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Most small molecule drugs interact with unintended, often unknown, biological targets

and these off-target interactions may lead to both preclinical and clinical toxic events.

Undesired off-target interactions are often not detected using current drug discovery

assays, such as experimental polypharmacological screens. Thus, improvement in the

early identification of off-target interactions represents an opportunity to reduce safety-

related attrition rates during preclinical and clinical development. In order to better identify

potential off-target interactions that could be linked to predictable safety issues, a novel

computational approach to predict safety-relevant interactions currently not covered was

designed and evaluated. These analyses, termed Off-Target Safety Assessment (OTSA),

cover more than 7,000 targets (∼35% of the proteome) and > 2,46,704 preclinical

and clinical alerts (as of January 20, 2019). The approach described herein exploits a

highly curated training set of >1 million compounds (tracking >20 million compound-

structure activity relationship/SAR data points) with known in vitro activities derived from

patents, journals, and publicly available databases. This computational process was used

to predict both the primary and secondary pharmacological activities for a selection of

857 diverse small molecule drugs for which extensive secondary pharmacology data

are readily available (456 discontinued and 401 FDA approved). The OTSA process

predicted a total of 7,990 interactions for these 857molecules. Of these, 3,923 and 4,067

possible high-scoring interactions were predicted for the discontinued and approved

drugs, respectively, translating to an average of 9.3 interactions per drug. The OTSA

process correctly identified the known pharmacological targets for >70% of these drugs,

but also predicted a significant number of off-targets that may provide additional insight

into observed in vivo effects. About 51.5% (2,025) and 22% (900) of these predicted high-

scoring interactions have not previously been reported for the discontinued and approved

drugs, respectively, and these may have a potential for repurposing efforts. Moreover,

for both drug categories, higher promiscuity was observed for compounds with a MW

range of 300 to 500, TPSA of ∼200, and clogP ≥7. This computation also revealed

significantly lower promiscuity (i.e., number of confirmed off-targets) for compounds
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with MW > 700 and MW<200 for both categories. In addition, 15 internal small

molecules with known off-target interactions were evaluated. For these compounds,

the OTSA framework not only captured about 56.8% of in vitro confirmed off-target

interactions, but also identified the right pharmacological targets for 14 compounds as

one of the top scoring targets. In conclusion, the OTSA process demonstrates good

predictive performance characteristics and represents an additional tool with utility during

the lead optimization stage of the drug discovery process. Additionally, the computed

physiochemical properties such as clogP (i.e., lipophilicity), molecular weight, pKa and

logS (i.e., solubility) were found to be statistically different between the approved and

discontinued drugs, but the internal compounds were close to the approved drugs space

in most part.

Keywords: Off-targets, machine learning, toxicology, pocket search, gene expression, secondary pharmacology

INTRODUCTION

The drug discovery process for small molecules typically
starts with large screening campaigns using institutional or
commercial compound collections in order to identify chemical
matter for lead optimization efforts (Drews, 2000; Bleicher
et al., 2003). The past few years have witnessed significant
advances in drug discovery technologies for the identification
of novel lead compounds against a wide range of therapeutic
targets including chemical matter to disrupt protein-protein
interactions, which is notoriously difficult to design (Dang et al.,
2017; Lai and Crews, 2017; Neri and Lerner, 2018). Among
these advances, two complementary computational approaches
have been developed including (1) a protein structure-based
(target-centric) approach, which utilizes the knowledge of the
three-dimensional structure of the protein as well as its ligand
binding pocket features (Andricopulo et al., 2008; Lionta et al.,
2014; Sarkar and Goswami, 2018); and (2) a ligand-based
(ligand-centric) approach, which relies exclusively on the
variation of biological response with diverse chemical structures,
and comprises Pharmacophore and Quantitative Structure-
Activity Relationship (QSAR) approaches (Brown, 1998;
Basith et al., 2018).

Small molecule drugs have been shown to bind on average
to a minimum of 6-11 distinct targets excluding their intended
pharmacological target (Metz and Hajduk, 2010; Peón et al.,
2017). These additional targets are typically referred to as off-
targets and interactions with these targets can be potentially
adverse in nature (Bantscheff et al., 2009; Scheiber et al., 2009).
The off-target interactions are generally weaker in affinity than
those with the intended pharmacological target, but may be
relevant in cases of higher cellular expression of the off-target
or high systemic exposure, such as in preclinical toxicity studies
(where higher doses are interrogated to define the toxic profile
of the compound), clinical mis-dosings, accidental or intentional
overdose, drug-drug interactions (which may lead to higher
systemic exposures), or other unanticipated individual variations
(which also can lead to higher systemic exposures) (Whitebread
et al., 2016). The number of off-targets for a small molecule is
probably always significantly higher than what is being reported

at the time of a marketing application because pharmaceutical
companies profile compounds using a predefined (restricted)
non-overlapping target panel consisting of a limited set of targets
(typically <100) (Lynch et al., 2017). An Innovation and Quality
(IQ) consortium survey conducted by the Drusafe leadership
group indicated that preclinical toxicities represent more than
one third of the causes for drug safety-related attrition in
pharmaceutical research and development (R&D). Notably, this
survey indicated that the top reason for drug attrition was non-
clinical toxicity due to off-target interactions (Ralston, 2017).

Consequently, an improvement in the prediction of off-target
interactions represents an opportunity to improve the probability
of success through a decreased preclinical safety-related attrition
rate. Therefore, an integrated computational process that
predicts potential off-targets and associated outcomes for small
molecules was developed. This computational framework is
easily extendable to facilitate the interoperability of new and
existing off-target prediction methods and is programmable to
automate repetitive and systematic computations. To evaluate
this integrated computational framework, the methods were
tested using carefully selected discontinued and Food and Drug
Administration (FDA) approved drugs to assess whether they
would predict reported known interactions. In addition, 15
internal molecules with well-characterized off-target interactions
were evaluated.

METHODS

OTSA Framework
The overall OTSA computational process is described in
Figure 1. This computational framework uses hierarchical
computational methods including simple two-dimensional (2-
D) chemical similarity, Similarity Ensemble Approach (SEA),
local QSAR (Quantitative Structure Activity Relationship), three-
dimensional (3-D) surface pocket similarity search, automated
molecular docking and machine learning algorithms such as
artificial Neural Network (aNN), Support Vector Machine
(SVM), and Random Forest (RF). In practice, the OTSA process
predicts in vitro and in vivo testable off-target binding targets that
may be adverse as well as therapeutic.
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FIGURE 1 | Outline of the OTSA computational screening of small molecule drugs using multiple computational models. By assessing drugs and metabolites with

multiple tools simultaneously, safety scientists can screen in silico beyond current off-target binding and kinase screening panels. Both 2-D (six methods) and 3-D

(3Decicion) methods are used to produce a list of potential off-target interactions. The predicted targets with computed scores >0.6 and above in at least 3 out of the

6 prediction methods will be moved to Step 3. These are then compared with the “body atlas” GTEX (human) and internal RNA-Seq data from untreated species (rat,

monkey and mouse) to predict potential target tissues (Step 3). In addition, outcome prediction tools are used to predict the consequences of predicted interactions

(Step 4). In step 5, an OTSA comprehensive off-target pharmacology report is generated. Off-target interactions considered to be of potential consequence are

verified and evaluated using appropriate in vitro or in vivo models. In the current manuscript, for the approved and discontinued drugs as well as our 15 internal

compounds, only steps 1 and 2 were used because of throughput limitations. Steps 3 to 5 are used to contextualize the off-target prediction and predict potential

target tissues as well as biological outcomes.

OTSA Workflow
The full OTSA workflow is comprised of a number of
2-D target prediction methods and 3-D protein structure-
based approaches including 3Decision, a web-based protein
structure application utilizing public as well as proprietary
structures, co-developed by AbbVie, Inc. (North Chicago,
IL) and Discngine S.A.S (Paris, France). The predicted off-
targets from these orthogonal target prediction methods are
ranked using normalized pseudo-score, which is the sum of
the linear combination of scores from the different ligand-
centric methods. Pseudo-score of 1.00 reflects certainty: it is
assigned when the test molecule is present in the training
set with that mechanism of action (MoA) or if most of the
methods predict a particular target as a likely binding partner.
In order to choose reasonable pseudo-score cut-off values,
15 well-studied marketed kinase inhibitors were used as a
training test. The predicted score values for these inhibitors
were analyzed within the context of available pharmacological
as well as other off-target information. Most of the known off-
targets, as well as the pharmacological target were predicted
with a score value ≥0.6 (Table 1). Thus, pseudo-score of ≥0.6
was set as significant for the present off-target analysis for

approved, discontinued and internal compounds. The score
from the 3Decision approach is not considered in the score
normalization, because 3Decision assesses each putative protein-
ligand complex using a combination of geometric and energy
terms that includes geometrical features such as shape, size,
binding site length, width, depth, hydrophobic patches, nature
of amino acid residues, number of hydrogen bond donor and
acceptors and interaction energy. In a typical OTSA process, the
3Decision results help to further confirm the results from the
2-D methodologies.

The key steps involved in the off-target prediction workflow
are described below:

Step 1: Potential Phase I and Phase II metabolites are
predicted for the small molecule of interest. If in vitrometabolite
profiling is available, these data are combined with the predicted
metabolites to create a Meta-List. Metasite (Molecular Discovery,
Hertfordshire, United Kingdom), Bioclipse (Spjuth et al., 2007),
and the metabolite prediction module of the Clarity suite
(Chemotargets, Barcelona, Spain) were used for prediction of
phase I and II metabolites. The bioclipse tool can identify
possible sites of metabolism in the preclinical species including
rat and dog.
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TABLE 1 | Selected kinase inhibitors used to establish the pseudo-score

threshold.

Drug Primary target(s) Predicted score(s)

Dasatinib Bcr-Abl, KIT, Src, Ephrin receptor 0.86, 0.76, 0.6, 0.81

Ponatinib Bcr-Abl, Src 0.64, 0.71

Bosutinib Bcr-Abl, Src 0.64, 0.89

Pazopanib KIT, FGFR, VEGFR1, PDGFR 0.78, 0.71, 0.85, 0.78

Lapatinib EGFR 0.86

Regorafenib Tie 0.86

Ibrutinib BTK 0.89

Gefitinib EGFR 0.86

Ruxolitinib JAK1, JAK2 0.85, 0.85

Nilotinib Bcr-Abl 0.71

Sorafenib VEGF, PDGFR, B-Raf 0.81, 0.6, 0.71

Vemurafenib B-Raf 0.6

Sunitinib VEGFR, PDGFR, and other Tyr kinases 0.6, 0.78

Imatinib Tyrosine kinases –multiple; Abl, KIT 0.71, 0.6

Crizotinib MET, ALK 0.89, 0.85

Step 2: 2-D chemical similarity andmachine learningmethods
(MLMs) were used to profile potential targets for both the parent
molecule and its metabolites. The six different cheminformatic
methods used in the present study are Similarity Active
Subgraphs (SAS) (Willett, 2009), SAS based QSAR models (SAR)
(Gregori-Puigjané and Mestres, 2008), Molecular Similarity
(SIM) (Metz and Hajduk, 2010), SEA (Keiser et al., 2009),
and Cross Pharmacology Indices (XPI). The MLMs include
RF, aNN, and SVM (Kotsiantis et al., 2007). Below, each six
cheminformatic and 3-Dmethodology used in the OTSA process
are described.

i. SAS: Given a biological target, a SAS is defined as the simplest
active subgraph containing the minimum pharmacophoric
features needed (i.e., structural features) to achieve activity.
SAS screening allows for the identification of similar pairs
of molecules previously categorized as dissimilar, expanding
the applicability domain and improving prediction (Willett,
2009). In addition, the SAS methodology prevents the
identification of the vast majority of similarity artifacts and
reduces the impact of false positives, thereby improving
the precision.

ii. SAR: SAR facilitates the development of large-scale
QSAR models (Gregori-Puigjané and Mestres, 2008) for
each target family (e.g., kinases, GPCRs, ion channels,
proteases, transporters, immunoglobulin receptors,
and others).

