuroblastoma models [41–43]. A phase I clinical trial found that bortezomib was well-tolerated
in children with recurrent or refractory solid tumors, two of whom had neuroblastoma [37,44]. In some
forms of neuroblastoma, NF-κB has been shown to lead to increased migration and invasion but in others
it induced apoptosis [45,46]. Curcumin suppresses NF-κB activity, and was shown to inhibit proliferation
in neuroblastoma cell lines and decrease tumor growth and cell proliferation in a murine neuroblastoma
model [47]. Gao et al. used oleanolic acid derivatives, CDDO-Im and CDDO-Me, for NF-κB inhibition
and saw decreased neuroblastoma cell proliferation [48]. CDDO-Me has also been demonstrated to delay
tumor growth in neuroblastoma xenografts [49].

A third transcription factor, PHOX2B, is expressed exclusively in the nervous system. Germline
mutations of PHOX2B predispose to hereditary neuroblastoma and have also been observed in sporadic
cases [50–53], but remain a rare cause of neuroblastoma [54]. Sympathetic neural cells derived from
chick and mouse embryos transfected with gain-of-function PHOX2B variants seen in neuroblastoma
demonstrated significantly more cell proliferation than wild-type PHOX2B, indicating that wild-type
PHOX2B may act a tumor suppressor [55]. PHOX2B has not yet been targeted for development of
therapeutics given the low frequency of involvement in neuroblastoma.

Mutations in the tumor suppressor, P53, are the most frequent genetic alterations found in
human cancer [56]. Mutations in P53 are infrequent in neuroblastoma and are mostly limited to
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relapsed tumors [57–60], but wild-type P53 is often destabilized and not functional. In undifferentiated
neuroblastomas, wild-type P53 was sequestered in the cytoplasm preventing its function as a
transcription factor [61]. N-MYC has been found to upregulate P53 expression in neuroblastoma [62],
but the protooncogene MDM2 which negatively regulates P53 is a direct transcriptional target of
N-MYC, leading to increased MDM2 and subsequent decreased P53 function in MYCN-amplified
neuroblastoma cells [63]. Nutlin-3, an MDM2 antagonist, releases P53 from negative control by
MDM2 and thus stabilizes and activates P53. Using an in vitro model of acquired drug resistance
in neuroblastoma, van Maerken treated cells with nutlin-3 and saw a significant decrease in cell
proliferation in cell lines with wild-type P53 but not in those with mutant P53 [64]. They also noted
increased expression of P53 and its target genes, indicating that P53 activation in neuroblastoma by
nutlin-3 may yield a new therapy for drug-resistant neuroblastoma with wild-type P53. Additionally,
MYCN-amplified neuroblastoma cells treated with MDM2 antagonists, nutlin-3 and MI-63, had
decreased cell proliferation when compared to MYCN-unamplified cells, further illuminating the
importance of the relationship between MYCN and P53 in neuroblastoma [65]. A summary of the
drugs discussed in this section is provided in Table 1.

Table 1. Proteins that affect proliferation in neuroblastoma through transcription and their targeted
drugs. Mechanism of action and stage of development in neuroblastoma is listed along with references.

Target
Protein Drug Mechanism of Action Stage of

Development References

SULF-2 siSULF-2 Double-stranded RNA that cleaves
SULF-2 mRNA In vitro [25]

N-MYC siMYCN Double-stranded RNA that cleaves
MYCN mRNA In vitro [27]

PNA Synthetic polymer that binds MYCN
DNA to inhibit N-MYC expression In vitro [28]

miRNAs Single-stranded RNA that inhibits
translation of MYCN mRNA In vitro [29]

JQ1 Inhibits BET bromodomains In vivo [30]

I-BET762 Inhibits BET bromodomains In vivo [31]

OTX015 Inhibits BET bromodomains Clinical trial [32]

10058-F4 Inhibits N-MYC/MAX dimerization In vivo [34]

NFκB Bortezomib Inhibits proteasomal degradation of
IκB, thus deactivating NFκB Clinical trial [40–44]

Curcumin Inhibits activation of NFκB In vivo [47]

Oleanolic acid derivatives
(CDDO-Im and CDDO-Me)

Inhibit TNFα-induced targeting of
NFκB to the nucleus In vivo [48,49]

MDM2 Nutlin-3 Releases P53 from negative control
by MDM2 In vivo [64]

MI-63 Releases P53 from negative control
by MDM2 In vitro [65]

4. Neuroblastoma and Kinases

Kinases are proteins defined by their ability to phosphorylate other proteins in cell signaling pathways.
Phosphorylation either activates or inactivates the downstream protein, which in turns affects the signaling
cascade. In neuroblastoma, many kinases have been found to play a role in cell proliferation.

