
Journal of

Personalized 

Medicine

Case Report

The Temple Grandin Genome: Comprehensive Analysis in a
Scientist with High-Functioning Autism

Rena J. Vanzo 1,*,† , Aparna Prasad 1,† , Lauren Staunch 1 , Charles H. Hensel 1, Moises A. Serrano 1,
E. Robert Wassman 1, Alexander Kaplun 2, Temple Grandin 3 and Richard G. Boles 4

����������
�������

Citation: Vanzo, R.J.; Prasad, A.;

Staunch, L.; Hensel, C.H.; Serrano,

M.A.; Wassman, E.R.; Kaplun, A.;

Grandin, T.; Boles, R.G. The Temple

Grandin Genome: Comprehensive

Analysis in a Scientist with

High-Functioning Autism. J. Pers.

Med. 2021, 11, 21.

https://doi.org/10.3390/

jpm11010021

Received: 13 November 2020

Accepted: 24 December 2020

Published: 29 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Lineagen, Inc., Salt Lake City, UT 84109, USA; aparna.ambastha@gmail.com (A.P.);
laurenstaunch@gmail.com (L.S.); ghensel3@comcast.net (C.H.H.); mserrano@lineagen.com (M.A.S.);
drwassman@icloud.com (E.R.W.)

2 Variantyx, Inc., Framingham, MA 01701, USA; alex.kaplun@variantyx.com
3 Department of Animal Science, Colorado State University, Fort Collins, CO 80523, USA;

Cheryl.Miller@ColoState.EDU
4 The Center for Neurological and Neurodevelopmental Health, Voorhees, NJ 08043, USA;

drboles@molecularmito.com
* Correspondence: rvanzo@lineagen.com
† These authors contributed equally to this work.

Abstract: Autism spectrum disorder (ASD) is a heterogeneous condition with a complex genetic
etiology. The objective of this study is to identify the complex genetic factors that underlie the ASD
phenotype and other clinical features of Professor Temple Grandin, an animal scientist and woman
with high-functioning ASD. Identifying the underlying genetic cause for ASD can impact medical
management, personalize services and treatment, and uncover other medical risks that are associated
with the genetic diagnosis. Prof. Grandin underwent chromosomal microarray analysis, whole exome
sequencing, and whole genome sequencing, as well as a comprehensive clinical and family history
intake. The raw data were analyzed in order to identify possible genotype-phenotype correlations.
Genetic testing identified variants in three genes (SHANK2, ALX1, and RELN) that are candidate risk
factors for ASD. We identified variants in MEFV and WNT10A, reported to be disease-associated in
previous studies, which are likely to contribute to some of her additional clinical features. Moreover,
candidate variants in genes encoding metabolic enzymes and transporters were identified, some of
which suggest potential therapies. This case report describes the genomic findings in Prof. Grandin
and it serves as an example to discuss state-of-the-art clinical diagnostics for individuals with ASD,
as well as the medical, logistical, and economic hurdles that are involved in clinical genetic testing
for an individual on the autism spectrum.

Keywords: autism spectrum disorder; genetic testing; chromosomal microarray analysis; whole
exome sequencing; whole genome sequencing; clinical utility; polygenic risk scores; Temple Grandin

1. Introduction

Autism spectrum disorder (ASD) is one of the most common neurodevelopmental
disorders characterized by impairments in communication and social interaction and the
presence of restrictive and repetitive behaviors [1]. The American College of Medical Genet-
ics and Genomics (ACMG) recommends genetic evaluation for individuals with ASD [2].
Discovering the underlying genetic cause for ASD can improve the care and management
by personalizing services and treatment, including addressing the medical risks that are
associated with the genetic diagnosis [3]. We performed chromosomal microarray (CMA), as
well as whole exome and genome sequencing (WES, WGS), on our co-author, Prof. Temple
Grandin (T.G.), a widely recognized animal scientist and woman with high-functioning
ASD, who is renowned for her insights on the condition. While using this report of the
genomic findings in T.G., we create a discourse on state-of-the-art diagnostics for indi-
viduals with ASD. Predictably, we found many variants of uncertain significance (VUSs).
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However, we also identified the variants that were previously reported in the literature as
pathogenic/disease-causing and overlap with her clinical features. Furthermore, many of
these variants lie in genes that will personalize medical management and guide potential
therapeutic options, which underscores the importance of clinical genetic testing in those
with ASD.

