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Abstract: In this study, we investigate a physical mechanism to improve the light absorption efficiency
of graphene monolayer from the universal value of 2.3% to about 30% in the visible and near-infrared
wavelength range. The physical mechanism is based on the diffraction coupling of surface plasmon
polariton resonances in the periodic array of metal nanoparticles. Through the physical mechanism,
the electric fields on the surface of graphene monolayer are considerably enhanced. Therefore,
the light absorption efficiency of graphene monolayer is greatly improved. To further confirm the
physical mechanism, we use an interaction model of double oscillators to explain the positions of
the absorption peaks for different array periods. Furthermore, we discuss in detail the emerging
conditions of the diffraction coupling of surface plasmon polariton resonances. The results will be
beneficial for the design of graphene-based photoelectric devices.

Keywords: graphene monolayer; absorption efficiency; diffraction coupling; plasmon resonance

1. Introduction

When the visible and near-infrared electromagnetic waves are normally incident on the
surface of an undoped graphene monolayer suspended in the air, only several percentage
points of electromagnetic waves are absorbed by the graphene monolayer. The absorption
efficiency (A) of graphene monolayer can be estimated by its fine structure constant (α),
which is, A = πα = πe2/h̄c ≈ 2.3%. Here, c is the light speed, h̄ is the reduced Planck’s
constant, e is the electron charge, and π is the circumference ratio. The absorption efficiency
of 2.3% is a universal value, which does not depend on the wavelength of electromagnetic
waves in near-infrared, visible, and even violet regions [1,2]. Due to the considerably good
optical and electrical properties, graphene is known to hold a great promising potential in
photoelectric devices, such as photodetectors, modulators, perfect absorbers, photovoltaics,
photocatalysts, etc. [3–18]. However, the absorption efficiency of 2.3% is too low for
the efficient operation of graphene-based photoelectric devices. Recently, to overcome
the difficulty, a number of different solutions have been proposed [19,20], which mainly
include surface plasmon polariton resonances [21,22], magnetic resonances [23,24], guided
mode resonances [25,26], total internal reflections [27,28], Fabry-Perot resonances [29,30],
surface bound states of photonic crystals [31,32], waveguide modes [33], coherent optical
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beams [34], etc. The fundamental physical principle of these different solutions is to greatly
enhance the electric field intensity on the surface of graphene monolayer, and thus improve
the absorption efficiency of graphene. In far-infrared and THz regions, the graphene
monolayer itself is able to support surface plasmon polariton resonances, which can be
utilized to enhance the absorption in graphene [35,36]. However, in the visible and near-
infrared regions, the graphene monolayer no longer has this capability, and the other kinds
of plasmon resonances in metal nanostructures can be employed to improve the absorption
of graphene [37].

The diffraction coupling phenomenon of surface plasmon polariton resonances in the
periodic array of metal nanoparticles was theoretically predicted in the early years [38,39],
and then it was observed experimentally [40,41]. This diffraction coupling can produce
remarkably narrow collective resonances and came to be known as plasmonic surface
lattice resonances [42]. In recent years, plasmonic surface lattice resonances have received
increasing interest [43], owing to their extremely narrow linewidth and their accompanied
great electromagnetic field enhancement. In this experiment, the metal nanoparticle array
is commonly prepared on a dielectric substrate. However, it is hard to observe strong
surface lattice resonances due to the mismatch in the refractive index of the dielectric
substrate and the air [44]. To solve this problem, metal nanoparticles can be lifted by
dielectric pillars [45,46] or covered by a dielectric layer with a similar refractive index as
the dielectric substrate [47,48]. At present, plasmonic surface lattice resonances are able to
provide a large amount of potential applications, such as refractive index sensing [45,46],
fluorescent emission [47,48], and tunable lasing [49,50]. To date, there is no report regarding
the application of plasmonic surface lattice resonances in improving the light absorption of
graphene monolayer.

In this work, we study how to use plasmonic surface lattice resonances to improve
the light absorption efficiency of graphene monolayer in the visible and near-infrared
wavelength range. The surface lattice resonances result from the collective diffraction
coupling effect of localized surface plasmon polariton resonances in gold nanospheres
arranged into a periodic array. Through the excitation of surface lattice resonances, the
electric fields on the surface of graphene monolayer are considerably enhanced. Therefore,
the light absorption in graphene is greatly improved. To well explain the aforementioned
physical mechanism, we also employ an interaction model of double oscillators in order
to predict the positions of absorption peaks for different array periods. Furthermore, we
discuss the emerging conditions of surface lattice resonances. Therefore, our work will be
helpful in designing graphene-based photoelectric devices.