One of the well-described signaling pathways is the RAS/RAF/MEK/ERK cascade. RAS
is a small GTPase that is activated when a mitogen binds to a membrane receptor tyrosine
kinase. A serine/threonine kinase, RAF, is then targeted to the cell membrane, interacts with
RAS, dimerizes, and undergoes phosphorylation for activation. RAF phosphorylates MEK and
MEK in turn phosphorylates ERK. Once activated by phosphorylation, ERK phosphorylates a
number of proteins involved in proliferation. Abnormal activation of this pathway has been seen
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in neuroblastoma. A recent study found that the majority (78%) of relapsed neuroblastomas had
mutations predicted to activate the RAS/RAF/MEK/ERK pathway, but very few primary tumors
had these mutations [66]. In preclinical studies, treatment with the MEK inhibitor U0126 decreased
proliferation in neuroblastoma cell lines with high constitutive total ERK, but not in those with
less total ERK, indicated that this pathway plays a role in cell proliferation in some forms of
neuroblastoma [67]. Treatment of RAS/RAF-mutated neuroblastoma cell lines with the MEK inhibitors
trametinib, cobimetinib, and binimetinib also decreased cell growth [66]. MEK inhibitors warrant
further study as targeted therapies for relapsed neuroblastoma.

The phosphoinositide 3-kinase (PI3K)/Protein kinase B (AKT) cascade has been implicated in
neuroblastoma [68–70]. When activated, PI3K phosphorylates phosphatidylinositol to produce a
secondary messenger that binds downstream targets, including AKT, recruiting them to the cell
membrane. The serine/threonine kinase, AKT, then acts on downstream targets to promote cell
survival and proliferation. Via a series of intermediaries, the serine/threonine kinase, mechanistic
target of rapamycin (mTOR), is activated [71]. Neuroblastoma tissue was found to have significant
levels of activated AKT and mTOR compared to the normal adrenal medulla [68,72]. Multiple human
neuroblastoma cell lines including SK-N-SH, SK-N-BE, and IMR-32 have been found to have activated
AKT. Activated AKT correlated with advanced stage, unfavorable histology, poor outcome, and MYCN
amplification in human tumor specimens [70]. Inhibition of mTOR with rapamycin and an analog,
CCI-779, decreased neuroblastoma cell proliferation, indicating a role for the PI3K/AKT/mTOR
pathway in tumorigenesis [68]. There are conflicting data regarding the relationship between MYCN
amplification and the PI3K/AKT/mTOR pathway. Johnsen et al. found that the decrease in cell
proliferation in MYCN-amplified tumors was greater than that observed in MYCN non-amplified
tumors [68], but Misawa et al. found that maintenance of cell proliferation in neuroblastoma required
mTOR function, but it appeared to be independent of MYCN induction [69].

There are a number of drugs targeting the PI3K/AKT/mTOR cascade currently in development.
mTOR inhibitors rapamycin (also termed sirolimus) and its analogues, including temsirolimus,
everolimus, and ridaforolimus function by binding to the cytosolic protein FK-binding protein 12
(FKBP12). Once bound to FKBP12, the complex binds directly to mTOR, inhibiting its action [73].
Rapamycin is currently in clinical trials and has been demonstrated to decrease cell proliferation
in neuroblastoma [68,69,74]. However, in neuroblastoma cells, rapamycin introduced potential for
resistance by way of inducing expression of survivin, a protein that protects cells from apoptosis [74].
A phase II study of temsirolimus in children with relapsed or refractory high-grade neuroblastoma
was halted as there were no objective responses. In that study it was noted that 32% of neuroblastoma
subjects did experience disease stabilization, so temsirolimus may be used in the future in combination
with other therapies [75]. A phase I study of everolimus in neuroblastoma has been completed and
the drug is well-tolerated in children, but no objective responses were reported [76]. Similar findings
were observed in a phase I study of ridaforolimus in children with refractory solid tumors [77]. It is
clear that rapamycin and its analogues have only modest activity against neuroblastoma, but their
effectiveness as combination therapies remains to be elucidated.