iii. SIM: Three types of 2-D descriptors are used: (1)
Pharmacophoric Fragments (PHRAG), (2) Feature-Pair
Distributions (FPD), and (3) Shannon Entropy Descriptors
(SHED). PHRAG and FPD calculate the similarity between
two chemical structures that account for the overlapping
portion of their active profile (Mestres et al., 2006; Vidal
et al., 2011). SHED computes the similarity between two
molecules using Euclidian distance (Vidal and Mestres, 2010).
Thus, each descriptor characterizes chemical structures with a

different degree of randomness that complements each other
in terms of chemical structural similarity.

iv. SEA: The similarity ensemble approach was originally
developed by Keiser et al. (2009) to identify related proteins
based on the setwise chemical similarity among the ligands.
SEA has proven its ability to predict novel ligand-target
interactions using chemical structure information alone
(Lounkine et al., 2012).

v. MLM: More than a thousand high-quality aNN, SVM, and RF
classifiers were generated based on FPDmolecular descriptors
for qualitative binding prediction (Clarity Chemotargets,
Barcelona, Spain). MLM is a consensus score of the three
MLMs; if the consensus score results are positive, the
corresponding ligand-target link is considered to be likely.

vi. XPI: This public domain availability of cross-pharmacological
data for thousands of small molecules on many different
biological targets enables an in-depth cross-pharmacology
analysis (i.e., link small molecules to potential off-targets)
(Schmidt et al., 2014).

vii. The target profiling module in 3Decision utilizes a
combination of three different methods. These are 3-D
methods or receptor-based (e.g., pocket sequence, pocket
properties), 2-D methods or ligand-based (e.g., ligand
fingerprint, ChEMBL profiling) and lastly a protein-ligand
interaction pattern. For the current work, we focused on using
only 2-D methods. The first method is the ligand fingerprint
based, in which Extended-Connectivity Fingerprints (ECFP6)
was used to calculate tanimoto similarity between the probe
molecule and the ligands extracted from all public and
proprietary X-ray crystal structures. The second method
is the ligand pharmacophore which utilizes a fuzzy 3D
pharmacophore representation of ligands to compare a
pair of ligands. This method does take the conformation
of the ligands in account and calculates root mean square
deviation (RMSD) of superimposition. The third and
last method in the 2-D category is ChEMBL profiling,
which calculates the similarity between compounds from
various assays and the probe molecule. Users can choose
the sensitivity of these searches and ensure stringent or
loose searches.

The top scoring off-targets from this 3Decision (3-D
binding site comparison search approach) step are generally
combined with the 2-D predicted off-targets (six methods) to
create a master off-target list (component 2 of OTSA process).
This step was not used for the approved and discontinued
drug lists evaluated in the current study, as the 3Decison
method is not high-throughput and would not be practical for
such a large collection of molecules. However, for the internal
15 compounds, the 3-D method (3Decsision) was used in
addition to the 2-D methods.

Physicochemical Properties
Several studies indicated the importance of physicochemical
properties of small molecules in drug attrition and molecular
promiscuity. There have been many rules reported to minimize
toxic events, chemical promiscuity or optimize oral absorption,
including: (1) compounds satisfy both clogP [octanol to water
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partition coefficient) ≤3 and topological polar surface area
(TPSA) ≥ 75A

◦2 are said to be in full compliance with the
3/75 rule, Hughes et al. (2008); (2) compounds with less basicity
(pKa < 5) (Luker et al., 2011); (3) Lipinski’s rule of 5/Ro5
(i.e., molecular weight (MW) < 500, logP < 5, hydrogen bond
donors (HBD)< 5 and total number of hydrogen bond acceptors
(HBA) < 10] (Lipinski et al., 1997); (4) increased number of
chiral carbon atoms (sp3count) to increase molecular complexity
(Lovering et al., 2009); and (5) less rotatable bonds to decrease
entropic contribution (Veber et al., 2002). Generally, oral small
molecule compounds complying with these rules have a higher
probability of success. For approved, discontinued and internal
compounds, the Qikprop (Schrodinger, New York, NY) and
AIDEAS (Gupta, 2015) tools were used to compute many of these
physicochemical properties.

Testing Sets of Compounds
The discontinued and FDA approved drugs were obtained
from the Cortellis (Clarivate, Philadelphia, PA), Citeline (San
Diego, CA), and FDA (Silver spring, MD) databases. Overall,
457 discontinued and 401 approved drugs were selected based
on the consistency of curated data associated with each
compound in these databases. The BindDB database (Gilson
et al., 2015) has a collection of FDA approved drug candidates
together with associated in vitro data. Thus, this dataset was
used for our computational study. For discontinued drugs,
we used two data sources (Cortellis and Citeline—as of June
2018). A compound was selected for the current work as
discontinued only if both the Cortellis and Citeline databases
were in agreement. The diversity analysis was performed for
the combined dataset of 857 compounds (401 approved and
456 discontinued) using a t-distributed stochastic neighbor
embedding (t-SNE) machine learning approach (van der Maaten
and Hinton, 2008) to confirm the presence of diverse chemistry.
This provided 25 distinct clusters with a clean separation among
various chemotypes within the clusters (Figure 2). The t-SNE
machine learning method generates a mapping from a multi-
dimensional space (i.e., physicochemical property space) to a
2-D space (dim1 and dim2) and in this visualization only the
relative distance between molecules in 2-D projection (each
spheres) is meaningful. Additionally, 15 internal small molecules
were selected from AbbVie’s compound collection. These 15
compounds were selected based on the availability of sufficient
off-target data generated through traditional lead optimization
screens (i.e., secondary pharmacological counter-screens; CEREP
radioligand displacement assays) as well as diversity in terms of
chemistry and pharmacology. These compounds were screened
against a panel of 70 targets with radioligand displacement
assays (AbbVie 70 panel; Eurofins, Celle L’Evescault, France)
(Lynch et al., 2017). A target in this panel is considered as
a potential hit only if the displacement is >50% at a 10µM
compound concentration.

The 3-D structures of these compounds were generated
using the ligprep module within the Maestro tool (Schrödinger,
New York, NY). The processed molecules were then used to
compute a wide range of physicochemical properties using
AIDEAS (Gupta, 2015) and Qikprop (Schrödinger, New York,

FIGURE 2 | t-SNE method derived chemical diversity distributions for 857

drugs (401 approved and 456 discontinued): 25 clusters are shown. Only the

relative distance between molecules in 2-D projection (each spheres) is

meaningful. X (Dim1) and Y (Dim2) are the projections in 2-dimensions from a

multidimensional descriptor space. The discontinued and approved drugs are

shown in filled circle and diamond shapes, respectively.

NY) and visualized by Spotfire (TIBCO Inc., Palo Alto, CA).
MDCK and Caco-2 cell permeability values were computed
using Qikprop. All other physicochemical properties were
computed using the AIDEAS tool. Specifically, MW and
selected physicochemical properties (clogD, clogP, AlogP),
TPSA, pKa, number of rotatable bonds, number of sp3

carbon atoms, hydrogen bond acceptors and donors) were
evaluated, since these have been shown to be associated
with a higher degree of promiscuity (Blomme and Will,
2015). Finally, these molecules were processed through the
OTSA workflow to generate a list of likely off-targets in
order to compare with the off-targets identified in vitro for
these compounds.

Statistics
One-way analysis of variance (ANOVA) was performed
for each of the computed physicochemical properties of
the approved and discontinued drugs as well as the 15
internal discovery stage compounds. Additionally, Tukey
Honest Significant Difference (HSD) post-hoc tests (Six
et al., 2000) were applied to present multiple pairwise-
comparisons. For each comparison, a pairwise Welch’s
correction (Welch, 1951) was added, as this test does not
assume homogeneity of variances within the descriptors.
Pairwise comparisons using the non-parametric Wilcoxon
rank sum test (Wilcoxon et al., 1970) were also computed,
as this distribution free test does not assume the data
(i.e., descriptors) to follow a specific distribution pattern in
contrast to a standard ANOVA. Significance and differences
in the datasets were corrected for multiple testing based
on the Bonferroni-Hochberg procedure (Benjamini and
Hochberg, 1995) at a False Discovery Rate (FDR) of 5%. Data
distributions from these tests were visualized via violin plots
(Hintze and Nelson, 1998).
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TABLE 2 | Comparison of computed physicochemical properties for approved, discontinued, and discovery drugs.

Computed properties Approved drugs

(mean, median, SD*)

Discontinued drugs

(mean and median, SD)

AbbVie compounds

(mean, median, and SD)

p-value from ANOVA for approved

vs. discontinued drugs

Molecular Weight 339.3, 315.6, 120 379.8, 375.6, 104 352.6, 357.7, 67 0.0000005

logP 1.88, 2.38, 3.1 2.9, 3.2,2.7 3.9, 4.1, 1.5 0.00001

TPSA 71.3, 63.3, 44 73.9, 68.9, 42 62.2,60.7,17 0.64

HBA 4.3, 4.0, 2.8 4.5, 4, 2.7 4.2,5,1.4 0.05

HBD 1.72, 1,1.8 1.68, 1,1.8 1.4, 1, 1.2 0.88

No. rotatable bonds 5.1, 4.0, 4.0 5.49, 5.0, 3.0 4.2, 4, 1.3 0.11

sp3 count 7.99, 7.0, 6.1 7.66, 7.0, 4.9 5.8, 6.0, 1.8 0.62

Caco2 nm/s 980.10, 368.09, 1,325 773.7, 359.7, 1,108 1928.8, 1037.9, 1,648 0.98

MDCK nm/s 960.10, 312.90, 1,657 999.8, 327.7, 1,849 2686.9, 1332.2, 2,824 0.47

logS −2.08, −2.0, 2.2 −4.54, −4.5, 2.0 −5.2, −4.8, 1.7 0.000000001

SD*, standard deviation. The computed p-values from ANOVA between approved and discontinued drugs is listed in the last column.

RESULTS

Physicochemical Properties of the
Approved, Discontinued, and Internal
Molecules
The computed mean and median of the physicochemical
properties for the selected 456 discontinued, 401 FDA
approved, and 15 internal test compounds are compared in
Table 2. ANOVA statistical comparisons on each of these
properties for the approved and discontinued drug categories
are also summarized in Table 2, while the distributions of
each physicochemical property are visualized by violin plots
(Supplementary Data Sheets S3A–J). The computed clogD
(distribution coefficient), clogP, MW, logS (aqueous solubility),
number of rotatable bonds, pKa and number of hydrogen bond
acceptors were statistically different between the approved and
discontinued drugs in all the statistical tests including one-way
ANOVA and Welsh statistics (Supplementary Data Sheet S1).
ANOVA assumes equal variances within the descriptor space.
However, the computed Madin-Darby Canine Kidney (MDCK)
cell permeability, Caco2 cell permeability, topological polar
surface area (TPSA), acidic features, number of sp3 carbon
atoms, sum of hydrogen bond donor and acceptors were not
statistically different between the approved and discontinued
drugs. The computed sp3 carbon atom count, MW, HBD, HBA,
number of rotatable bonds, TPSA and pKa (basic as well as
acidic) of the 15 internal compounds were also not statistically
different from those of the FDA approved drugs.

Compounds with clogP ≤ 3 and TPSA ≥ 75A
◦2 are said

to be in full compliance with the 3/75 rule. A total of 120
(26%) and 121 (30%) of the discontinued and approved drugs
satisfied the 3/75 rule. To obtain a complete perspective on
these properties, compounds were further binned into the
following 4 categories: (1) TPSA ≥ 75 and clogP ≤ 3; (2)
TPSA <75 and clogP > 3; (3) TPSA ≥75 and clogP > 3; and
(4) TPSA <75 or clogP ≤3 (Table 3). Figure 3A compares the
TPSA and clogP distributions for approved and discontinued
drugs, reflecting somewhat similar distributions for these drug
categories. Figure 3B compares the clogP and MW space for

TABLE 3 | Approved and discontinued drugs within the 3/75 physicochemical

space.

