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Abstract

Surface plasmon resonance imaging and surface plasmon induced fluorescent are sensitive tools for surface analysis.
However, existing instruments in this area have provided limited capability for concurrent detection, and may be large and
expensive. We demonstrate a highly cost-effective system capable of concurrent surface plasmon resonance microscopy
(SPRM) and surface plasmon resonance-enhanced fluorescence (SPRF) imaging, allowing for simultaneous monitoring of
reflectivity and fluorescence from discrete spatial regions. The instrument allows for high performance imaging and
quantitative measurements with surface plasmon resonance, and surface plasmon induced fluorescence, with inexpensive
off-the-shelf components.
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Introduction

Laboratories in the developing world may be severely resource-

constrained in terms of funding, physical infrastructure, and high-

end technical support personnel [1]. Instruments aimed at

building the capacity for research in developing countries must

therefore be constructed from easily available off-the-shelf compo-

nents, be simple to maintain, and be highly cost-effective, whilst

ideally providing multiple modality capability on the same device.

In our laboratory we are investigating instruments and assays for

both conducting research and field deployment in resource-poor

areas [2,3].

Surface plasmons are charge density-oscillations created at the

interface of two media with dielectric constants of different signs,

for example between a noble metal and glass. The resonance of

these surface plasmons can occur when the wavevector of p-

polarized light incident upon an interface matches the wavevector

of the surface plasmons; this matching of wavevectors is

characterized by a drop in the photon flux reflected from the

interface. Fields associated with surface plasmons extend into the

media surrounding the interface and decay exponentially, and are

thus sensitive to changes in the media around them [4]. Surface

plasmon resonance imaging or microscopy (SPRM), as introduced

by Rothenhausler and Knoll in 1988 [5], uses the excitation of

surface plasmons to simultaneously interrogate the near-surface

refractive index (RI) at multiple sites at a sample surface. The

electric field of the surface plasmons can also be used to excite

near-surface fluorophores (SPRF) [6]. This technique allows for

highly sensitive and localized detection due to surface confinement

(the surface plasmon field is evanescent and decays exponentially),

enhancement of the incident electric field intensity (up to 806
depending upon the metal layer [7,8]), and reflection of the

excitation light at the interface which reduces unwanted

background light. Previous SPRM/SPRF systems using lasers

have exhibited good performance utilizing the highly desirable

qualities of laser sources such as collimated output, high power and

narrow bandwidth [6,9,10,11,12]. However, to our knowledge

imaging in both SPR and SPRF modes simultaneously has not

been accomplished, potentially due to speckle artifacts caused by

the coherent laser illumination, limiting the ability of these systems

to simultaneously track and spatially discriminate between

different regions in the sample. In our system the light source

used is a conventional laser pointer available at myriad office

supply stores. This is coupled with an acoustic transducer to

‘‘despeckle’’ or average out intensity variations due to speckle

formation. The use of dark Mylar on the sample flowcell greatly

reduces adhesive-derived scattering of the excitation light, allowing

for the simultaneous measurement of multiple independent

channels on the same flowcell. We demonstrate a highly cost-

effective system capable of simultaneously interrogating a sample

under SPRM and SPRF, thus spatially discriminating between

regions on the same sample. Applications of concurrent SPRM/

SPRF include the ability to monitor the the thickness and

physiochemical properties of surface layers simultaneously [13],
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the detection and quantification of multiple analytes onto a surface

[14,15], and to study reactions between multiple proteins

interacting at a surface [16]. The concurrent techniques could

thus potentially be used to discriminate between specific and non-

specific binding events in hetrogenous immunoassays in real-time.

In addition, the SPRM and SPRF components can be utilized

individually to perform a wide range of biological assays

[17,18,19,20,21].