mTOR inhibitors that act as ATP-competitive inhibitors are also being evaluated. These include
INK128/MLN0128, AZD2014, and OSI027. In both MYCN-amplified and non-amplified neuroblastoma
cell lines, treatment with INK128/MLN0128 suppressed cell proliferation. Using xenograft models
of neuroblastoma, INK128/MLN0128 led to significant tumor growth inhibition in one study, but
failed to prevent progressive disease in another, although some tumors did exhibit significantly less
growth [78,79]. AZD2014 has shown promise in breast cancer [80] and OSI027 had anti-proliferative
activity in several human cancer cell lines, but they have not yet been examined in neuroblastoma [81].
Similar to rapamycin, the ATP-competitive mTOR inhibitors appear to have limited activity against
neuroblastoma cell proliferation.

There is a feedback loop that causes reactivation of PI3K and the RAS/RAF/MEK/ERK cascade
when mTOR activity is decreased [82]. Given the modest activity of both groups of mTOR inhibitors
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against neuroblastoma and this feedback loop, researchers have turned to dual inhibitors targeting
both PI3K and mTOR. NVP-BEZ235 is one such compound that has been used in vitro and found to
have an anti-proliferative effect in neuroblastoma cell lines [83]. In an in vivo neuroblastoma model
with TH-MYCN mice, NVP-BEZ235 suppressed proliferation of tumor cells and angiogenesis [84].
SF1126, another dual PI3K/mTOR inhibitor, has been demonstrated to inhibit neuroblastoma cell
proliferation [85]. NVP-BKM120, developed with a different profile of targets within the PI3K/mTOR
family, also inhibited cell proliferation in a variety of tumor cells, but preferentially inhibited tumor
cells with PIK3CA oncogenic mutations [86]. This mutation is rare in neuroblastoma; Dam et al.
found PIK3CA mutations in only 2.9% of 69 human neuroblastoma samples [87], limiting its utility
for neuroblastoma. Finally, GDC-0980, has been shown to decrease cell proliferation in a variety of
adult cancer cell lines, but has not been studied in neuroblastoma [88]. All of these dual PI3K/mTOR
inhibitors are in various stages of clinical trials.

Another mechanism to circumvent the feedback loops that occur with mTOR inhibition is targeting
the AKT protein upstream from mTOR. MK-2206 is an AKT inhibitor that has been shown to inhibit
cell proliferation in neuroblastoma cells and inhibit tumor growth and increase survival in mice
bearing xenograft neuroblastoma tumors [89]. A phase I trial of MK-2206 that included 3 children
with neuroblastoma found that the drug was well-tolerated, but there were no objective responses or
prolonged stabilization of disease [90]. Perifosine, an AKT inhibitor that also inhibits the ERK and JNK
pathways [91,92], decreased neuroblastoma cell proliferation, decreased tumor growth, and increased
survival in mice bearing neuroblastoma xenografts [93]. Perifosine is currently in phase I trials in
pediatric solid tumors.

RET is a receptor tyrosine kinase required for normal development of the nervous system that
has been found to be expressed in most neuroblastomas and overexpressed in some [94]. Upon
addition of glial cell line-derived neurotrophic factor (GDNF), a growth factor and ligand for RET that
neuroblastoma cells secrete, cell proliferation was stimulated in non-adherent neuroblastoma cells but
not in adherent cells. These findings indicated that RET/GDNF played a role in cell proliferation in
neuroblastoma [95]. Additionally, a RET-overexpressing transgenic mouse spontaneously developed
neuroblastoma [96]. Vandetanib/ZD6474 inhibits activation of RET and was found to decrease
neuroblastoma cell viability and proliferation and inhibit growth in neuroblastoma xenografts [97,98].

Another receptor tyrosine kinase implicated in neuroblastoma is CD117, also known as C-KIT
and mast/stem cell growth factor receptor. CD117 has been correlated with both favorable and
unfavorable tumors [99,100]. Vitali et al. found that 13% of neuroblastomas expressed CD117 and 23%
expressed its ligand, stem cell factor (SCF), and MYCN-amplified tumors were more likely to express
CD117 and SCF than non-amplified tumors. CD117 stimulation actively promoted cell proliferation
in neuroblastoma [100]. Another group showed that 45% of human tumor samples simultaneously
expressed both CD117 and SCF [101]. Imatinib, a selective inhibitor of tyrosine kinases including
CD117, has been demonstrated to inhibit proliferation in neuroblastoma cells [100]. Additionally, in a
murine xenograft model, animals treated with imatinib developed smaller tumors than controls [102].
The concentration of imatinib required to achieve growth inhibition in neuroblastoma was higher than
that required to inhibit CD117 activation indicating that there was an additional mechanism of action.
In neuroblastoma cells, imatinib was also found to inhibit C-ABL, a tyrosine kinase implicated in
multiple cancers due to its role in cell differentiation, proliferation, and adhesion. Imantinib-induced
C-ABL inhibition yielded a dose-dependent decrease in neuroblastoma cell proliferation [103]. A phase
II clinical trial studying imatinib in refractory and relapsing metastatic neuroblastoma found that it was
well-tolerated and effective with 21% showing a complete response and 8% a partial response [104].