3/75 Criteria Approved (%) Discontinued (%)

TPSA≥75; clogP≤3 30 26

TPSA<75;cLogP>3 28 37

TPSA≥75; cLogP>3 9.2 17

TPSA<75;cLogP≤3 31 37

TPSA≥75 39 43

cLogP≤3 62 44

Both clogP and TPSA criteria are met for only 30 and 26% of approved and discontinued

drugs, respectively.

approved and discontinued drugs, which also indicates a high
degree of similarity. In particular, in this space, 319 (76%) and
313 (70%) of the discontinued and approved drugs were in full
compliance with the Ro5 (i.e., no violation), indicating similar
distributions for both drug categories.

The higher the pKa value, the stronger the basicity associated
with a compound. Basic pKa values, primary, secondary and
tertiary amines generally carry a positive charge depending on
the atomic environment where they are located. Figure 3C shows
the computed pKa (reflective of basicity) value distribution for
the approved and discontinued compounds, indicating a slightly
greater number of compounds with a pKa value between 7
and 10 in both categories. In total, 29% (120) of approved and
32 % (147) of discontinued drugs have a pKa value between
7 and 10 at a physiological neutral pH value. The computed
adjusted p-value using ANOVA, statistical test for pKa between
the approved and discontinued drugs were 0.03, indicating that
the pKa values are statistically different between these drug
categories (Supplementary Data Sheet S1).

Taken together, these results overall show statistically
significant differences in certain computed physicochemical
properties such as basicity (pKa), MW, clogD (or clogP),
and logS between the approved and discontinued drugs. The
computed AlogP, clogD, sp3 count, and logS values were also
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FIGURE 3 | (A) Plot showing the clogP vs. TPSA distribution for approved

(blue) and discontinued drugs (red). (B) Plot showing the clogP vs. MW

distribution for approved (blue) and discontinued drugs (red). (C) Distribution of

pKa values of the discontinued and approved drugs. Computed pKa values

are shown on the X-axis. The Y-axis shows the number of compounds in each

pKa bin. Red and blue color bars indicate discontinued and approved drugs,

respectively.

statistically different between the FDA approved and the selected
15 internal compounds.

Predicted Off-target Interactions for the
Approved and Discontinued Drugs
The structural neighbors are the ones that share the structural
and pharmacophoric features with the query chemical structure.

Chemical similarity methods alone identified 28152 and 47868
compounds as structural neighbors (or chemically similar) to
the 401 approved and 456 discontinued drugs, respectively.
However, the inclusion of pharmacophoric and fingerprint
features (PHRAG, SHED and FPD fingerprint descriptors)
identified 55510 and 159210 compounds as nearest neighbors
from the database, indicating that these additional features
captured a greater number of similar compounds from the
integrated database for the target prediction process. The SIM,
SEA and XPI target prediction methods use 28152 and 47848
structural neighbors for prediction of targets for the approved
and discontinued drugs, respectively. The other 3 methods
(SAS, SAR, and MLM) use a larger number of chemically
similar compounds (55510 and 159210) for the approved and
discontinued drugs.

The OTSA results for the 857 compounds (401 approved
and 456 discontinued drugs) are summarized in Table 4. This
computational process resulted in a total of 7,990 high-scoring
interactions for all compounds, translating to 9.3 interactions
per compound. The predicted off-target interactions for the
approved and discontinued drugs indicated an average of 10.1
and 8.6 interactions per compound, respectively, suggesting
a higher promiscuity for the former compared to the latter.
Comparison of these predicted high-scoring interactions with
existing in vitro data showed that 22% (900) and 51.5% (2,025)
were new (i.e., not previously reported or not previously
confirmed) interactions for the approved and discontinued
drugs, respectively (Figure 4). In other words, 78 and 49% of
the predicted interactions for the approved and discontinued,
respectively, have been previously confirmed in vitro. Overall,
the OTSA process identified an average of 2 and 4 high-scoring
new interactions for the approved and discontinued drugs,
respectively. It should be noted that more than 90% of these new
interactions were predicted by at least by 4 orthogonal target
prediction approaches used in the OTSA process, suggesting a
high confidence of the prediction.

Further analysis on the predicted interactions of the approved
and discontinued drugs revealed that 27% (1,107 interactions)
and 12.8% (504 interactions), respectively, were part of the
training set, indicating that more than 73% of the interactions
(i.e., not present in the training set) were predicted using ≥3
target prediction methods (Supplementary Data Sheets S2A,B).
A pseudo score of 1 is assigned to the training set interactions.
Additionally, these training set interactions with a score of 1 were
not considered while evaluating the performance of the OTSA
predictions (Supplementary Data Sheets S2A,B).

Of the total 4,067 interactions for the approved drugs, 2,960
interactions were predicted, and the remaining 1,107 interactions
were part of the training set. Among these 2,960 predicted
interactions (i.e., 4,067–1,107), a total of 2,502 (84%), 2,319
(78%), 2,433 (82%), 2,124 (72%), 2,391 (81%), and 2,211 (74%)
interactions were predicted by SAS, SAR, SIM, SEA, MLM, and
XPI methods, respectively. Interestingly, 923 of 2,960 (i.e., 31%)
interactions were predicted by all the six methods. Of these, 718
and 205 are confirmed and new interactions, respectively.

Among the total of 3,923 interactions for discontinued drugs,
504 interactions are part of the training set. An additional analysis
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TABLE 4 | Summary of the predicted interactions for the approved drugs, discontinued drugs, and AbbVie compounds.

Drug status No. Drugs Total predicted interactions In vitro confirmed interaction New interactions (yet to be confirmed) Ave. interactions/drug

Approved 401 4,067 3,167 900 10.1

Discontinued 456 3,923 1,898 2,025 8.6

AbbVie 15 123 70 53 8.2

on the other remaining 3,419 interactions revealed that a total of
2,772 (81%), 2,653 (77%), 2,522 (73%), 2,369 (69%), 2,304 (67%),
and 2,437 (71%) interactions were predicted by SAS, SAR, SIM,
SEA, MLM, and XPI methods. All the six methods predicted a
total of 706 of 3,419 (i.e., 24%) interactions. Of these, 479 and 227
are confirmed and new interactions, respectively.

Supplementary Table S1 summarizes the number of
predicted interactions for the approved and discontinued
drugs from the different methods. For both the approved and
discontinued drugs, the SAS method performed slightly better
compared to the other methods in identifying greater number
of interactions (2502 of 2940 for approved and 2772 of 3419
for discontinued). The computed pseudo score range for these
predictions is 0.65–0.91 for the approved drugs and 0.68–0.94
for the discontinued drugs.

The analysis also showed that 600 predicted off-targets
were common to both the approved and discontinued drugs
(Figure 4), supporting that interaction with these off-targets may
not have played a major role in the termination of the latter.
Of these 600 common targets, 508 (84%) and 351 (58.5%) are
confirmed in vitro off-targets for the approved and discontinued
drugs, respectively.

Figures 5A,B compares the predicted off-targets for the
approved and discontinued drugs within the context of MW,
clogP, and TPSA, since these physicochemical descriptors have
been shown to be associated with a higher degree of promiscuity.
Interestingly, for both drug categories, higher promiscuity was
observed for compounds with a MW range of 300–500, TPSA of
∼200, and clogP≥7. This distribution also indicated significantly
lower promiscuity (i.e., number of off-targets) for compounds
with MW>700 and MW<200 for both categories, indicating
a range for these properties that are linked to specificity of
the molecules. Nevertheless, the computed physicochemical
properties did not provide any reasonable estimate of the
predicted number of off-targets or promiscuity.

Unique High-Scoring Off-Targets for the
Approved and Discontinued Drugs
Further data interrogation identified 325 and 286 high-scoring
predicted targets unique to the approved and discontinued
drugs, respectively. Importantly, ∼88% (285 out of 325 targets)
and ∼ 51% (146 out of 286 targets) of these interactions
for approved and discontinued drugs were confirmed in vitro.
Comparison of these key predicted off-targets of approved
and discontinued drugs indicated that certain cytochrome
p450 (CYP) isoforms(1A2,1A1,2D6,2A6,2C9), T, N, and L type
calcium channel voltage-dependent channels, sodium channels
subunit α isoforms (1–9), cyclin-dependent kinase (CDK)

FIGURE 4 | Summary of predicted high-scoring interactions for the approved

(n = 401) and discontinued (n = 457) drugs. The total predicted off-targets for

each category are shown in brown. The in vitro confirmed interactions are in

blue, while the novel yet to be confirmed interactions are in red.

isoforms (2, 5, 6, 8, 9), Phosphodiesterase 3 (PDE3), and hERG
K+ channel are common off-targets for the discontinued drugs,
but not for the approved drugs. Taken together, these results
suggest that interactions with these targets decrease the overall
probability of success for compounds.

Internal Test Compounds
To further test the strengths and limitations of the OTSA process,
15 well-studied internal compounds were evaluated and data
compared with available in vitro CEREP or other off-target
data. The primary and secondary in vitro confirmed targets for
these selected 15 compounds are summarized in Table 5. The
OTSA process predicted several of these targets identified in
vitro with a high score for each compound. Encouragingly, the
correct pharmacological target was predicted as one of the top
scoring hits (i.e., within the top 3 ranked) for 14 compounds. For
A-967079, the pharmacological target (i.e., Transient receptor
potential cation channel, subfamily A member 1 or TRPA1)
was not predicted as a top target. However, this target was
predicted with pseudo-score of 0.5, which is slightly below the
set threshold score of 0.6. Finally, the 3Decision based search
approach independently identified the primary pharmacological
targets for all 15 compounds.

Altogether, the OTSA predicted 123 interactions for these
15 compounds, indicating an average of 8.2 interactions per
compound, a value slightly lower than the polypharmacology
distribution predicted for the FDA approved drugs as described
above. Comparison of the in vitro CEREP binding data with the
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FIGURE 5 | (A,B) Comparison of MW and TPSA with number of predicted

off-targets for the approved and discontinued drugs. The X-axis shows (A)

MW and (B) TPSA. In both figures, the Y-axis shows the percentage of

predicted off-targets in each of the bins.

in silico predicted targets indicated that ∼56% of the predictions
overlapped, which implies that 44% of known interactions were
not predicted.

DISCUSSION

Computational prediction of toxicity has been a desirable
objective of toxicologists for decades, but it is only in the last
few years that significant advances have been made through
the integration of information and data from multiple scientific
disciplines, including chemistry, biology, pharmacology,
genomics, and basic toxicology (Bai and Abernethy, 2013;
Luechtefeld et al., 2018). This integrated framework offers the
opportunity to transform data into useful knowledge for the
toxicologist. One approach to predict toxic effects is to generate
a better understanding of off-target interactions together with a
comprehensive analysis of physicochemical properties for small
molecules. These predictive computer approaches generally take
advantage of key strengths from each of the above mentioned
diverse disciplines. Several computational methods have been
developed to predict off-targets and associated toxicities for small
molecules, such as: (1) Swiss Target Prediction (Gfeller et al.,

2014), (2) Chemical Similarity Network Analysis Pull-down
(CSNAP) (Senese et al., 2014), (3) SuperPred (Dunkel et al.,
2008), (4) Search Tool for Interacting Chemicals (STITCH)
(Kuhn et al., 2013), (5) SEA (Keiser et al., 2009), (6) Tarpred
(Liu et al., 2015), (7) Chemotargets (Gregori-Puigjané and
Mestres, 2008), (8) Prous Institute Symmetry (Prous, 2016),
(9) Pocket Similarity Search using Multiple-sketches (PoSSum)
(Ito et al., 2011), and (10) PSILO (Feldman and Labute, 2010).
Overall, these methods predict a number of interactions using
a specific pair of method/database combinations. However,
these computational methods offer different flavors of ligand
2-D similarity and protein binding site similarity searches
together with focused databases, each with its unique strengths
and weaknesses. Consequently, the off-target predictions from
each of these methods significantly vary as they are utilizing
different annotated databases and similarity search algorithms.
This variability compelled us to develop a framework called
OTSA that assembles several of these computer-based off-target
prediction methods together.