2. Methods

The investigated nanostructure is schematically shown in Figure 1. The graphene
monolayer is placed on the dielectric substrate of SiO2. The Au nanospheres on the surface
of the graphene monolayer are arranged into periodic arrays, which are covered by the
layer of SiO2. In this work, we have used a commercial software package “EastFDTD 5.0”
(https://www.eastfdtd.com, accessed on 1 September 2013) to calculate the absorption
spectra of the graphene monolayer in the visible and near-infrared regions. In addition,
some relevant electromagnetic field distributions are calculated by this commercial software
package. In our numerical calculations, the Au nanospheres have a complex refractive index,
which is dependent on the wavelength of the incident light. The complex refractive index
can be obtained from the experimental data [51]. The diameter d of the Au nanospheres
is 150 nm. The array periods of the Au nanospheres are px and py along the x-axis and
the y-axis directions, respectively. Each Au nanosphere is able to support the excitation
of the localized surface plasmon polariton resonance [52–56]. The SiO2 substrate and
the SiO2 cover layer have a constant refractive index of 1.45. The thickness t of the SiO2
cover layer is 500 nm. The most important role played by the SiO2 cover layer is to
make the surrounding medium of the Au nanospheres homogeneous, and thus realize the
diffraction coupling of the localized surface plasmon polariton resonance. The thickness of
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the graphene monolayer is 0.34 nm. For different wavelengths, the surface conductivity
and the anisotropic relative permittivity of the graphene monolayer can be calculated by
analytical expressions [57]. In Figure 1, the light is normally incident from top to bottom.
The directions of the electric field Ein, the magnetic field Hin, and the wave vector Kin of the
incident light, are indicated by the black arrows in the top left corner. The basic principle
of the simulation software is the finite difference time domain method of electromagnetic
wave, which is based on the well-known Maxwell equations. In the numerical simulation,
we set two perfectly matched layers with a thickness of 500 nm to completely eliminate the
reflection of the electromagnetic wave in the positive and negative directions of the z-axis.
Considering the periodicity of the structure, we also set two periodic boundary conditions
in the two directions of the x-axis and the y-axis, respectively. To achieve reliable results
with numerical convergence, the mesh size in the regions of graphene is ∆s = 0.05 nm, and
the mesh size in the other material regions is ∆s = 20 nm. Similarly, the time step is set to
be ∆t = ∆s/2c, where c is the speed of light propagating in a vacuum. As the light source,
a Gauss pulse with a center wavelength of 900 nm is normally incident on the studied
structure.
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Figure 1. The unit cell of the investigated structure to enhance the light absorption of graphene
monolayer.

3. Results and Discussion

In Figure 2, we show the normal-incidence absorption spectra of the graphene mono-
layer in the visible and near-infrared wavelength range from 600 to 1200 nm, for the two
cases: With or without the cover layer of SiO2. In the case with the cover layer (see the
red line), we observe an obvious absorption peak, which is centered at the wavelength
of λ = 1026.5 nm. At the peak, the maximum absorption efficiency of the graphene mono-
layer can reach up to 30%, which is far larger than the universal value of 2.3%. This light
absorption enhancement in the graphene monolayer is beneficial to the graphene-based
photoelectric devices. The absorption peak is relatively narrow, which has a full width
at half maximum (FWHM) of about 10 nm. The physical mechanism of the absorption
peak is the collective diffraction coupling effect of the surface plasmon polariton resonance
in the periodic array of Au nanospheres. For comparison, we have also calculated the
corresponding absorption spectra in the case without the cover layer. As clearly shown
by the black line in Figure 2, the absorption peak will disappear. In the case without the
cover layer, the Au nanospheres no longer have a homogeneous surrounding medium. The
collective diffraction coupling effect will not happen, due to the mismatch in the refractive
index of the dielectric substrate and the air [58].