Neuroblastoma cells have been shown to have significantly higher activity of the kinase C-SRC
than normal human fibroblasts or glioblastoma cells [105]. Expression of C-SRC is correlated with
a favorable prognosis and is inversely correlated with MYCN amplification [106]. Investigators
have targeted C-SRC in an attempt to treat neuroblastoma. The C-SRC inhibitor PP2 and the
dual C-SRC/ABL inhibitor dasatinib decreased cell proliferation in neuroblastoma cells [107,108].
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As selective C-SRC inhibitors continue to be developed, their anti-proliferative activity improves,
making them a potential treatment for neuroblastoma [109].

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is regulated by N-MYC and is
more frequently expressed in aggressive forms of neuroblastoma [110]. When phosphorylated, FAK
binds to SRC and activates downstream signaling pathways that control cell proliferation, viability,
motility, and survival [111–114]. Inhibition of FAK has been achieved using a variety of methods.
By using adenoviral gene transduction of the carboxyl-terminal domain of FAK (AdFAK-CD), FAK
phosphorylation was decreased [115] and AdFAK-CD decreased neuroblastoma cell proliferation, with
a larger proportional decrease in proliferation of MYCN-amplified cells than MCYN non-amplified
cells [116]. siRNA has also been used to decrease expression of FAK. In neuroblastoma cells, treatment
with siFAK led to decreased cell survival, with a larger effect in MYCN-amplified cell lines [117].
Small molecule inhibitors of FAK include NVP-TAE226, 1,2,4,5-benzenetetramine tetrahydrochloride
(Y15), and PF-04554878. Treatment of neuroblastoma cells with NVP-TAE226 resulted in a decrease
in cell viability [118]. Y15 has been demonstrated to decrease viability in neuroblastoma cells and to
inhibit neuroblastoma tumor growth in mouse xenograft models [119]. A phase I clinical trial studying
the small molecular FAK inhibitor, PF-04554878, in adults with advanced solid tumors has been
completed and others are currently in progress. Another approach to inhibiting FAK is by interrupting
its interaction with vascular endothelial growth factor receptor 3 (VEGFR-3) using a small molecular
inhibitor, chloropyramine hydrochloride (C4). Treatment of neuroblastoma cells with C4 decreased cell
viability and treatment of mouse xenografts with C4 decreased neuroblastoma tumor growth [120].

Aurora kinase A is a serine/threonine kinase that has been associated with poor prognosis
in neuroblastoma [121]. Aurora kinase A stabilizes N-MYC, thereby increasing neuroblastoma
cell proliferation [122,123]. Additionally, Aurora kinase A activity increased VEGF secretion and
angiogenesis. Inhibition of Aurora A kinase with the small molecule alisertib/MLN8237 decreased cell
proliferation and inhibited anchorage-independent growth in neuroblastoma cells [124]. A structurally
similar inhibitor, MLN8054, was shown to inhibit proliferation in neuroblastoma cells and both
MLN8054 and alisertib/MLN8237 led to complete response rates of about 50% in a transgenic
TH-MYCN mouse model of neuroblastoma [123]. In a phase I/II clinical trial for MLN8237 in children
with refractory/recurrent solid tumors 2 of 11 children with neuroblastoma attained prolonged
stable disease [125]. Aurora kinase A inhibitors offer a promising new direction for treatment of
neuroblastoma, particularly in MYCN-amplified neuroblastomas given the relationship between
Aurora kinase A and N-MYC.