Methods

The schematic of our system is shown in Figure 1A with a

photograph in Figure 1B, where the Kretschmann configuration

[22,23] is clearly seen. The light source used here is an

inexpensive diode pumped solid state laser with the output

wavelength centered at 654 nm. The output beam is linearly

polarized (50:1) and is available commercially (Office Depot,

Delray Beach, FL). The laser pointer is mounted on an optical

stage (Newport Corporation, Irvine, CA) using a simple

aluminum mount. The laser can be powered by two 1.5 V silver

oxide batteries, but to achieve a more consistent power supply we

used a 3 V AC-to-DC adaptor. SPR microscopy instruments

driven by coherent illumination can suffer from dramatically

reduced image quality due to interference effects, the so-called

speckle artifact. We have devised a simple and highly-cost

effective method of increasing the quality of the image by an

order of magnitude using an acoustic despeckler [24]. In brief, by

rapidly changing the optical path length through vibrations of a

reflective membrane mounted over an acoustic transducer

(ACS43, Altec Lansing, Milford, PA), and by using a suitably

long integration time, the speckle artifact is averaged out.

Divergent light reflected from the membrane is collimated by a

convex lens and directed through an aperture to control beam

diameter before entering a BK-7 prism (Melles-Griot, Carlsbad,

CA) in the standard Kretschmann configuration, allowing light to

couple into the sample flowcell. This sample flowcell typically

consists of a Mylar flowcell [25] built upon a glass slide coated

with a 45 nm layer of gold. After exiting the prism the light is

focused on to a low-cost CCD camera (Orion Starshoot,

Watsonville, CA) originally designed for amateur astronomy by

means of convex lenses mounted in the Scheimpflug configura-

tion [26]. This forms the SPR microscopy (SPRM) section of the

instrument. To enable fluorescence imaging, two convex lenses

are placed along an axis normal to the sample flowcell, distally to

the incoming light, allowing fluorescence emissions generated

from the sample to be focused onto another CCD camera of the

same type as above. The placement of the lenses normal to the

flowcell allows the focusing of the greatest amount of photon flux

of the fluorescence emissions. A bandpass (700/75 nm) filter

(Chroma, Rockingham, VT) is placed between the lenses to

reduce the impact of any scattered and transmitted laser. This

forms the SPRF component of the system. The components for

this instrument can be purchased at retail for well under $1000

(USD).

Results

To calibrate the SPR microscopy system response to different

refractive indices (RI) present over the metal surface, we measured

the changes in reflectivity with changes in RI utilizing a protocol

established previously in our laboratory [22,23,24]. Briefly, NaCl

solutions of various concentrations are prepared, and the

corresponding RI measured in a refractometer. The solutions

are then passed through a flowcell attached to the prism and

reflectivity measured for each solution. The instrument response

for reflectivity vs. RI is shown in Figure 2. We estimate a limit of

detection of 1.361024 RI units; this is a useful range, in that such

a change in RI can be created by less than 5% of a monolayer of

bovine serum albumin (BSA) adsorbed to the surface [27]. To test

the fluorescence capability of the instrument, a clean glass slide

(Fisher Scientific, Pittsburgh, PA) was coated with a 1 nm layer of

Cr for adhesion, followed by a 45 nm layer of Au using an

electron-beam evaporator (Washington Technology Center,

Seattle, WA). The Au surface was cleaned for 10 minutes with a

ammonium hydroxide/hydrogen peroxide and DI water solution

(1:1:5 by volume). Two 1 mL drops of BSA labeled with Alexa

Fluor 647, and one 1 mL drop of BSA labeled with Alexa Fluor

488 (Invitrogen, Carlsbad, CA) were deposited upon the gold

coated slide forming a test pattern as shown in Figure 3a.

Incubation for 45 minutes took place in a sealed Petri dish with a

damp paper towel (to avoid solvent loss by evaporation), after

which the excess BSA from the spots was pipetted away. A flowcell

[25] was then assembled upon the Au-coated slide and rinsed with

DI water. The slide was then imaged through conventional

epifluorescence microscopy using filters for Alexa Fluor 488

(Figure 3b) and Alexa Fluor 647 (Figure 3c). The flowcell was then

placed upon the prism in our instrument and SPRM (Figure 3d)

and SPRF (Figure 3e) images taken (integration times of 30ms and

Figure 1. System Overview. Top view schematic (A) (not to scale)
and photograph (B) of the instrument with the sample oriented
horizontally.
doi:10.1371/journal.pone.0009833.g001
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20s respectively). SPR microscopy shows the presence of three

spots, whereas the SPRF image only shows the spots labelled with

Alexa Fluor 647, since the laser light wavelength (654 nm) does

not overlap with the excitation spectra of the Alexa Fluor 488.