2. Materials and Methods
2.1. Case Report

T.G. was a full-term female infant born in 1947 after an uncomplicated pregnancy, labor,
and delivery. She had normal muscle tone and early motor milestones. However, she
did not make eye contact and had touch sensitivity and aversion, including stiffening up
when held by others. Even based on these specific features, ASD was not suggested as the
diagnostic entity had only been described four years previously [4]. A neurologist performed
an electroencephalogram and ruled out petite mal epilepsy, and a hearing test was normal.
T.G. was diagnosed with “minimal brain damage” at two years old. At two and a half years
old, expressive and receptive language delays were noted (she was non-verbal), and she was
enrolled in speech therapy. With intensive treatment and emphasis on turn-taking games, she
began speaking at age three and a half and was fully verbal by age four. She maintained typical
autistic behaviors, such as repetitively dribbling sand through her hands at the beach and
tantrums after sudden loud noises. The associated issues included stuttering and challenges
with auditory and sensory integration. In particular, touch aversion improved with the
use of a squeezing machine during childhood, which T.G. designed and has adapted in
order to improve ethical animal husbandry management [5]. She also reported difficulties
with social interactions in childhood and adolescence. The diagnosis of autism came later
in elementary school by a psychiatrist. At age nine years and at age twelve years, her IQ
was tested with the Wechsler. Her full-scale IQ was 120 on the first test and 137 on the
second test. The measurement of cognitive abilities ranged from disability to gifted; for
example, cognitive skills that require visualization, including block design and puzzle
completion, were superior, whereas auditory integration was reduced [5,6]. T.G. received a
Ph.D. and has been highly successful in her career regarding animal behavior-informed
agriculture design prior to her career lecturing on ASD. Despite the absence of formal
testing for ASD (based on age), T.G. meets current diagnostic criteria for ASD, given her
childhood clinical history. The family history is unremarkable for specific diagnoses of ASD
or intellectual disability in other family members. However, T.G.’s maternal grandmother
was medicated for anxiety, and T.G. suspects that her father had high-functioning ASD.
Both of T.G.’s parents held college degrees, and her maternal grandfather had particular
academic success as an MIT-trained engineer and co-inventor of the autopilot for airplanes.
The remainder of the family history is non-contributory without a suggested inheritance
pattern; further details on family history is withheld in order to maintain privacy.

T.G. reports a substantial, decades-long history of chronic myalgia, muscle rigidity,
paresthesia, and hyperesthesia of the feet, as well as sudden episodes of feeling “boil-
ing hot”. She reports coordination difficulties and tires easily with exercise, reportedly
since childhood. She experiences insomnia and requires physical exercise at bedtime
(“100 sit-ups”) to sleep. Severe anxiety and panic attacks have been major life-long issues
that have moderately improved on desipramine (50 mg/day since 1980). Desipramine also
alleviated colitis-like symptoms. Her diet is high in animal protein, and its reduction or
elimination results in perceived irritability. A peculiar rash with eczema- and psoriasis-like
features, which had been present since early childhood and diagnosed in adolescence as
eczema, responds to topical steroids. She has a widow’s peak (a V-shaped growth of hair
in the center of the forehead). Cranial MRI identified the asymmetry of the ventricles and a
reduction in cerebellum size [7].

T.G. has microdontia and hypodontia, including six missing adult teeth (two on
bottom, four on top, bilaterally symmetrical) which are absent on x-ray; she did not lose
the corresponding deciduous teeth until the third to sixth decades. Two dentists have
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commented that she has a high arched palate. Additional ectodermal dysplasia (ED)-
related manifestations include soft and very brittle nails, hyperhidrosis, and body hair loss
since the fifth decade of life.