Aurora kinase B is a related serine/threonine kinase that plays a role in the attachment of the
mitotic spindle to the centromere during mitosis. Patients with high Aurora kinase B expression
have a worse prognosis than those with low/normal expression [126]. Aurora kinase B does not
stabilize N-MYC and does not affect N-MYC levels [123]. Conversely, it is transcriptionally regulated
by N-MYC. Barasertib is a specific Aurora kinase B inhibitor which has been shown to decrease
cell growth in neuroblastoma cell lines which are MYCN-amplified and have wild-type P53 [126].
However, MYCN-unamplified and mutant P53 cell lines were less sensitive to the drug. Using the
IMR5 neuroblastoma cell line, which is MYCN-amplified and has wild-type P53, barasertib induced
cell cycle arrest at G2/M. In a xenograft model with the same cell line, barasertib decreased tumor
growth. Barasertib has not yet been examined in pediatric clinical trials. CCT137690, an inhibitor of
both Aurora kinase A and B, inhibited cell proliferation in MYCN-amplified neuroblastoma cells and
tumor growth in MYCN-driven transgenic tumors in vivo [127].

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase expressed in the developing
nervous system [128]. Oncogenic mutations in the ALK gene play a role in neuroblastoma pathogenesis
and are highly correlated with MYCN amplification [129]. Mutant ALK in neuroblastoma has
increased kinase activity compared to wild-type ALK. Using RNA interference (RNAi) to knock
down ALK in neuroblastoma cells harboring mutant ALK resulted in decreased cell proliferation.
Crizotinib/PF-02341066 is a small molecule inhibitor targeting ALK and other receptor tyrosine
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kinases, MET and ROS1, that decreased proliferation in neuroblastoma cell lines with abnormal ALK,
particularly those with the R1275Q mutation [130]. In mice with neuroblastoma xenografts containing
R1275Q-ALK, crizotinib caused tumor regression within three weeks and complete regression over
the fourth week. Crizotinib is FDA-approved for treatment of non-small cell lung cancer. It has also
been examined in a phase I trial in pediatric patients with refractory solid tumors including 34 patients
with neuroblastoma. Crizotinib was well-tolerated with two of the 34 patients with neuroblastoma
experiencing complete response and eight experiencing stable disease [131]. Multiple clinical trials are
underway examining crizotinib in neuroblastoma.

Sorafenib is a multi-kinase inhibitor targeting VEGFR, PDGFR, CD117, RAF, and RET [132]. It is
currently approved for treatment of renal cell carcinoma, hepatocellular carcinoma, and thyroid cancer in
adults. Sorafenib has been studied in neuroblastoma and was shown to decrease cell proliferation both
in vivo and in vitro with cell cycle arrest at the G1 checkpoint [133]. In the Pediatric Preclinical Test Program
in vitro and in vivo panels, which included 4 neuroblastoma cell lines and 5 neuroblastoma xenografts,
sorafenib was shown to decrease growth in the majority of neuroblastoma samples [134]. A phase I
pediatric study revealed similar toxicities to those seen in adults, but no further clinical studies have been
completed [135]. A summary of targets and drugs discussed in this section is available in Table 2.

Table 2. Kinases affecting proliferation in neuroblastoma and their targeted drugs. Mechanism of
action for each drug and stage of development in neuroblastoma is listed along with references.

Target Protein Drug Mechanism of Action Stage of
Development References

MEK U0126 Binds/inhibits MEK In vitro [67]

Trametinib Binds/inhibits MEK In vitro [66]

Cobimetinib Binds/inhibits MEK In vitro [66]

Binimetinib Binds/inhibits MEK In vitro [66]

mTOR Rapamycin Binds FKBP12 inhibits mTOR Clinical trial [68,69,73,74]

CCI-
779/Temsirolimus Binds FKBP12 inhibits mTOR Clinical trial [68,73,75]

Everolimus Binds FKBP12 inhibits mTOR Clinical trial [73,76]

Ridaforolimus Binds FKBP12 inhibits mTOR Clinical trial [73,77]

INK128/MLN0128
ATP-competitive
mTOR inhibitor In vivo [78,79]

PI3K/mTOR NVP-BEZ235 Inhibits PI3K and mTOR In vivo [83,84]

SF1126 Reversibly inhibits PI3K
and mTOR Clinical trial [85,136]

NVP-BKM120 Inhibits PI3K and mTOR in
ATP-competitive manner In vitro [86]

AKT MK-2206 Inhibits AKT via
allosteric binding Clinical trial [89,90]

Perifosine
Binds AKT, inhibiting

translocation to the
plasma membrane

Clinical trial [93,137]

RET Vandetanib/ZD6474 Inhibits activation of RET In vivo [97,98]

CD117/ABL/PDGFR Imatinib Binds active site and inhibits
kinases Clinical trial [100,102–104]

C-SRC PP2
Binds and acts as a mixed
competitive inhibitor for

C-SRC
In vitro [107]

C-SRC/ABL Dasatinib Binds adenine pocket inhibits
C-SRC and ABL Clinical trial [108,138]

FAK AdFAK-CD
Adenoviral gene transduction

of the carboxyl-terminal
domain of FAK

In vitro [115,116]

siFAK Double-stranded RNA cleaves
FAK mRNA In vitro [117]
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Table 2. Cont.