To effectively understand the physical mechanism of the absorption peak, we calcu-
lated the electromagnetic field intensities at the wavelength of λ = 1026.5 nm on the xy
plane, as shown in Figure 3. Two “hotspots” of electric fields near the Au nanosphere are
clearly seen in Figure 3a, which result from the excitation of the localized dipolar plasmon
polariton resonance of the Au nanosphere. In addition to the two “hotspots”, there are
three parallel belt-shaped regions of the electric field enhancement in Figure 3a, and two
parallel belt-shaped regions of the magnetic field enhancement in Figure 3b. These regions
of electromagnetic fields are the trails of the diffraction wave propagating along the y-axis
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direction. In the investigated wavelength range from 600 to 1200 nm, the period px is
only 400 nm. Therefore, all of the diffraction channels along the x-axis direction are closed
completely. However, the zero-order diffraction channel along the y-axis direction is open
for the period py = 700 nm. When the zero-order diffraction wave grazes the array of the
Au nanospheres, it will strongly interact with the localized dipolar plasmon polariton reso-
nance. This interaction is able to enhance the electric fields on the surface of the graphene
monolayer, and thus improve the light absorption efficiency of graphene.
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As discussed above, by properly designing the array periods of the Au nanospheres,
the diffraction channel along the x-axis direction can be closed, and only the zero-order
diffraction channel along the y-axis direction is open. The zero-order diffraction channel
appears near the well-known Wood anomaly, whose wavelength depends on the array
period py (λWood = npy, n = 1.45 is the refractive index of the SiO2). Therefore, by changing
the array period py, we can tune the position of the absorption peak. In Figure 4a, we
have calculated the normal-incidence absorption spectra of the graphene monolayer, when
the array period py is increased from 480 to 700 nm in steps of 20 nm. When the value of
py is increased, it is clearly seen that the absorption peak shifts to the higher wavelength
accordingly. To further confirm the physical mechanism of the absorption peak, we have
used the interaction model of double oscillators [59] to predict the position of the absorption
peak for different array periods py. The black square in Figure 4b gives the practical position
of the absorption peak, which is obtained from Figure 4a. The red circle in Figure 4b gives
the corresponding position predicted using the interaction model, which is in a good
agreement with the practical position. In the interaction model, one oscillator is the
localized dipolar plasmon polariton resonance of the Au nanosphere, whose resonance
wavelength is 720 nm. The other oscillator is the zero-order diffraction wave along the
y-axis direction, whose resonance wavelength is at the Wood anomaly. The interaction
strength between these two oscillators is taken as ∆ = 25 meV. This value of ∆ is chosen to
satisfactorily predict the practical position of the absorption peak. The predicted position
of the absorption peak is obtained by the following formula:

E = (EWood + ELSP)/2 −
√

∆/2 + (EWood − ELSP)
2/4 (1)

where EWood and ELSP are the photon energies at the Wood anomaly and the localized
dipolar plasmon polariton resonance, respectively. The corresponding wavelength of the
photon energy E is the predicted position of the absorption peak.