Drug molecules induce toxicity through various mechanisms,
including interactions with unintended cellular off-targets in
different tissues with varied binding strengths. The identification
of these off-target interactions (and relative binding strength
to these off-targets) in various tissues can help determine
the potential toxicological liabilities of small molecule drugs.
Screening every compound against a large portion of the
human proteome at the lead optimization stage is not practical
from a time and resource perspective. Current in vitro testing
paradigms at the lead optimization stage are typically limited
to those targets with a close relationship to the intended target
(e.g., isoforms) or panels of off-targets selected based on their
promiscuity or safety relevance (Blomme and Will, 2015). For
example, off-targets like hERG, 5-HT2b or PPARγ, which are
known to be associated with safety liabilities, are often used
in lead optimization stage counter-screens. Given the current
limitations, in silico off-target prediction approaches have been
receiving more attention in the past few years, mostly to
understand polypharmacology and target engagement associated
with preclinical and clinical toxicities (Lavecchia and Cerchia,
2016; VanVleet et al., 2018; Zloh andKirton, 2018). These in silico
methods are now actively implemented at the early discovery
and preclinical drug development stages for rapid generation of
off-target binding hypotheses.

Uniqueness of the OTSA Platform
The OTSA platform rapidly generates adverse off-target
interaction hypotheses by using both ligand- and target-centric
methodologies. The latter method automates high throughput
3-D target-model building, binding site identification, as well
as conformational analysis, docking, scoring, and ranking
small molecule ligands, while the former utilizes an integrated
chemistry database framework consisting of the SAR profile
for over 7,000 (∼35% of the human proteome) targets. This
integrated approach significantly differs from other published
approaches in many ways as described below.

First, this approach uniquely combines predicted and in vitro
identified metabolites as part of the off-target prediction process.
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TABLE 5 | Comparison of the predicted off-targets with the in vitro binding data for the 15 internal molecules.

Compound ID In vitro off-targets Predicted off-targets Pharmacological target

A-1390577 Cav1.2, CDK5,8 Cav1.2, KCNH2, 5HT2b, BRAF, CDK5,8 PKC

Predicted score 0.8

A-1411735 Cav1.2, Opioid κ Cav1.2, KCNH2, HTR2A PKC

Predicted score 0.81

A-1593308 D2, Nav1.5, Cl− and Cav1.2, A2A, PPARγ, COX2,

SMO

SMO, Cav1.2,HSDB11, ITGAL, D4,

CYP3A4

SGPL1

Predicted score 0.6

A-317567 5HT(2b,2a,1a,5a), opioid, σ, µ, δ, M2, M3, M4,

DRD, α1 and 2, BZD

5HT(2a,2b,1b,2b,1d 5a,b), opioid µ, κ,

M2, α2, CB1, BCL2, A1, Cav1.2

ASIC

Predicted score 0.99

A-438079 BZD CB2, TRPV1,opioid κ P2RX7

A-777903 D4, D3, D5, 5HT(2b,2a,1a,3,5a,7),Nav1.5,

Cav1.2,opioid σ , opioid κ, opioid µ, β1,2, H2, α2,

DRD

M2, opioid µ, opioid σ , Nav1.5, α2b, 5HT

(1a,2b,2c,7), H1,D3, KCNH2, SERT

Melanin receptor

Predicted score 0.76

A-803467 A3, A2A,BZD, 5HT2a, D1, CB1, opioid µ, H2 SCN3a, SENP7, α1a, 5HT2a, H1, D2 Nav1.8

Predicted score 0.62

A-836339 A3, 5HT2c CB1,5, opioid κ, TRPV1, 5HT2b,

Nav1.7,A1

CB2

Predicted score 0.66

A-889425 Opioid σ, Cl− and Nav1.5, D4, 5HT2c 5HT2c, D4, Na 1.7, opioid σ TRPV1

Predicted score 0.66

A-922500 BZD KCNH2, CDK8 DGAT1

Predicted score 0.71

A-967079+ D2 (43%) CYP2A13, TRPV1, 3, 4 TRPA1

Predicted Score 0.5

A-970781 A2A (23%) mGlu5, A1
DGAT1

Predicted score 0.98

A-993610 opioid κ Opioid µ, CB1, H3 TRPV1

Predicted score 0.74

A-995662 PPARγ (38%) KIT, CYP3A4, CYP2D6, PPARγ, KDR,

P2RX7, Cav1.2

TRPV1

Predicted score 0.78

A-908292 – KCNH2, ROCK1, EP4, 5HT2c, CB1,

PPARα

ACC2

Predicted score 0.77

+The pharmacological target TRPV1 was not predicted with score threshold of 0.6.

The second and third columns show the targets identified by CEREP and OTSA, respectively. The fourth column shows the pharmacological target along with the pseudo-score.

This step is an important component, as preclinical toxicities and
clinical safety events may be related to metabolite interactions
with unintended off-targets (Whitebread et al., 2016). For
example, fenfluramine was withdrawn from the market due
to severe clinical valvular heart disease related to interaction
by its active metabolite, norfenfluramine, with the 5-HT2b

receptor (EC50 value of 8 nM) (Setola et al., 2005). The parent
drug molecule fenfluramine displayed no binding with 5HT2b

at 30µM (maximum binding displacement of 4% at 30µM).
Interestingly, our computational process not only predicted
norfenfluramine as a metabolite, but also its likely interaction
with 5HT2b. However, the OTSA process also predicted 5HT2b as
an off-target for the parent fenfluramine. Another example is the
internal test compound, A-908292, for which the top predicted
metabolite was flagged to interact with PPARα, a prediction
consistent with in vivo rat data (Waring et al., 2008). This may
also be the reason for differences in OTSA-predicted and CEREP-
confirmed targets.

Second, this computational workflow exploits a wide range
of 2-D computational methods along with a 3-D method.

Depending on the number of compounds to be profiled, a 2-
D similarity search alone can be conducted or a combination,
including machine learning, 3-D binding site search, and 2-
D similarity search, can be used. In the present study, only
the chemical similarity and machine learning approaches were
used to mine the SAR datasets to predict the off-targets for
the FDA approved and discontinued drug lists. 2-D methods
alone have been shown to reasonably predict novel interactions.
For example, Lounkine et al. (2012) have used a computational
strategy (SEA) to predict the activity of some marketed drugs
on 73 unintended “side-effect” targets. Close to 50% of the
predicted interactions were confirmed either using databases that
are unknown to the SEAmethod or by performing new biological
assays. The measured binding affinities for these newly predicted
off-targets ranged from 1 nM to 30µM. The OTSA process
effectively uses SEA as one of the 2-D methods for off-target
prediction to identify such novel interactions.

Third, the OTSA computational process can be coupled with
normal tissue transcriptomic profiles as part of the validation
of predicted off-targets. To achieve this, the RNA-Seq-based
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gene expression profiles of various normal tissues of human,
rat, mouse and cynomolgus monkey is coupled with the OTSA
workflow. If testicular toxicity is observed in rat, for example,
only the predicted off-targets that are expressed in the rat normal
testis are retained, thereby refining the prediction through
elimination of off-targets with little or no relevance from further
in vitro/in vivo analysis. This feature enables the formulation of
more robust hypotheses related to mechanisms of toxicity.

Finally, the OTSA process uses a large curated database that
connects the predicted off-targets to preclinical toxicity and
clinical safety events. At present, this database covers ∼13,000
targets, translating to ∼65% of the expressed human proteome.
This large collection of data provides another layer of knowledge-
based prediction capability.

The OTSA process has 5 components representing 5 scientific
methodologies (Figure 1). Each of these methods has their own
strengths. For high-throughput analyses, such as the validation
work presented in this manuscript, only components 1 and 2
were used to generate target binding hypothesis for throughput
reasons. However, all components (1-5) of the OTSA process are
routinely used for internal late discovery and clinically advanced
compounds. For example, an understanding of the expression
level for the top scoring predicted off-targets across a large
panel of tissues/organs of human and pre-clinical species (mouse,
rat, cynomolgus monkey) is useful to better contextualize the
safety risks, but also formulate hypotheses of the off-target
implicated in the pathogenesis of a finding in a toxicology
study. Using norfenfluramine, a key metabolite of fenfluramine,
as an example, components 1 and 2 of OTSA identified
eight off-targets: CYP2A6, CYP2E1, Adrenoceptor β1(ADRb1),
Adrenoceptor α2C(ADRA2c), Adrenoceptor α2a(ADRA2a), and
5HT (1a,2band1d). Among these off-targets, CYP2E1, CYP2A6, and
ADRb1 are part of the training set and the remaining 5 targets
were predicted as well as confirmed in vitro. Of these, only
5HT2b and ADR2c are highly expressed in human blood vessels
(https://gtexportal.org/home/), where this compound induces its
toxicity, which eliminates 6 off-targets for further consideration
in follow-up investigations. Likewise, a major challenge in the
interpretation of off-target interaction data is linking target
modulations to pre-clinical or clinical toxic effects. Thus, we
routinely evaluate the link of off-targets to possible clinical and
pre-clinical outcomes by computationally searching a set of safety
databases that relate target modulation to pre-clinical/clinical
outcomes (OFF-X, Bioinfogate, Barcelona, Spain). As of now, this
database tracks safety liabilities associated with ∼13,000 targets
(>65% of proteins expressed by the human genome) and 239,766
safety alerts linked to many of these targets.

Finally, one needs to further evaluate if those safety relevant
off-targets need a follow-up. This assessment relies on three
criteria: (1) a strong clinical and pre-clinical evidence exists
that connects an off-target interaction to a pre-clinical/clinical
outcome (i.e., is the off-target interaction of toxicological
relevance?); (2) tissue expression of the off-target (i.e., is the
expression of the off-target in tissues of relevance?); and (3) the
off-target prediction has computed scores >0.6 and above in at
least 3 out of the 6 prediction methods. Normally, if the off-target

satisfies these three criteria, the last component entails an in vitro
validation or in vivo data interpretation.

The OTSA process uses several computational approaches
e.g., OFF-X, Clarity, Transcriptomics body atlas and 3Decision.
The main objective of this computational workstream is to
highlight the role of different computational methodologies in
predicting comprehensive off-target lists together with their
normal expression in different tissues as well as literature
evidence connecting off-targets to various possible outcomes.
The present work validates this multi-method integration
hypothesis and provides strong evidence that integrating these
methodologies into a single framework provides additional utility
in terms of profiling relevant off-targets for small molecules.
However, the limitation of this work is that the individual
components (i.e., 1-5) are not programmatically combined
into one pipelined framework. This is on our roadmap to
build a single framework, with a single-entry point (i.e., input
chemical structure), that automatically processes all components
sequentially or in user defined steps (like perform only steps 2
and 4 or 2 and 3 or 1, 2 and 3 and so on).

The purpose of the OTSA computational process is to present
the consensus cheminformatics approach to predict primary
and secondary off-targets for small molecules. The orthogonal
cheminformatics methods used here essentially exploit different
features (or fingerprints) present in the query molecule, while
predicting potential off-target interactions.

Briefly, SIM, SEA, and XPI are chemical similarity-based
approaches (Gregori-Puigjané and Mestres, 2008; Spitzmüller
and Mestres, 2013). SEA uses a chemical similarity ensemble
approach to identify related proteins based on the set-
wise chemical similarity among the ligands (Keiser et al.,
2009), while the SIM method uses 2-D descriptions such
as pharmacophoric fragments, feature-pair distribution and
Shannon entropy (Gregori-Puigjané and Mestres, 2006). XPI
uses chemical similarity to mine publicly available cross-
pharmacology data. The other three methods use either standard
quantitative structure activity models (SAR method), simple
abstraction of minimum pharmacophoric features needed to
achieve some level of target activity (SAS method) or a Shannon
entropy pharmacophore fingerprint information (MLM).