2.2. Sample and Genetic Analysis

We obtained written consent from T.G. to disclose her name and health information
for this study and publication. We did not have access to parental samples. Genomic DNA
was extracted from an oral swab (OC-100Dx, DNA Genotek, Kantana, ON, Canada) using
the PureGene extraction kit (Qiagen, Inc., Valencia, CA, USA). DNA extraction and all the
analyses were performed in CAP and CLIA certified laboratories. Table 1 presents details
regarding the various genetic testing technologies utilized in this study.

Table 1. Genetic testing methodologies utilized for Prof. Grandin in this study.

Genetic Test Technology Interpretation

Chromosomal microarray (CMA) Custom-designed 1 Affymetrix
microarray [8].

Chromosome Analysis Suite v2.0.1 software
(Thermo Fisher Scientific, Santa Clara, CA)

Whole exome sequencing (WES)

Enrichment: Ion AmpliSeqTM Exome Kit
(Thermo Fisher Scientific)
Sequencing: Ion Proton sequencing
system (Thermo Fisher Scientific) with
200 bp amplicon read technology.
Genome Reference Consortium Human
Build 37 (GRCh37, hg19) using the Ion
Torrent Suite software v4.2 (Thermo
Fisher Scientific)

Clinical Sequence Analyzer tool from WuXi
NextCode 2 (https://www.wuxinextcode.com)
Non-sense, missense and splice site variants
were analyzed and were assessed for predicted
deleterious effects using the Variant Effect
Predictor (VEP) score [9].

Whole genome sequencing (WGS)

2 × 150 bp reads on Illumina
next-generation sequencing systems
(mean coverage of 30x in the target
region, including coding exons and 10 bp
of flanking intronic sequence of the
known protein-coding Ref-Seq genes) 3

Alignment to human reference genome
hg19 and GRCh38

Primary data analysis: Illumina DRAGEN Bio-IT
Platform v2.03, interpreted on internal
proprietary software from Variantyx,
Framingham, MA, USA.
Secondary and tertiary data analysis: Internal
laboratory systems and Biodiscovery’s
NxClinical v4.3 or Illumina DRAGEN Bio-IT
Platform v2.03 for CNV and absence of
heterozygosity
Detection and annotation of structural variants:
The variants were called and annotated using
Variantyx Genomic Intelligence structural
variant pipeline [10].

Caption. 1 Affymetrix CytoScan-HD microarray plus 88,435 custom probes added to improve detection of copy number variants (CNVs)
associated with neurodevelopmental disorders [8]. 2 Default settings used 3 >97% coverage of 22,000 genes in the genome at >30x.

3. Results

In our testing population on the aforementioned custom array, we have historically
observed that 28% of patients with neurodevelopmental disorders have one or more
abnormal or potentially abnormal copy number variants (CNVs) [11]. In the case of T.G.,
we did not identify any pathogenic or likely pathogenic CNVs on either custom CMA or
WGS, as reported through our clinical pipeline and ACMG reporting criteria [12], and
the results were consistent with a normal female chromosome complement. However,
out of over 4000 structural variants of different types (including deletions, duplications,
inversions, LOH, break points, and insertions of transposable elements; see Table S2 for
complete list) some of the variants of unknown significance could be relevant to patient’s
phenotype given their relevance to brain pathology. Two of these variants are discussed in
more detail below, both being located on the q arm of chromosome 9.

One of them, a heterozygous duplication of chr9q34.3q34.3x3(138,014,000–138,228,000)
is about 200 kbp long and it includes several noncoding genes and exons 19 to 47 of
a calcium channel gene CACNA1B. CACNA1B is associated with Neurodevelopmental

https://www.wuxinextcode.com
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disorder with seizures and nonepileptic hyperkinetic movements, according to OMIM.
The disease is autosomal recessive, and while the deletion has a 0.00035 allele frequency
in general population (four cases out of 11,295 in DGV database), one cannot completely
exclude mild phonotype in heterozygotes.

Another candidate structural variant is a 1656 bp heterozygous deletion of chr9q34.13q34.13
x1(131,153,102–131,154,758), which is not found in the general population. The deletion affects
exon 3 of non-coding gene RP11-544A12.4. Interestingly, this gene overlaps NUP214, which is
located on the opposite DNA strand and, according to OMIM, is associated with susceptibility
to acute infection-induced encephalopathy-9. However, the facts that disease is recessive and
for NUP214 the deletion is entirely intronic suggest that this variant is a less feasible candidate
to be causative, at least not by itself.