Here, we will discuss the emerging conditions of the diffraction coupling of localized
dipolar plasmon polariton resonance in the periodic nanosphere array. To achieve a strong
collective effect of diffraction coupling, the surrounding medium of the Au nanospheres
should be homogeneous, and the cover layer of SiO2 plays this role, as shown in Figure 1.
In addition to this necessary condition, some other conditions should be satisfied, as
well. First, the period of the nanosphere array should be large enough for the zero-order
diffraction channels to be open in the investigated wavelength range from 600 to 1200 nm.
If the period is too small, the collective effect of diffraction coupling will not happen.
As clearly seen in Figure 5a, the absorption peak of the graphene monolayer disappears,
when the array period py is also shortened to be 400 nm. However, when the array
period py is set to be 700 nm, the absorption peak will appear, as shown in Figure 5b.
Second, the propagation direction of the diffraction wave must be perpendicular to the
polarization direction of the localized dipolar plasmon polariton resonance. In all of the
cases studies in this work, the electric field of the incident light is always along the x-axis
direction. Therefore, the polarization direction of the localized dipolar plasmon polariton
resonance also remains along the x-axis direction. For the array periods of px = 400 nm
and py = 700 nm, the diffraction wave propagates along the y-axis direction. In this case,
the propagation direction of the diffraction wave and the polarization direction of the
localized dipolar plasmon polariton resonance are mutually perpendicular. The above two
conditions are satisfied simultaneously. Therefore, we can observe an absorption peak in
Figure 5b. In contrast, for the array periods of px = 700 nm and py = 400 nm, the diffraction
wave propagates along the x-axis direction, whose propagation direction is parallel to
the polarization direction of the localized dipolar plasmon polariton resonance. For this
situation, the second condition is not satisfied. Therefore, in Figure 5c, we could not observe
an absorption peak. In Figure 5d, with the array periods of px = py = 700 nm, the zero-order
diffraction channels along the x-axis direction and the y-axis direction are both open, and
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the second condition is also satisfied for the diffraction wave propagating along the y-axis
direction. As a result, the absorption peak can exist, as well.
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Next, we will consider the influences of some factors on the absorption peak of the
graphene monolayer. Figure 6 shows the effect of a refractive index mismatch between
the dielectric substrate and the covering medium. When the refractive index n of the cov-
ering medium decreases from 1.45 to 1.36, the light absorption efficiency of the graphene
monolayer will be reduced quickly from 30% to about 6.5%. For the refractive index n of
the covering medium to be increased from 1.45 to 1.70, the absorption of the graphene
monolayer will also be reduced slowly to about 24%. The refraction index mismatch re-
sults in different phase velocities for the diffractive wave to propagate above and below
the substrate [41,42]. If a very large difference in the refractive index is found between
the cover layer and the dielectric substrate, it is hard to realize a strong interaction be-
tween the diffractive wave and the localized dipolar plasmon polariton resonances of
Au nanospheres [44]. As a result, the plasmonic surface lattice resonance mode in the
metal nanoparticle arrays could not be formed, and the absorption peak of the graphene
monolayer will also disappear. In addition, with the increasing value of the refractive index
n, the absorption peak of the graphene monolayer will red-shift, since the wavelength of
the Wood anomaly becomes longer. At the same time, the bandwidth of the absorption
peak will be broader, due to the larger radiation decay of the plasmonic surface lattice
resonance mode.
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The distance between the graphene and the nanosphere array is another factor to affect
the light absorption of the graphene, as shown in Figure 7. When the Au nanosphere is lifted
from the graphene monolayer by 5 to 90 nm, the absorption peak will decrease gradually
to 22%, since the plasmonic near-field near the graphene becomes weak. Moreover, we
have studied the influence of the size of the Au nanosphere on the absorption peak, which
is shown in Figure 8. For the diameter d of the Au nanosphere to be about 160 nm,
the graphene has a maximum absorption of about 33% at the plasmonic surface lattice
resonance. When the diameter d increases to 200 nm, the peak value will be reduced to
about 10%. In this case of larger diameter, the Au sphere array reflects more incident
light, and thus reduces the absorption in graphene. If the diameter d is only 110 nm, the
absorption peak will almost not exist, since the diffraction coupling of surface plasmon
polariton resonance among the Au nanospheres is very weak [44]. It is well known that the
absorption and the scattering of an individual nanosphere are radius-dependent, which
are directly proportional to r3 and r6, respectively, in the long-wave limit, in which the
wavelength of the incident light is far larger than the size of a nanosphere [60]. In our work,
this radius-dependent relation is not found, since the long-wave limit condition is not well
satisfied and simultaneously there is a strong interaction among the Au nanospheres. At
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the plasmonic surface lattice resonance, the absorption of the Au nanospheres is about 12%,
but it is very low for other wavelengths from 600 to 1200 nm.
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In Figure 9, we have also studied the effects of different metal materials and different
nanoparticle shapes on the absorption peak of graphene. When the Au nanosphere is
replaced by an Ag nanosphere, the absorption peak becomes a little sharper and increases
slightly to 36%, owing to the relatively smaller Joule loss in the Ag material. For the Au
nanosphere to be replaced by Au nanodisk or Ag nanodisk, the absorption peak of graphene
becomes much narrower, which is able to reach 39% and 51%, respectively. This proves
that the proposed physical mechanism is universal. The key role played by the periodical
array of metal nanoparticles is to excite the plasmonic surface lattice resonance, which
can greatly enhance the electric fields on the surface of graphene, and thus improve the
light absorption efficiency of the graphene monolayer. Finally, we should mention that the
two oscillator models are still applicable to the above modified parameters. However, the
excitation wavelength of the surface plasmon polariton resonance of metal nanoparticles
will change for different parameters. Similarly, the interaction strength ∆ will also change,
which must be reset to accurately predict the position of the absorption peak.
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Figure 9. The normal-incidence absorption spectra of the graphene monolayer, for the Au nanosphere
to be replaced by the Ag nanosphere, the Au nanodisk, and the Ag nanodisk, respectively. The
array periods are px = 400 nm and py = 700 nm. The nanospheres have a diameter of 150 nm. The
nanodisks have a diameter of 120 nm and a thickness of 60 nm.

4. Conclusions

In summary, we have investigated a physical mechanism for enhancing the light
absorption efficiency of graphene monolayer from the universal value of 2.3% to about 30%
in the visible and near-infrared wavelength range. The physical mechanism is based on the
collective diffraction coupling effect of localized surface plasmon polariton resonance in the
periodic array of metal nanoparticles. Through this collective diffraction coupling effect,
the electric fields on the surface of graphene monolayer are considerably enhanced, and
thus the light absorption efficiency of graphene monolayer is greatly improved. To further
confirm the physical mechanism, we have used the interaction model of double oscillators
to predict the positions of the absorption peaks for different array periods. Moreover, we
have discussed in detail the emerging conditions of the collective diffraction coupling
effect. First, the array period should be large enough for the zero-order diffraction channels
to be open in the investigated wavelength range. Second, the propagation direction of
the diffraction wave must be perpendicular to the polarization direction of the localized
dipolar plasmon polariton resonance. In addition, for the collective diffraction coupling
effect to take place, the surrounding medium of the metal nanoparticle array should be
homogeneous. The above results are beneficial for the design of the graphene-based
photoelectric devices.
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