Overall, all cheminformatics methods performed reasonably
well by capturing >65% of interactions (from a total of
2,960 and 2,772 predicted interactions for the approved and
discontinued drugs, respectively). For example, for approved
drugs, SAS captured 2,502 interactions out of the total of 2,960
predicted interactions (∼84%). However, SEA captured only
2,124 interactions out of 2,960 interactions (∼72%) for the
present dataset. Similarly, for discontinued drugs, SAS captured
2,772 interactions out of the total of 3,923 predicted interactions,
translating to 81% of the interactions, while SEA identified 2,304
(67%) interactions.

Beyond the consensus targets identified, those targets
predicted in fewer than 3 methods may also be of relevance.
However, in our OTSA process, these targets are given less
confidence than those consistently predicted across 3 or
more methods.
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In a greater detail, the in vitro generated data for five internal
compounds are compared with the OTSA results below.

1. A-317567
A-317567 is a non-amiloride blocker of acid sensing ion

channels (ASICs) (Dube et al., 2005). The OTSA process

correctly identified both ASIC 1 and 3 as possible targets for
this compound. Moreover, a total of 20 additional off-targets

were predicted, including: (1) urokinase plasmogen activator

(uPA), (2) plasminogen, (3) trypsin-1, (4) Nav1.5 (SCN5A),
(5) 5-hydroxytryptamine receptor (5HT) isoforms 2A, 2C, 7,

1B, 2B, 1D, and 6, (6) dopamine receptor 2 (D2), (7) histamine

1 receptor (H1), (8) α-adrenergic receptors (1A, 1D, 2B, 2A,

and 2C), and (9) Cav1.2 (CACNA1C).

CEREP screening of this compound identified several of

these predicted targets including: (1) 5HTs (1A, 1B, 2A,

2C, 3, 5a, 6, and 7), (2) Cav1.2 (CACNA1C), (3) D1,
D2, D3, and D5, (4) Nav1.5 (SCN5A), (5) α-adrenergic
receptors (1 and 2), (6) β-adrenergic receptors (1 and 2),
and (7) H2. However, CEREP screening also identified the
muscarinic receptors (1, 2, 3, 4, and 5) isoforms, opioid
receptor like (ORL) and benzodiazepine receptor (BZD) as
off-targets, which were not predicted by the OTSA process.
It should be noted that OTSA predicted H1, but CEREP
identified H2 and this OTSA prediction was not considered as
positive prediction.

2. A-777903
A-777903 is an oral compound that was designed to

antagonize melanin-concentrating hormone-1 (MCH-1). A-
777903 effectively binds with MCH-1 with an IC50 of 16 nM
(Basso et al., 2006). The OTSA process identified MCH-1 as
the top scoring target. Additional predicted targets included:
(1) 5HTs (2,1A, 2B, 2C, and 7), (2) α -adrenergic receptor 1, (3)
D1, 2 and 4, (4) δ, µ and σ-opioid receptors, (5) KCNH1 and
2, (6) κ -type opioid receptor, (7) muscarinic receptor 1, (8)
Na2+ dependent serotonin transporter, (9) somatostatin type
3 receptor and (10) H1.

The CEREP assay identified only a few of these predicted

targets: (1) 5HTs isoforms and (2) D1 and 2. However, CEREP

identified Cav1.2 and β adrenergic receptor as off-targets,
which were not predicted by any of the methods within the

OTSA. It should be noted that the CEREP assay captured

interaction with H2, but that OTSA predicted H1 receptor
as an off-target, indicating that the OTSA process may

generally help in the identification of target families rather

than specific isoforms, as noted with A-317567. Likewise, the
OTSA predicted α-adrenergic receptor, which is structurally
similar to the β isoform

3. A-1411735
A-1411735 is a protein kinase C theta (PKCθ) inhibitor

that was evaluated as a potential treatment for autoimmune
diseases (George et al., 2014). A-1411735 inhibits PKCθ with
an IC50 of 23 nM. This compound also showed inhibitory
activities against other PKC isoforms such as α (1,920 nM), β
(598 nM), δ (322 nM), ε (92 nM), and γ (16,698 nM). However,
A-1411735 is highly selective across a panel of 81 kinases,

displaying only weak inhibition (in µM range) with Cdc-
like kinase 2 (CLK2), GSK3α, and cyclin dependent kinase 8
(CDK8). Additionally, profiling across the AbbVie 70 panel
resulted in only two hits namely, Cav1.2 (CACNA1C) and
κ opioid receptor (KOP). The OTSA process predicted all
the PKC isoforms as potential targets including PKCθ with a
score ranging from 0.7 to 1, as well as Cav1.2 (CACNA1C)
with a score of 0.7. This chemotype was also predicted to
bind to CDK5 and 8 with a low score <0.5, below the
threshold pseudo-score that is used in this study. However,
the 3Decision binding site similarity approach independently
identified CDK9, a close homolog of CDK8, as a target with a
binding site similarity of 63%. Nevertheless, the OTSA process
did not predict the KOP as possible target in disagreement
with in vitro data.

4. A-908292 (S) and A-875400 (R)

A-908292 (S-enantiomer) is a small molecule inhibitor of
acetyl CoA carboxylase 2 (ACC2) that was being developed
to treat lipidemia (Waring et al., 2008). A-908292 selectively
inhibits ACC2 and ACC1 with an IC50 value of 23 nM
and 1.1µM, respectively. On the other hand, A-875400
(R-enantiomer) inhibits ACC2 and ACC1 with an IC50 of
18µM and 15µM, respectively. Gene expression analysis
of rat livers showed that both A-908292 and A-875400 were
highly similar to a peroxisome proliferator-activated receptor
(PPARα) activator (Waring et al., 2008). The OTSA process
predicted three possible metabolites for both A-908292(S)
and A-875400(R). One of these metabolites was predicted
to interact with PPARα, prostaglandin D2 receptor 2, ACC1
and ACC2. The parents (i e. A-908292 and A-875400) were
predicted to bind to ACC1 and 2, KCNQ2, glutaminyl-peptide
cyclotransferase, Rho-associated, coiled-coil-containing
protein kinase 1 (Rock1), voltage-gated potassium channel
subunit Kv7.4 (KV7.4), prostaglandin E2 receptor 4 (EP4),
5HT2c, CB1 and glutamate receptor 5 (mGlu5). However,
an interaction was not predicted between the parents and
PPARα indicating a possible functional role of the predicted
metabolite. CEREP data were not generated for the predicted
metabolites and hence these predicted interactions cannot
be confirmed.

5. A-803467
A-803467 is a potent and selective Nav 1.8 sodium

channel blocker. The measured IC50 with Nav 1.8, Nav1.2,
Nav1.3, Nav1.5, and Nav1.7 are 79 nM, 9.49, 11.7, 32.8,
and 35µM, respectively (Jarvis et al., 2007). CEREP
screening showed significant binding of A-803467 with
adenosine receptors (A3 and A2A), 5HT2a, CB1, and
histamine receptor 2. OTSA identified all the isoforms of
Na channels as well as 5HT2a. None of the OTSA methods
predicted CB1, A3, A2A, and histamine receptors as possible
targets. However, the OTSA predicted Substance P receptor,
melatonin receptor and Bromodomain-containing protein 4
(BRD4) as high scoring off-targets, which were not part of
CEREP panel.

Taken together, the OTSA process correctly identified the
pharmacological target as well as a significant number of
off-targets confirmed in vitro.
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Physicochemical Properties
Several studies have demonstrated a relationship between
molecular promiscuity (ability of molecules to bind and interact
with multiple targets) and toxicity. A number of physicochemical
properties have been suggested as contributing to higher
promiscuity, such as lipophilicity (as calculated by clogP),
high MW and the presence of ionizable amines (leading to
high pKa) (Tarcsay and Keseru, 2013). For example: (1) Pfizer
screened 75000 compounds against 220 assays and found
lipophilicity (logP) to be positively correlated with promiscuity
(Hopkins et al., 2006); (2) Pfizer also screened 245 preclinical
compounds and found increased toxic outcomes for less polar
compounds (i.e., lipophilic compounds) (Hughes et al., 2008); (3)
AstraZeneca screened 2133 drug molecules along with reference
compounds against 200 CEREP targets and found significant
correlation between promiscuity and logP, MW, and pKa values
(Yang et al., 2010); (4) Roche screened 2413 compounds against
141 safety associated targets and suggested that promiscuity
was connected with logP and pKa (Peters et al., 2012); and
(5) Novartis queried 656 drugs in 73 assays, and logP and
pKa were connected to promiscuity (Lounkine et al., 2012).
Overall, these studies agree that lipophilicity (logP), MW, and
pKa are key physicochemical factors that play an important role
in drug promiscuity.

Consequently, several of these physicochemical properties
were calculated for the three categories of compounds (approved,
discontinued, and internal compounds) evaluated in the OTSA
in order to understand any potential bias related to differences
in physicochemical properties between the three categories of
compounds, but also in order to evaluate whether the number
of predicted off-targets would be associated with any specific
physicochemical feature.

Several computed physiochemical properties of the 401
approved drugs were statistically different from those of
the 456 discontinued drugs. For example, lipophilicity (logP,
clogD), MW, and pKa were statistically different between
the approved and discontinued drugs, suggesting that these
physicochemical properties may have a role, at least in part, in
the discontinuation of the drugs. However, the physicochemical
properties of the internal compounds were mostly similar to
the approved drugs, except for lipophilicity. Moreover, both
approved and discontinued drugs were predicted to bind with
more off-targets with MW (300–500)/TPSA (>200) and less
off-targets with MW (<200 or >700), suggesting a range of
MW and TPSA more prone to promiscuity. Nevertheless, no
other single or combinations of physicochemical properties
correlated with the number of predicted off-targets for these
drug categories, suggesting that physicochemical properties alone
are insufficient to understand promiscuity and off-targets for
small molecules.

Limitations of Chemocentric Off-Target
Prediction Methods
In spite of their unique advantages, the ligand-centric (chemical
similarity-based) methods within the OTSA are inherently biased
by the chemical coverage offered by the active molecules present

in those published sources (patents and publications), which
significantly limits the capacity of prediction for novel molecules
not represented within the training set, as evident from the
results for the 15 internal compounds. For example, when
evaluating internal compounds, the OTSA process failed to
predict some experimentally observed interactions, as these
interactions were new to the OTSA framework (i.e., not covered
by the databases). For example, A-803467 displayed significant
in vitro activity with adenosine receptors (A1, A2A), BZD, and
opioid µ receptor. None of the OTSA methods predicted these
as possible off-targets. In particular, BZD interactions were not
predicted by the OTSA process not only for A-803467 but
also for A-922500, as the reference database is not enriched
with this pattern of interactions. This indicates the need to
complement the training set with internal compounds that cover
the institutional chemical space. Another major disadvantage
of ligand-centric similarity-based approaches is that inactive,
but structurally similar compounds can generate false positive
predictions. For example, some predicted interactions for the 15
internal compounds were not confirmed in vitro. A-993610 was
predicted to bind to theµ opioid receptor, CB1 andH3. However,
none of these were identified as hit by in vitro CEREP screening.
However, since the OTSA approach uses not only chemical
similarity, but also pharmacophoric features as an add-on
query (such as the inclusion of positive, negative, hydrophobic,
hydrogen bond donor and acceptors features), the number of
false positive interactions is limited. Generally, pharmacophoric
signatures consist of target recognition elements held in
geometrically well-defined positions within a small molecule.
Typically, five recognition elements are commonly recognized
by the binding site of any biological targets: hydrophobe-
aromatic elements, hydrogen bond acceptors and donors, and
negatively and positively charged groups, and those are used
as the pharmacophoric features. Complementarity between
pharmacophoric signatures of ligand and target determines their
intermolecular recognition (Liu et al., 2010).