Target Protein Drug Mechanism of Action Stage of
Development References

NVP-TAE226 Inhibits phosphorylation
of FAK In vivo [118,139]

Y15 Inhibits phosphorylation
of FAK In vivo [119]

Chloropyramine
hydrochloride/C4

Inhibits interaction between
FAK and VEGFR-3 In vivo [120]

Aurora kinase A Alisertib/MLN8237 Binds/inhibits Aurora
kinase A Clinical trial [123,125]

MLN8054 Binds/inhibits Aurora
kinase A In vivo [123]

Aurora kinase B Barasertib Binds ATP pocket/inhibits
Aurora kinase B In vivo [126]

Aurora kinase A/B CCT137690 Binds/inhibits Aurora kinase
A and B In vivo [127]

ALK siALK Double-stranded RNA cleaves
ALK mRNA In vitro [129]

ALK/MET/ROS1 Crizotinib/PF-
02341066

Binds/inhibits ALK, MET,
and ROS1 Clinical trial [130,131]

VEGFR/PDGFR/
CD117/RAF/RET Sorafenib Binds/inhibits VEGFR,

PDGFR, CD117, RAF, and RET Clinical trial [132–135]

5. Neuroblastoma and Cell Cycle Checkpoints

In normal cells, the cell cycle is highly regulated at checkpoints by multiple protein
families—cyclins, cyclin dependent kinases (CDKs), CDK inhibitors (CKIs), and tumor suppressors
including P53 and RB [140]. These proteins function as accelerators or brakes to advance the cell cycle
to the next phase or halt the cycle at the checkpoint.

P53 regulates the G1/S and G2/M checkpoints in the cell cycle. It has been demonstrated that
tumor cells lacking normal P53 function continue through the G1/S checkpoint. P53 is a transcription
factor for WAF1/CIP1/P21, a CKI [141]. By upregulating P21 expression, CDKs are inhibited, leading
to arrest of the cell cycle and therefore a decrease in cell proliferation. In some neuroblastoma cells
treated with nutlin-3, a P53 activator, induction of P21 and arrest of the cell cycle arrest at the G1/S
checkpoint was observed [65], but this effect was cell line dependent.

Another tumor suppressor, RB, has been demonstrated to play a role in neuroblastoma. It acts as
a regulator of the G1/S checkpoint, restricting cell cycle progression and thus cell proliferation [142].
Unphosphorylated RB remains bound to the transcription factor E2F. RB phosphorylation leads to the
release of E2F, which activates a multitude of proto-oncogenes and DNA polymerase to start the replication
process [143,144]. In a study examining the bone marrow of 4 children with neuroblastoma, only one
child had a mutation in the RB protein and that child was the only one with bone marrow infiltration
who died, correlating with advanced disease [145]. RB has been indirectly targeted in neuroblastoma
cells using difluoromethylornithine (DFMO). DFMO decreased RB phosphorylation in MYCN-amplified
neuroblastoma cells and significantly decreased cell growth, likely mediated by the protein P27 [146].
To our knowledge, no drugs have been developed specifically targeting RB in neuroblastoma.

RB phosphorylation is regulated by CDK4 and CDK6. CDK4/6 mRNA expression in
human neuroblastoma tissue was determined to be high compared to normal tissue [147]. CDK4
expression correlated with a poor prognosis and CDK6 expression correlated with undifferentiated
histology, also correlating with poor prognosis. The specific CDK4/6 inhibitor, ribociclib/LEE011,
reduced proliferation in MYCN-amplified neuroblastoma in vitro and decreased growth of murine
neuroblastoma xenografts [148]. A phase I clinical trial examining LEE011 in children with malignant
rhabdoid tumors and neuroblastoma is underway. Palbociclib/PD-0332991 is a CKI targeting
CDK4/6 that is FDA-approved for breast cancer and has been demonstrated to effectively decrease
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phosphorylation of RB, causing a potent anti-proliferative effect in a variety of adult tumor cells [149].
Palbociclib has recently been found to reduce the growth of neuroblastoma cells in vitro, but has not
yet been studied in neuroblastoma in vivo or in clinical trials [150].