WGS interpretation also revealed that CGG repeats that correspond to fragile X
syndrome are 30,30 (a frequent normal genotype).

Three sequence variants of interest were identified in suspected or known ASD risk
genes SHANK2, ALX1, and RELN (Table 2). Nevertheless, as of November 2020, none of
these variants met the ACMG guidelines for “pathogenic” or “likely pathogenic” desig-
nation and, thus, are clinically classified as variants of uncertain significance (VUS) [12].
A heterozygous missense variant in SHANK2 (p.H64R) was identified. This missense
variant is a change from histidine to arginine. The histidine at this location does not
lie in any well-defined protein domains. However, histidine is present at this location
in primates. Further, the substitution of histidine to arginine is predicted by SIFT to be
deleterious. This suggests that the his to arg amino acid substitution may alter protein
function. Additionally, the variant is only observed in seven of 184,874 reference alle-
les (allele frequency: 3.79 × 10−5) in the Genome Aggregation Database, a database of
approximately 141,000 individuals without severe genetic conditions (gnomAD) [13,14].
Several studies suggest a role for SHANK2 in ASD and/or intellectual disability (ID). In
one publication, a patient with ASD harbored a de novo nonsense variant in SHANK2, while
two additional, unrelated patients with ASD and mild-to-moderate intellectual disability
had de novo deletions in SHANK2 [15]. This study suggests that the haploinsufficiency
of the SHANK2 gene may affect synaptic function and predispose to ASD and/or ID. In
a subsequent study, a novel de novo SHANK2 deletion was identified in another patient
with ASD. Further, sequencing identified a significant enrichment of variants affecting
conserved amino acids in SHANK2 (3.4% of autism cases and 1.5% of controls, P = 0.004,
OR = 2.37) [16]. In neuronal cell cultures, the variants that were identified in patients were
associated with reduced synaptic density at dendrites when compared to variants that were
only detected in controls. Interestingly, the three patients with de novo deletions identified
in the two aforementioned studies also carry inherited CNVs at 15q11-q13 previously asso-
ciated with neuropsychiatric disorders [17–19]. These data strengthen the role of synaptic
gene dysfunction in ASD and support the "multiple hit model", suggesting that a better
knowledge of these genetic interactions will be important in understanding the complex
inheritance pattern of ASD [18,20].

A heterozygous missense variant (p.R64L) was identified in the ALX1 gene. ALX1
encodes a transcription factor that plays a role in development, including proper neural
crest migration in animal models [21]. Bi-allelic loss-of-function variants in ALX1 cause
frontonasal dysplasia, while gain-of-function variants are hypothesized to impact neu-
rodevelopment [22,23]. T.G.’s craniofacial finding of a “widow’s peak” could be related
to this variant, as neural crest cells can be found in hair follicles [24]. This variant was
found in 1203 of the 280,730 reference alleles (allele frequency: 0.004285) in the gnomAD
database [14]. Additionally, the variant identified in T.G. was one of several potential ASD
risk variants that were identified in two unrelated multiplex families [25]. In one family,
this variant was shared by two siblings with ASD and it was inherited from their unaffected
father. In the second family, the variant was found in an individual with ASD and it was
not found in his two brothers with ASD, but was inherited from his unaffected father. Im-
portantly, reportedly unaffected parents were not phenotyped in detail in that publication.
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The authors showed the ALX1 variant was observed multiple times in their population
study (27/1541 cases and 58/5785 controls), yielding an odds ratio of 1.75 (95% confidence
interval 1.11 to 2.77; p = 0.022; on page 7 of Matsunami et al., 2014 [25]). Although this
specific variant has been observed in a supposedly unaffected control population, its higher
prevalence in individuals with ASD when compared to those without ASD supports it as
a potential risk factor. Further research is needed in order to confirm the impact of this
variant on gene function and the role of ALX1 in ASD susceptibility.