False positive interactions are also expected, because not all
active chemotype interactions with particular targets have been
curated, as state above. Furthermore, the prediction for targets
with limited bioactive/inactive ligands is not possible by simple
cheminformatics approaches. For this reason, we have been
regularly integrating different SAR databases with new chemistry
and computational methodologies to minimize the rate of
false negative predictions. Nevertheless, this clearly indicates
a need to further complement the database with additional
chemotypes and experimentally generated interactions. Finally,
as mentioned earlier, the OTSA approach can only predict
whether a compound can bind to a target or not and this may
not reflect a functional interaction. Likewise, all the existing 2-D
similarity methods do not distinguish between enantiomers. This
was illustrated with A-875400, the R-enantiomer of A-908292,
which is significantly weaker against ACC2, but for which
scores similar to A-908292 were generated. Likewise, data from
the internal compounds suggest that distinction of selectivity
against various isoforms of the same target family may be
limited with the OTSA approach, as illustrated with A-1411735
and A-903482.
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Limitations of Protein Structure-Based
Target Prediction Methods
Even when significantly different in amino acid sequence and
with limited structural homologies, proteins may share binding
site similarity, enabling them to bind similar ligands (Haupt
et al., 2013). This aspect is the rationale behind target-centric
prediction methods, which can be used to identify off-targets for
novel chemistries (i.e., chemistry with no SAR data). With these
methods, small molecule ligand libraries are queried against the
three-dimensional pockets of the human structural proteome for
spatial and electronic fitness. The complementarity between the
protein drug pockets and chemical structure is computed using
automated docking tools such as Glide and AutoDock (Friesner
et al., 2004; Kellenberger et al., 2004; Trott and Olson, 2010).
In addition, the binding site similarity index is used to identify
off-targets. It is based on the assumption that structurally similar
binding sites have similar molecular function and thus, are likely
to bind to structurally similar compounds.

The OTSA target-centric approach uses >140,000 high-
resolution X-ray structures from the Protein Databank (PDB)
and an internal structural database. Unlike the ligand-centric
methods, this method can be used only when either the
experimental or homology model of the protein structure
complexed with a compound of interest (i.e., compound for
which off-target prediction is needed) is available. This limits
the utility of target structure-based off-target prediction. In
spite of the availability of a large number of 3-D approaches
for the comparison of protein-binding sites, the number of
off-target predictions is generally low, as these methods do
not explicitly consider the binding pocket dynamics, water
mediated effects, or importance of the interactions with co-
factors as part of binding site description query. Moreover,
the 3-D binding site search of our OTSA is low-throughput
and can only be used for a limited number of key preclinical
and clinical compounds. The physiological target for A-1411735
and A-1390577 is PKCθ. Interestingly, this 3-D binding site
search identified CDK isoforms and GSKβ (not GSKα) binding
sites features are 76 and 60% similar, respectively, to the
3-D binding site of PKCθ, in partial agreement with in
vitro studies. This implicates that the 3-D based method
not only identifies pharmacological targets correctly, but also
supplements additional off-targets which are not identified by
chemo-informatics methods.

Strengths and Limitations of the OTSA
A reasonably performant computational method(s) (either 2-
D- or protein structure-based) should ideally identify the “true-
hits” (i.e., pharmacological target and other confirmed CEREP
targets) as the top-scoring targets for the compounds tested.
The ligand-centric methods of the OTSA predicted most of the
experimentally confirmed interactions for the discontinued and
approved drugs as the top scoring targets, suggesting that OTSA
has an appropriate mix of 2-D methods and databases for target
prediction. In particular, in this work, chemo-centric methods
alone captured a total of 1,898 (∼4.1 interactions/compound)
confirmed off-target interactions for the 456 discontinued drugs.

These interactions were mainly from 886 distinct targets. Of
these, 600 targets were also identified as off-targets for approved
drugs. Thus, 286 off-targets distinguished the approved from
the discontinued drugs. Among these, 146 (51%) targets have
been previously confirmed in vitro. The remaining 140 targets
(49%) were new and therefore not confirmed, such that the
exact performance characteristics of our computational approach
could not be fully calculated. Nevertheless, the OTSA process
uniquely differentiated approved drugs from the discontinued
drugs with the identification of interactions of latter with
cytochrome p450 (CYP) isoforms, T, N, and L type calcium
channel voltage-dependent channels, sodium channels subunit
α isoforms (1–9), cyclin-dependent kinase (CDK) isoforms
(2, 5, 6, 8, 9), Phosphodiesterase 3 (PDE3), and hERG K+

channel, suggesting dialing-out interactions with these targets
might significantly enhance the chance of success in preclinical
studies. Overall, 56% of the predicted interactions for the 15
internal compounds were in agreement with the CEREP data,
suggesting that the performance of this computational tool is still
modest. The most frequent in vitro identified off-targets for these
compounds were 5HTs (1a, 1b, 2a, 2b, 2c, 3, 5a, and 7), BZD, CB1,
Cav1.5 Nav1.2, Cl− (GABA-gated) channels, and D1, D2, and
D4. Particularly, of the 15 compounds, 5 compounds interacted
with Nav1.2, 4 interacted with Cav1.5 receptors and BZD and
3 compounds showed activity against 5HT2a and 5HT2c, in
reasonable agreement with in vitro studies. Since the reference
database does not have BZD interacting compounds, none of
the OTSA methods predicted interactions with BZD, further
emphasizing the need for expansion of the reference chemistry
database. In another example, the OTSA process predicted
GSK3β, the tyrosine kinase Fyn, CDK8, Nuclear receptor
subfamily 4 group A member 2 (NR4A2), and 5HT2b as high-
scoring off-targets for A-277249, in excellent agreement with
internal in vitro profiling data that showed significant inhibition
of GSK3β and CDK8 (0.4 and 0.2µM, respectively). Moreover,
transcriptomics profiling of this compound revealed that the
observed hepatotoxicity of A-277249 was mediated through the
aryl hydrocarbon nuclear receptor (AhR) pathway (Waring et al.,
2002). Interestingly, NR4A2 is one of the key target genes
for the AhR transcription factor, suggesting a potential role of
OTSA in the identification of off-targets which may complement
transcriptomics data.

The in vitro binding data alone are insufficient to assess
preclinical and clinical risks, and the prediction of an off-target
interaction does not necessarily translate to an effect. Various
factors, such as efficacious systemic exposure levels, volume
of distribution, tissue expression and off-target residence
time must be taken into consideration while assessing the
potential risk linked to these predicted off-targets. Recently, 19
clinically well-characterized small molecule kinase inhibitors
were screened against three cardiovascular (CV) relevant kinases
[Ribosomal Protein S6 Kinase B1(RPS6KB1), Focal adhesion
kinase (FAK) and Serine/Threonine Kinase 35 (STK35)] at four
concentrations centered around their respective clinical human
Cmax concentration value (Lamore et al., 2017). The IC50 of
each compound in relation to Cmax was used to differentiate
CV toxic and non-toxic compounds. In this model, if the
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measured IC50 value against these kinases was less than the
therapeutic Cmax concentration, then the compound was
predicted to be cardiotoxic. On the other hand, if the IC50

value against these kinases was greater than the therapeutic
Cmax concentration, the compounds were predicted to be
“cardiac safe.” Interestingly, this simple mathematical model
connecting therapeutic Cmax concentrations and IC50 values
against only three cardiac relevant kinases correctly predicted
3 of 5 “cardiac safe” compounds and 12 of 15 cardiotoxic
compounds, illustrating the importance of including in vivo
exposure levels in the assessment of off-target mediated toxicities.
Additionally, the critical factor for sustained drug efficacy (on
target binding) and toxicity (off-target binding) is not the
binding affinity, but the residence time of the drug molecule
within the binding pocket of on/off-targets. Several examples
confirm the role of residence time in prolonged target-mediated
in vivo outcomes (Copeland et al., 2006). The need to integrate
these data with off-target interaction information represents
the future of safety screening and mechanism identification
investigations, and we are progressively incorporating
this type of information in our assessments during lead
optimization programs.

During the lead identification stage, large compound libraries
(usually>100,000) are generally screened against the target of
interest to discover novel lead molecules. It is not possible
to work on the chemical optimization of each and every
lead identified. Therefore, at this stage, the inclusion of key
physicochemical property filters (such as clogP, TPSA, pKa,
MW, number of rotatable bonds, number hydrogen bond donor,
and acceptors) can bias the odds in favor of finding successful
leads. The current work suggests the physicochemical properties
of approved drugs (MW, logP, pKa, and logS) are statistically
different from those of discontinued drugs, in agreement
with other published reports (Wenlock et al., 2003; Shultz,
2018). Additionally, the predicted adverse off-target interaction
information might help in selecting the right leads for further
advancement, especially when considering moving to in vivo
preclinical studies when resources and compound requirements
are high. Finally, OTSA is not intended to replace in vitro
off-target binding and toxicity testing. Rather, it should serve
as a filter to increase the probability of success and guide
the optimization of compounds toward a chemical space with
lower safety liabilities. Furthermore, this computational tool can
provide mechanistic clarity through a better understanding of
polypharmacology, and by providing testable target-mediated
toxicity hypotheses for toxic changes observed in in vivo
studies. Robustly predicted off-interactions typically lead to
orthogonal confirmatory studies to test these predictions. The
OTSA model should then be refined by incorporating new
chemical matter and experimental data in order to further
improve the performance characteristics and utility of the
off-target predictions.

CONCLUSIONS

In summary, a novel computational framework, termed OTSA,
was developed to predict off-target interactions and potential
associated toxicities for small molecules. OTSA was tested
using publicly available and internal compounds, and results
suggest that this computational approach can provide value
when appropriately used and when its limitations are properly
understood. In particular, this computational tool should enable
improving the selectivity of novel drug candidates by limiting
undesirable off-target interactions and by decreasing non-
clinical safety-related attrition. The observation of >49% (56,
49.5, and 78% for internal compounds, discontinued and
approved drugs, respectively) predictive value for confirmed
interactions in each compound set is promising considering that
(1) our OTSA process includes metabolites in the prediction,
which are not assessed by CEREP (there may be additional
targets confirmed if metabolites were assessed) and (2) not
all of the predicted interactions were included in the CEREP
screens and, as such, may also be accurate predictions.
Finally, this study indicated that the computed lipophilicity
(clogP), charge (pKa) and MW of the discontinued drugs
are generally in higher range compared to the approved
drugs. This work also suggests that the effective use of
these computed simple physiochemical properties together
with the OTSA predicted adverse interactions may form an
integrated framework that can be used in lead optimization and
preclinical studies.

AUTHOR CONTRIBUTIONS

All authors are aware of the manuscript and have contributed
significantly to its completion. In addition, all authors are
employed at AbbVie and the appropriate disclosures are
included on the title page along with keywords.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fdata.
2019.00025/full#supplementary-material

Supplementary Table S1 | Summary of contributions from different 2-D target

prediction methods for discontinued and approved drugs.

Supplementary Data Sheet S1 | Statistical analysis on the computed

physiochemical properties of the approved and discontinued drugs.

Supplementary Data Sheet S2 | Summary of computationally predicted

interactions for the (A) approved and (B) discontinued drugs.

Supplementary Data Sheet S3 | Violin plots showing distributions of (A) MW,

(B) pKa, (C) clogD, (D) logS, (E) MDCK (nm/sec), (F) clogP, (G) TPSA, (H) sp3

count, (I) number of rotatable bonds, and (J) Caco2 permeability (nm/sec) for

approved (left) and discontinued (middle) drugs and AbbVie’s compounds (right).

The 75th and 25th percentile, median, and 95% confidence interval and standard

deviation (SD) are shown.

Frontiers in Big Data | www.frontiersin.org 15 July 2019 | Volume 2 | Article 25

https://www.frontiersin.org/articles/10.3389/fdata.2019.00025/full#supplementary-material
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Rao et al. Off-Target Prediction for Small Molecule Candidates

REFERENCES

Andricopulo, A. D., Guido, R. V., and Oliva, G. (2008). Virtual

screening and its integration with modern drug design technologies.