While DFMO indirectly targets RB, it directly inhibits ornithine decarboxylase (ODC), the
rate-limiting enzyme in polyamine biosynthesis [146,151,152]. Polyamines are critical for cell survival;
ODC along with an increase in polyamines has been seen in a variety of cancers [153,154]. A decrease
in polyamines, such as that caused by DFMO, initiates cell cycle arrest or apoptosis whereas an increase
in polyamines allows the cell to continue through the cell cycle [146]. The gene expressing ODC, ODC1,
is activated by N-MYC and is upregulated in MYCN-amplified human neuroblastomas [155,156].
Even some tumors without MYCN amplification had elevated ODC mRNA levels. High ODC
expression, regardless of MYCN status, correlates with poor survival [156,157]. The use of DFMO
in MYCN-amplified neuroblastoma cells has been demonstrated to deplete polyamines, impair
proliferation, and induce G1 cell cycle arrest without apoptosis [146,158]. The cell cycle arrest
was associated with an increase in the P27Kip1 cyclin-dependent kinase inhibitor. Treatment of
neuroblastoma-prone genetically engineered TH-MYCN mice with DFMO suppressed neuroblastoma
development [158]. A phase I trial of DFMO in children with relapsed/refractory neuroblastoma found
that it was safe and tolerated well [159]. A certain subset of patients—those with a particular single
nucleotide polymorphism in ODC1 termed the minor T-allele at rs2302616—had a better response to
therapy, indicating that DFMO may be useful as a targeted therapy.

Aside from CDK4 and 6, other CDKs have been examined as potential targets for neuroblastoma
treatment given their importance in cell proliferation through regulation of the cell cycle. SNS-032,
designed as a CDK2 inhibitor, also inhibits CDK7 and 9 and causes G2 cell cycle arrest [160,161]. CDK2
is necessary for progression through the G1/S checkpoint through its interaction with cyclin E and is
necessary for progression through the S phase through its interaction with cycle A [162,163]. CDK7 and 9
play critical roles in transcription initiation and elongation and expression of both was decreased with
treatment of UKF-NB-3 and IMR-32 neuroblastoma cells with SNS-032 [164]. However, most of the drug’s
effects were due to cytotoxicity as opposed to a decrease in proliferation. CDK2 has also been targeted
using miRNA and siRNA. miR-885-5p is a miRNA that downregulates CDK2. Both miR-885-5p and
siCDK2 inhibited neuroblastoma proliferation in a number of cell lines [165]. A specific inhibitor targeting
CDK7, THZ1, has also been examined in neuroblastoma. In MYCN-driven neuroblastoma cells, THZ1 led
to cell cycle arrest. Additionally, in MYCN-amplified neuroblastoma xenograft tumors in mice, cell cycle
arrest and a decrease in markers associated with transcription were observed [166].

The genes encoding multiple proteins involved at cell cycle checkpoints are targets for a group
of enzymes that remove acetylate groups from histones, termed histone deacetylases (HDACs).
The balance between histone acetylation and deacetylation determines chromatin configuration,
which determines the amount of gene transcription that can occur. Histone acetylation causes the
chromatin to have an open configuration, allowing for transcription, whereas histone deacetylation
compacts chromatin and blocks transcription. Genes that are repressed by HDACs ore often tumor
suppressors, cell-cycle inhibitors, and inducers of apoptosis. A variety of HDAC inhibitors have been
developed as potential treatments for cancer. In the Pediatric Preclinical Testing Program, vorinostat,
a nonselective HDAC inhibitor, yielded significant growth inhibition in four neuroblastoma cell
lines [167]. However, in neuroblastoma xenografts, vorinostat treatment did not lead to any objective
responses. Other nonselective HDAC inhibitors—sodium butyrate, suberoylanilide hydroxamic acid,
and trichostatin A—induced cell cycle arrest in the G2/M phase in neuroblastoma cells [168]. BL1521
is another HDAC inhibitor that caused G1 arrest along with an increase in the CKI P21, decreased
CDK4, and RB hypophosphorylation [169,170]. The expression of HDAC8, a specific protein within
the family, correlates with advanced disease and poor outcome in neuroblastoma [171]. By knocking
down HDAC8 using siRNA, neuroblastoma cell proliferation decreased. The small molecule inhibitor
of HDAC8, PCI-48012, decreased cell proliferation in neuroblastoma both in vitro and in vivo [172].
HDAC5 also promotes neuroblastoma cell proliferation and has been targeting using siRNA, yielding
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a decrease in proliferation [173]. However, no small molecule inhibitor specific for HDAC5 has
been used in neuroblastoma. Other specific HDAC inhibitors also have efficacy in neuroblastoma,
but through mechanisms other than a change in cell proliferation—HDAC1 and HDAC2 inhibitors
induce differentiation, HDAC6 inhibitors decrease migration and invasion, and HDAC10 inhibitors
decrease cell survival by autophagy [174–176]. Vorinostat has been examined in a phase I clinical
trial in children with recurrent solid tumors, including two with neuroblastoma, and found to be
well-tolerated [177]. None of the patients had objective responses to vorinostat alone, but one of the
patients with neuroblastoma had a complete response to a combination of vorinostat and 13-cis retinoic
acid. A number of other HDAC inhibitors are currently in pediatric clinical trials.