This demonstrates the label-less detection of the SPR microscope,

as well as the specificity of the system in SPR-enhanced

fluorescence mode. During our fluorescence measurements, we

noticed that regions of the flowcell where the adhesive layer was in

direct contact with the gold produced a significant scattering signal

even with the presence of the long-pass filter. The adhesive

scattering signal was stronger than the signal from a blank channel

containing PBS by an order of magnitude, and quite capable of

overwhelming the signal from the channels in the flowcell. In

order to eliminate this adhesive-based scattering, thus allowing for

effective imaging of multiple channels on a single flowcell,

customized, adhesive-coated black Mylar was ordered (Fraylock

Inc., San Carlos, CA, USA), and was used to construct those areas

of the flowcell that were in direct contact with the gold surface.

In order to test the linearity of the fluorescence system with dye

concentrations, a Mylar flowcell was assembled over a freshly

cleaned Au-coated slide as mentioned above. Different concen-

trations of Alexa Fluor 647 non-reactive dye were prepared

through serial dilutions and passed through the flowcell, from

which fluorescence intensity measurements were taken. Apart

from the SPRF, the fluorescence signal may have a strong

component caused by scattered light. To measure the contribution

of any scattered light, the angle of the prism was tuned to be just

off the resonance angle, and the drop in fluorescence intensity

measured. We observed the scattering to be less sensitive to small

changes in angle compared to the SPRF signal (data not shown).

Thus difference between the fluorescence intensities at resonance

(SPRF + scattering) and just off-resonance (scattering) allows the

determination of the fraction of the fluorescence signal due to

scattering (,35%); this was subtracted from our fluorescence

measurements. The results from the calibration experiments are

illustrated in Figure 4, and we estimate a LOD of 30 nM of Alexa

Fluor 647.

Discussion

In conclusion, an instrument capable of concurrent surface

plasmon resonance microscopy and surface plasmon resonance-

enhanced fluorescence imaging has been constructed and

demonstrated. Whilst sensitive independent instruments are

available with these capabilities, our instrument uniquely provides

both these capabilities in one compact and highly cost-effective

unit. Potential uses include point-of-care diagnostics and lab-on-a-

chip applications for global health, where the quantitation of

labelled and unlabelled proteins on the same device may be

necessary and cost efficacy is highly relevant.

Acknowledgments

We acknowledge Dr. Kjell Nelson for helpful discussions and Paolo Spicar-

Mihalic for assistance with protein patterning.

Author Contributions

Conceived and designed the experiments: RT PY. Performed the

experiments: RT. Analyzed the data: RT. Contributed reagents/

materials/analysis tools: RT. Wrote the paper: RT.

Figure 3. Fluorescence Component Testing. A) Illustrating the
schematic of the pattern spotted on the Au-coated slide. B) and C)
Images observed through conventional epifluorescence microscopes
with filters for Alexa 488 and Alexa 647. D) SPRM Image: all three spots
are seen since the SPRM detects the change in the refractive index due
to deposition of the BSA. Image is compressed in the x-axis due to the
high incident angle of the incoming light. E) SPRF image: only 2 spots,
those with Alexa Fluor 647 are seen in the SPRF image.
doi:10.1371/journal.pone.0009833.g003

Figure 4. Fluorescence System Calibration. Normalized fluores-
cence response for different fluorophore concentrations in our
instrument. Background subtraction using a control channel on the
same flowcell was performed. Inset shows the system response at the
lower end of the dilution range.
doi:10.1371/journal.pone.0009833.g004

Figure 2. SPRM Calibration. Illustrating the change in reflectivity as
a function of refractive index. To compensate for laser power output
variations, normalization of the intensity in the region of interest in the
flowcell took place against the static adhesive regions surrounding the
flowcell. The different refractive indices were obtained by flowing NaCl
solutions through the sample flowcell.
doi:10.1371/journal.pone.0009833.g002
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