Curr. Med. Chem. 15, 37–46. doi: 10.2174/092986708783

330683

Bai, J. P., and Abernethy, D. R. (2013). Systems pharmacology

to predict drug toxicity: integration across levels of biological

organization. Annu. Rev. Pharmacol. Toxicol. 53, 451–473.

doi: 10.1146/annurev-pharmtox-011112-140248

Bantscheff, M., Scholten, A., and Heck, A. J. (2009). Revealing

promiscuous drug–target interactions by chemical proteomics.

Drug Discov. Today 14, 1021–1029. doi: 10.1016/j.drudis.2009.

07.001

Basith, S., Cui, M., Macalino, S. J., Park, J., Clavio, N. A., Kang, S., et al.

(2018). Exploring G Protein-Coupled Receptors (GPCRs) ligand space

via cheminformatics approaches: impact on rational drug design. Front.

Pharmacol. 9:128. doi: 10.3389/fphar.2018.00128

Basso, A. M., Bratcher, N. A., Gallagher, K. B., Cowart, M. D., Zhao, C., Sun, M.,

et al. (2006). Lack of efficacy of melanin-concentrating hormone-1 receptor

antagonists in models of depression and anxiety. Eur. J. Pharmacol. 540,

115–120. doi: 10.1016/j.ejphar.2006.04.043

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J. R. Stat. Soc. SerB 57,

289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x

Bleicher, K. H., Bohm, H.-J., Muller, K., and Alanine, A. I. (2003). Hit and

lead generation: beyond high-throughput screening. Nat. Rev. Drug Discov. 2,

369–378. doi: 10.1038/nrd1086

Blomme, E. A., and Will, Y. (2015). Toxicology strategies for drug

discovery: present and future. Chem. Res. Toxicol. 29, 473–504.

doi: 10.1021/acs.chemrestox.5b00407

Brown, F. K. (1998). Chemoinformatics: what is it and how does

it impact drug discovery. Annu. Rep. Med. Chem. 33, 375–384.

doi: 10.1016/S0065-7743(08)61100-8

Copeland, R. A., Pompliano, D. L., and Meek, T. D. (2006). Drug-target residence

time and its implications for lead optimization. Nat. Rev. Drug Discovery 5,

730–739. doi: 10.1038/nrd2082

Dang, C. V., Reddy, E. P., Shokat, K. M., and Soucek, L. (2017).

Drugging the’undruggable’cancer targets. Nat. Rev. Cancer 17, 502–508.

doi: 10.1038/nrc.2017.36

Drews, J. (2000). Drug discovery: a historical perspective. Science 287, 1960–1964.

doi: 10.1126/science.287.5460.1960

Dube, G., Lehto, S. G., Breese, N. M., Baker, S. J., Wang, X., Matulenko, M.

A., et al. (2005). Electrophysiological and in vivo characterization of A-

317567, a novel blocker of acid sensing ion channels. Pain 117, 88–96.

doi: 10.1016/j.pain.2005.05.021

Dunkel, M., Günther, S., Ahmed, J., Wittig, B., and Preissner, R. (2008). SuperPred:

drug classification and target prediction. Nucl Acids Res. 36(Suppl. 2), W55–

W59. doi: 10.1093/nar/gkn307

Feldman, H. J., and Labute, P. (2010). Pocket similarity: are α carbons enough? J.

Chem. Inf. Model. 50, 1466–1475. doi: 10.1021/ci100210c

Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D.

T., et al. (2004). Glide: a new approach for rapid, accurate docking and scoring.

1. Method and assessment of docking accuracy. J Med Chem. 47, 1739–1749.

doi: 10.1021/jm0306430

George, D. M., Breinlinger, E. C., Friedman, M., Zhang, Y., Wang, J., Argiriadi,

M., et al. (2014). Discovery of selective and orally bioavailable protein kinase

Cθ (PKCθ) inhibitors from a fragment hit. J. Med. Chem. 58, 222–236.

doi: 10.1021/jm500669m

Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O., and Zoete, V.

(2014). SwissTargetPrediction: a web server for target prediction of bioactive

small molecules. Nucleic Acids Res. 42, W32–W38. doi: 10.1093/nar/gku293

Gilson, M. K., Liu, T., Baitaluk, M., Nicola, G., Hwang, L., and Chong, J. (2015).

BindingDB in 2015: a public database for medicinal chemistry, computational

chemistry and systems pharmacology. Nucleic Acids Res. 44, D1045–D1053.

doi: 10.1093/nar/gkv1072

Gregori-Puigjané, E., and Mestres, J. (2006). SHED: Shannon entropy descriptors

from topological feature distributions. J. Chem. Inf. Model. 46, 1615–1622.

doi: 10.1021/ci0600509

Gregori-Puigjané, E., and Mestres, J. (2008). A ligand-based approach to mining

the chemogenomic space of drugs. Comb. Chem. High Throughput Screen. 11,

669–676. doi: 10.2174/138620708785739952

Gupta, R. (2015). “AIDEAS: an integrated cheminformatics solution," in Abstracts

of Papers of the American Chemical Society: Amer Chemical Soc 1155 16TH ST,

NW (Washington, DC).

Haupt, V. J., Daminelli, S., and Schroeder, M. (2013). Drug promiscuity

in PDB: protein binding site similarity is key. PLoS ONE 8:e65894.

doi: 10.1371/annotation/0852cc69-8cea-4966-bb8a-ae0b348d1bd9

Hintze, J. L., and Nelson, R. D. (1998). Violin plots: a box plot-density trace

synergism. Am. Stat. 52, 181–184. doi: 10.1080/00031305.1998.10480559

Hopkins, A. L., Mason, J. S., and Overington, J. P. (2006). Can we

rationally design promiscuous drugs? Curr. Opin. Struct. Biol. 16, 127–136.

doi: 10.1016/j.sbi.2006.01.013

Hughes, J. D., Blagg, J., Price, D. A., Bailey, S., DeCrescenzo, G. A., Devraj,

R. V., et al. (2008). Physiochemical drug properties associated with in

vivo toxicological outcomes. Bioorg. Med. Chem. Lett. 18, 4872–4875.

doi: 10.1016/j.bmcl.2008.07.071

Ito, J.-I., Tabei, Y., Shimizu, K., Tsuda, K., and Tomii, K. (2011). PoSSuM: a

database of similar protein–ligand binding and putative pockets. Nucleic Acids

Res. 40, D541–D548. doi: 10.1093/nar/gkr1130

Jarvis, M. F., Honore, P., Shieh, C.-C., Chapman, M., Joshi, S., Zhang, X.-F.,

et al. (2007). A-803467, a potent and selective Nav1. 8 sodium channel blocker,

attenuates neuropathic and inflammatory pain in the rat. Proc. Natl. Acad. Sci.

U.S.A. 104, 8520–8525.

Keiser, M. J., Setola, V., Irwin, J. J., Laggner, C., Abbas, A. I., Hufeisen, S. J.,

et al. (2009). Predicting new molecular targets for known drugs. Nature 462,

175–181. doi: 10.1038/nature08506

Kellenberger, E., Rodrigo, J., Muller, P., and Rognan, D. (2004). Comparative

evaluation of eight docking tools for docking and virtual screening accuracy.

Proteins 57, 225–242. doi: 10.1002/prot.20149

Kotsiantis, S. B., Zaharakis, I., and Pintelas, P. (2007). Supervised machine

learning: a review of classification techniques. Emerg. Artif. Intell. Appl.

Comput. Eng. 160, 3–24. doi: 10.1007/s10462-007-9052-3

Kuhn, M., Szklarczyk, D., Pletscher-Frankild, S., Blicher, T. H., Von Mering,

C., Jensen, L. J., et al. (2013). STITCH 4: integration of protein–

chemical interactions with user data. Nucleic Acids Res. 42, D401–D407.

doi: 10.1093/nar/gkt1207

Lai, A. C., and Crews, C. M. (2017). Induced protein degradation: an

emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16, 101–114.

doi: 10.1038/nrd.2016.211

Lamore, S. D., Ahlberg, E., Boyer, S., Lamb, M. L., Hortigon-Vinagre, M.

P., Rodriguez, V., et al. (2017). Deconvoluting kinase inhibitor induced

cardiotoxicity. Toxicol. Sci. 158, 213–226. doi: 10.1093/toxsci/kfx082

Lavecchia, A., and Cerchia, C. (2016). In silico methods to address

polypharmacology: current status, applications and future perspectives.

Drug Discov. Today 21, 288–298. doi: 10.1016/j.drudis.2015.12.007

Lionta, E., Spyrou, G., K., Vassilatis, D., and Cournia, Z. (2014).

Structure-based virtual screening for drug discovery: principles,

applications and recent advances. Curr. Top. Med. Chem. 14, 1923–1938.

doi: 10.2174/1568026614666140929124445

Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney, P. J. (1997).

Experimental and computational approaches to estimate solubility and

permeability in drug discovery and development settings. Adv. Drug Deliv. Rev.

23, 3–25. doi: 10.1016/S0169-409X(96)00423-1

Liu, X., Gao, Y., Peng, J., Xu, Y., Wang, Y., Zhou, N., et al. (2015). TarPred: a

web application for predicting therapeutic and side effect targets of chemical

compounds. Bioinformatics 31, 2049–2051. doi: 10.1093/bioinformatics/

btv099

Liu, X., Ouyang, S., Yu, B., Liu, Y., Huang, K., Gong, J., et al. (2010).

PharmMapper server: a web server for potential drug target identification

using pharmacophore mapping approach. Nucleic Acids Res. 38(Suppl. 2),

W609–W614. doi: 10.1093/nar/gkq300

Frontiers in Big Data | www.frontiersin.org 16 July 2019 | Volume 2 | Article 25

https://doi.org/10.2174/092986708783330683
https://doi.org/10.1146/annurev-pharmtox-011112-140248
https://doi.org/10.1016/j.drudis.2009.07.001
https://doi.org/10.3389/fphar.2018.00128
https://doi.org/10.1016/j.ejphar.2006.04.043
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1038/nrd1086
https://doi.org/10.1021/acs.chemrestox.5b00407
https://doi.org/10.1016/S0065-7743(08)61100-8
https://doi.org/10.1038/nrd2082
https://doi.org/10.1038/nrc.2017.36
https://doi.org/10.1126/science.287.5460.1960
https://doi.org/10.1016/j.pain.2005.05.021
https://doi.org/10.1093/nar/gkn307
https://doi.org/10.1021/ci100210c
https://doi.org/10.1021/jm0306430
https://doi.org/10.1021/jm500669m
https://doi.org/10.1093/nar/gku293
https://doi.org/10.1093/nar/gkv1072
https://doi.org/10.1021/ci0600509
https://doi.org/10.2174/138620708785739952
https://doi.org/10.1371/annotation/0852cc69-8cea-4966-bb8a-ae0b348d1bd9
https://doi.org/10.1080/00031305.1998.10480559
https://doi.org/10.1016/j.sbi.2006.01.013
https://doi.org/10.1016/j.bmcl.2008.07.071
https://doi.org/10.1093/nar/gkr1130
https://doi.org/10.1038/nature08506
https://doi.org/10.1002/prot.20149
https://doi.org/10.1007/s10462-007-9052-3
https://doi.org/10.1093/nar/gkt1207
https://doi.org/10.1038/nrd.2016.211
https://doi.org/10.1093/toxsci/kfx082
https://doi.org/10.1016/j.drudis.2015.12.007
https://doi.org/10.2174/1568026614666140929124445
https://doi.org/10.1016/S0169-409X(96)00423-1
https://doi.org/10.1093/bioinformatics/btv099
https://doi.org/10.1093/nar/gkq300
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Rao et al. Off-Target Prediction for Small Molecule Candidates

Lounkine, E., Keiser, M. J., Whitebread, S., Mikhailov, D., Hamon, J., Jenkins, J. L.,

et al. (2012). Large-scale prediction and testing of drug activity on side-effect

targets. Nature 486, 361–367. doi: 10.1038/nature11159

Lovering, F., Bikker, J., and Humblet, C. (2009). Escape from flatland: increasing

saturation as an approach to improving clinical success. J. Med. Chem. 52,

6752–6756. doi: 10.1021/jm901241e

Luechtefeld, T.,Marsh, D., Rowlands, C., andHartung, T. (2018).Machine learning

of toxicological big data enables read-across structure activity relationships

(RASAR) outperforming animal test reproducibility. Toxicol. Sci. 165, 198–212.

doi: 10.1093/toxsci/kfy152

Luker, T., Alcaraz, L., Chohan, K. K., Blomberg, N., Brown, D. S., Butlin,

R. J., et al. (2011). Strategies to improve in vivo toxicology outcomes for

basic candidate drug molecules. Bioorg. Med. Chem. Lett. 21, 5673–5679.

doi: 10.1016/j.bmcl.2011.07.074

Lynch, J. J. III., Van Vleet, T. R., Mittelstadt, S. W., and Blomme, E.