A kinome screen with RNAi found that loss of checkpoint kinase 1 (CHK1) was cytotoxic with ě50%
growth inhibition in neuroblastoma cells but no inhibition in normal somatic cells [178]. Given that it
only decreases growth in the tumor cells, this is a promising therapeutic target. CHK1 regulates the G1/S
and G2/M checkpoints and is expressed at a significantly higher level in MYCN-amplified compared to
MYCN-unamplified neuroblastoma [178]. The small molecule checkpoint kinase inhibitors SB218078 and
TCS2312 decreased proliferation of neuroblastoma cells. PF-00477736 is another CHK1 inhibitor that has
been demonstrated to decrease tumor growth in mouse neuroblastoma xenografts. A phase I clinical trial
was begun for PF-00477736, but was terminated for business reasons. Multiple clinical trials examining
the CHK1 inhibitor LY2606368 in adults are in progress, but this drug has not yet been examined in
neuroblastoma. A summary of drugs discussed in this section is available in Table 3.

Table 3. Regulators of the cell cycle affecting proliferation in neuroblastoma and the drugs that target
them. Mechanism of action for each drug and stage of development in neuroblastoma is listed along
with references.

Target
Protein Drug Mechanism of Action Stage of

Development References

ODC DFMO Binds/inhibits ODC irreversibly Clinical trial [146,151,152,155–159]

CDK4/6 Ribociclib/LEE011 Inhibits CDK4 and 6 Clinical trial [148]

Palbociclib/PD-0332991 Inhibits CDK4 and 6 In vitro [149,150]

CDK2/7/9 SNS-032 Inhibits CDK2, 7 and 9 In vitro [160,161,164]

CDK2 siCDK2 Double-stranded RNA cleaves
CDK2 mRNA In vitro [165]

miR-885-5p Single-stranded RNA inhibits
translation of CDK2 mRNA In vitro [165]

CDK7 THZ1 Inhibits CDK7 In vivo [166]

Nonselective
HDACs

Vorinostat Nonselectively inhibits HDACs Clinical trial [167,177]

Sodium butyrate Nonselectively inhibits HDACs In vitro [168]

Suberoylanilide
hydroxamic acid Nonselectively inhibits HDACs In vitro [168]

Trichostatin A Nonselectively inhibits HDACs In vivo [168,179]

BL1521 Nonselectively inhibits HDACs In vitro [169,170]

HDAC8 siHDAC8 Double-stranded RNA cleaves
HDAC8 mRNA In vivo [171]

PCI-48012 Binds metal binding site/inhibits
HDAC8 In vivo [172]

HDAC5 siHDAC5 Double-stranded RNA cleaves
HDAC5 mRNA In vivo [173]

CHK1 SB218078 Binds ATP pocket/inhibits CHK1
competitively In vitro [178]

TCS2312 Binds ATP pocket/inhibits CHK1
competitively In vitro [178]

PF-00477736 Binds ATP pocket/inhibits CHK1
competitively In vivo [178]
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6. Conclusions

In conclusion, transcription factors, kinases, and regulators of cell cycle checkpoints play a
significant role in cell proliferation in neuroblastoma. Despite the poor prognosis associated with
neuroblastoma, there is vast potential for therapeutic targets, many of which are still in the early stages
of examination and development, and many more of which have yet to be discovered. These novel
therapies have the potential to transform the treatment of neuroblastoma in the future.
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