A. (2017). Potential functional and pathological side effects related to

off-target pharmacological activity. J. Pharmacol. Toxicol. Methods 87, 108–126.

doi: 10.1016/j.vascn.2017.02.020

Mestres, J., Martín-Couce, L., Gregori-Puigjan,é, E., Cases, M., and Boyer, S.

(2006). Ligand-based approach to in silico pharmacology: nuclear receptor

profiling. J. Chem. Inf. Model. 46, 2725–2736. doi: 10.1021/ci600300k

Metz, J. T., and Hajduk, P. J. (2010). Rational approaches to targeted

polypharmacology: creating and navigating protein–ligand interaction

networks. Curr. Opin. Chem. Biol. 14, 498–504. doi: 10.1016/j.cbpa.2010.06.166

Neri, D., and Lerner, R. A. (2018). DNA-encoded chemical libraries:

a selection system based on endowing organic compounds

with amplifiable information. Annu. Rev. Biochem. 87, 479–502.

doi: 10.1146/annurev-biochem-062917-012550

Peón, A., Naulaerts, S., and Ballester, P. J. (2017). Predicting the reliability of drug-

target interaction predictions with maximum coverage of target space. Sci. Rep.

7:3820. doi: 10.1038/s41598-017-04264-w

Peters, J.-U., Hert, J., Bissantz, C., Hillebrecht, A., Gerebtzoff, G., Bendels,

S., et al. (2012). Can we discover pharmacological promiscuity early

in the drug discovery process? Drug Discov. Today 17, 325–335.

doi: 10.1016/j.drudis.2012.01.001

Prous, J. (2016). Integrated In-Silico Approach to Drug Discovery and Safety

Evaluation (Seminaris Tecnològics 2016). Seminaris Tecnològics de Facultat de

Farmàcia 2016 (Seminari 4).

Ralston, S. (2017). Pre-development attrition of pharmaceuticals: how to identify

the bad actors early. Toxicol. Sci. 150, 2323.

Sarkar, I., and Goswami, S. (2018). “Computational methodologies followed in

structure based in-silico drug design: an example,” in Industry Interactive

Innovations in Science, Engineering and Technology (Singapore: Springer),

569–574. doi: 10.1007/978-981-10-3953-9_55

Scheiber, J., Chen, B., Milik, M., Sukuru, S. C. K., Bender, A., Mikhailov, D., et al.

(2009). Gaining insight into off-target mediated effects of drug candidates with

a comprehensive systems chemical biology analysis. J. Chem. Inf. Model. 49,

308–317. doi: 10.1021/ci800344p

Schmidt, F., Matter, H., Hessler, G., and Czich, A. (2014). Predictive in

silico off-target profiling in drug discovery. Future Med. Chem. 6, 295–317.

doi: 10.4155/fmc.13.202

Senese, S., Lo, Y., Huang, D., Zangle, T., Gholkar, A., Robert, L., et al. (2014).

Chemical dissection of the cell cycle: probes for cell biology and anti-cancer

drug development. Cell Death Dis. 5:e1462. doi: 10.1038/cddis.2014.420

Setola, V., Dukat, M., Glennon, R. A., and Roth, B. L. (2005). Molecular

determinants for the interaction of the valvulopathic anorexigen

norfenfluramine with the 5-HT2B receptor. Mol. Pharmacol. 68, 20–33.

doi: 10.1124/mol.104.009266

Shultz, M. D. (2018). Two decades under the influence of the rule of five and the

changing properties of approved oral drugs: miniperspective. J. Med. Chem. 62,

1701–1714. doi: 10.1021/acs.jmedchem.8b00686

Six, J., Elliott, E., and Paustian, K. (2000). Soil macroaggregate turnover

and microaggregate formation: a mechanism for C sequestration

under no-tillage agriculture. Soil Biol. Biochem. 32, 2099–2103.

doi: 10.1016/S0038-0717(00)00179-6

Spitzmüller, A., and Mestres, J. (2013). Prediction of the P. falciparum target

space relevant to malaria drug discovery. PLoS Comput. Biol. 9:e1003257.

doi: 10.1371/journal.pcbi.1003257

Spjuth, O., Helmus, T., Willighagen, E. L., Kuhn, S., Eklund, M., Wagener, J., et al.

(2007). Bioclipse: an open source workbench for chemo-and bioinformatics.

BMC Bioinformatics 8:59. doi: 10.1186/1471-2105-8-59

Tarcsay, A. K., and Keseru, G. R.M. (2013). Contributions of molecular

properties to drug promiscuity: miniperspective. J. Med. Chem. 56, 1789–1795.

doi: 10.1021/jm301514n

Trott, O., and Olson, A. J. (2010). AutoDock Vina: improving the speed and

accuracy of docking with a new scoring function, efficient optimization, and

multithreading. J. Comput. Chem. 31, 455–461. doi: 10.1002/jcc.21334

van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE. J. Mach.

Learn. Res. 9, 2579–2605.

Van Vleet, T. R., Liguori, M. J., Lynch, I. I. I., J. J., Rao, M., and Warder, S. (2018).

Screening strategies and methods for better off-target liability prediction

and identification of small-molecule pharmaceuticals. Slas Disc. 24, 1–24.

doi: 10.1177/2472555218799713

Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., and

Kopple, K. D. (2002).Molecular properties that influence the oral bioavailability

of drug candidates. J. Med. Chem. 45, 2615–2623. doi: 10.1021/jm02

0017n

Vidal, D., Garcia-Serna, R., and Mestres, J. (2011). “Ligand-based approaches

to in silico pharmacology,” in Chemoinformatics and Computational

Chemical Biology (Springer), 489–502. doi: 10.1007/978-1-60761-

839-3_19

Vidal, D., and Mestres, J. (2010). In silico receptorome screening of antipsychotic

drugs.Mol. Inform. 29, 543–551. doi: 10.1002/minf.201000055

Waring, J. F., Gum, R., Morfitt, D., Jolly, R. A., Ciurlionis, R., Heindel, M.,

et al. (2002). Identifying toxic mechanisms using DNA microarrays: evidence

that an experimental inhibitor of cell adhesion molecule expression signals

through the aryl hydrocarbon nuclear receptor. Toxicology 181, 537–550.

doi: 10.1016/S0300-483X(02)00477-8

Waring, J. F., Yang, Y., Healan-Greenberg, C. H., Adler, A. L., Dickinson, R.,

McNally, T., et al. (2008). Gene expression analysis in rats treated with

experimental acetyl-coenzyme A carboxylase inhibitors suggests interactions

with the peroxisome proliferator-activated receptor α pathway. J. Pharmacol.

Exp. Ther. 324, 507–516. doi: 10.1124/jpet.107.126938

Welch, B. L. (1951). On the comparison of several mean values: an alternative

approach. Biometrika 38, 330–336. doi: 10.1093/biomet/38.3-4.330

Wenlock, M. C., Austin, R. P., Barton, P., Davis, A. M., and Leeson, P. D. (2003). A

comparison of physiochemical property profiles of development and marketed

oral drugs. J. Med. Chem. 46, 1250–1256. doi: 10.1021/jm021053p

Whitebread, S., Dumotier, B., Armstrong, D., Fekete, A., Chen, S., Hartmann,

A., et al. (2016). Secondary pharmacology: screening and interpretation of

off-target activities–focus on translation. Drug Discov. Today 21, 1232–1242.

doi: 10.1016/j.drudis.2016.04.021

Wilcoxon, F., Katti, S., and Wilcox, R. A. (1970). Critical values and probability

levels for the Wilcoxon rank sum test and theWilcoxon signed rank test. Select.

Tables Mathemat. Statist. 1, 171–259.

Willett, P. (2009). Similarity methods in chemoinformatics. Ann. Rev. Inform. Sci.

Technol. 43, 1–117. doi: 10.1002/aris.2009.1440430108

Yang, Y., Chen, H., Nilsson, I., Muresan, S., and Engkvist, O. (2010). Investigation

of the relationship between topology and selectivity for druglike molecules. J.

Med. Chem. 53, 7709–7714. doi: 10.1021/jm1008456

Zloh, M., and Kirton, S. B. (2018). The benefits of in silico modeling to identify

possible small-molecule drugs and their off-target interactions. Future Med.

Chem. 10, 423–432. doi: 10.4155/fmc-2017-0151

Conflict of Interest Statement: All authors are employed by AbbVie. The design,

study conduct, and financial support for this research was provided by AbbVie.

AbbVie participated in the interpretation of data, review, and approval of the

publication.

Copyright © 2019 Rao, Gupta, Liguori, Hu, Huang, Mantena, Mittelstadt, Blomme

and Van Vleet. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Big Data | www.frontiersin.org 17 July 2019 | Volume 2 | Article 25

https://doi.org/10.1038/nature11159
https://doi.org/10.1021/jm901241e
https://doi.org/10.1093/toxsci/kfy152
https://doi.org/10.1016/j.bmcl.2011.07.074
https://doi.org/10.1016/j.vascn.2017.02.020
https://doi.org/10.1021/ci600300k
https://doi.org/10.1016/j.cbpa.2010.06.166
https://doi.org/10.1146/annurev-biochem-062917-012550
https://doi.org/10.1038/s41598-017-04264-w
https://doi.org/10.1016/j.drudis.2012.01.001
https://doi.org/10.1007/978-981-10-3953-9_55
https://doi.org/10.1021/ci800344p
https://doi.org/10.4155/fmc.13.202
https://doi.org/10.1038/cddis.2014.420
https://doi.org/10.1124/mol.104.009266
https://doi.org/10.1021/acs.jmedchem.8b00686
https://doi.org/10.1016/S0038-0717(00)00179-6
https://doi.org/10.1371/journal.pcbi.1003257
https://doi.org/10.1186/1471-2105-8-59
https://doi.org/10.1021/jm301514n
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1177/2472555218799713
https://doi.org/10.1021/jm020017n
https://doi.org/10.1007/978-1-60761-839-3_19
https://doi.org/10.1002/minf.201000055
https://doi.org/10.1016/S0300-483X(02)00477-8
https://doi.org/10.1124/jpet.107.126938
https://doi.org/10.1093/biomet/38.3-4.330
https://doi.org/10.1021/jm021053p
https://doi.org/10.1016/j.drudis.2016.04.021
https://doi.org/10.1002/aris.2009.1440430108
https://doi.org/10.1021/jm1008456
https://doi.org/10.4155/fmc-2017-0151
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Novel Computational Approach to Predict Off-Target Interactions for Small Molecules
	Introduction
	Methods
	OTSA Framework
	OTSA Workflow
	Physicochemical Properties
	Testing Sets of Compounds
	Statistics

	Results
	Physicochemical Properties of the Approved, Discontinued, and Internal Molecules
	Predicted Off-target Interactions for the Approved and Discontinued Drugs
	Unique High-Scoring Off-Targets for the Approved and Discontinued Drugs
	Internal Test Compounds

	Discussion
	Uniqueness of the OTSA Platform
	Physicochemical Properties
	Limitations of Chemocentric Off-Target Prediction Methods
	Limitations of Protein Structure-Based Target Prediction Methods
	Strengths and Limitations of the OTSA

	Conclusions
	Author Contributions
	Supplementary Material
	References