A heterozygous missense variant in the RELN gene (p.T1002S) was also identified in
T.G. RELN encodes the reelin protein, which is thought to control interactions between cells
for cell positioning and neuronal migration. Although the serine for threonine substitution
is conservative and does not lie within any known protein domain, this variant was not
present in the gnomAD database and it is conserved across different vertebrate species,
except lamprey (PhyloP 1.048) [14]. Variants in RELN are associated with autosomal
recessive lissencephaly with cerebellar hypoplasia (OMIM). In addition, de novo variants in
RELN have been observed in individuals with ASD in several studies [26–28].

MEFV is a fourth gene that harbored variants with clinical overlap for T.G. Two
heterozygous variants, p.R408Q and p.P369S, were identified in T.G. and they have been re-
ported to be disease-associated. Allele frequencies in the gnomAD database are 0.00001595
(four out of 250,794 reference alleles) and 0.01470 (4150 out of 282,228 reference alleles, re-
spectively [14]. The MEFV gene encodes a protein, called pyrin, whose function is not fully
understood, but appears to direct the migration of white blood cells to sites of inflamma-
tion and downregulate the inflammatory response following the improvement of infection
or injury. Over 80 variants in MEFV have been associated with familial Mediterranean
fever (FMF), a highly complex and variable condition that can exhibit either autosomal
dominant or autosomal recessive inheritance [29]. Studies suggest these variants are in
linkage disequilibrium and are, thus, in cis [30]; indeed, a review of the WGS read data that
were utilized in this study (2 × 150 bp) was long enough to confirm cis phasing.]. Despite
having ClinVar associations that range from “benign” to “pathogenic”, these variants,
when found together, have been published as associated with disease and they are often
included in clinical gene panels that are designed to test for FMF [31,32]. Most of the
patients with both variants are reported to have an atypical clinical presentation. Although
T.G. does not strictly meet the Tel-Hashomer clinical criteria for FMF, she has symptoms
that are consistent with the atypical presentation of the condition seen in those with the
same genotype, including frequent intermittent hot spells, muscles that are stiff and sore,
episodes of calor, and paresthesia in both feet, and lifelong skin rashes that are diagnosed as
eczema [32]. FMF has not been reported to be associated with ASD; however, inflammation
is one of many pathways implemented in ASD pathogenesis and, thus, we cannot exclude
these variants as being risk factors for ASD in T.G.

Further, WNT10A is another gene harboring a variant with overlap to T.G.’s phenotype.
A homozygous variant (p.F228I) has been previously reported as pathogenic. WNT10A is a
member of the WNT gene family, which encodes proteins that are implicated in several
developmental processes, including the regulation of cell fate and patterning during
embryogenesis [33]. Although p.F228I is a conservative amino acid substitution, the amino
acid at this position is conserved across different species (PhyloP 0.964) and the variant has
been predicted to be deleterious to the protein structure or function by in silico prediction
tools. The variant identified here has been reported previously, either in the homozygous
state or in trans with a second pathogenic variant, in individuals with either isolated
oligodontia, tooth agenesis, or with other features of ED [34–38]. The p.F228I variant that
is identified in T.G. is observed at a relatively high frequency in the general population
(heterozygous carrier frequency: 0.0137, homozygote frequency: 0.000153 in the gnomAD
database) [14]. Oligodontia is observed in approximately 0.14% of the population and,
in one study, it was shown that variants in WNT10A were present in more than half of
the cases of isolated oligodontia [38,39]. The variant in WNT10A possibly explains the
multiple ED-like manifestations in T.G. involving her teeth, nails, hair, and sweat glands.
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Table 2. Rare missense variants that are potentially relevant to T.G.’s phenotype, identified on both whole exome and whole genome sequencing.

Gene Chromosome
[GRCh37] ISCN HGVS Protein

Reference
SIFT Predicted

Effect
Clinical

Classification
dbSNP/dbVar

ID

gnomAD Allele
Frequency (v2.1.1;

GRCh37)

Genotype
in T.G.

Symptoms
with Overlap

1 ALX1 12: 85674230 NM_006982.3:c.191G>T p.Arg64Leu Deleterious VUS rs115596276 0.004285 Het ASD

2 RELN 7: 103251145 NM_005045.4:c.3005C>G p.Thr1002Ser Tolerable VUS rs1376812440 NA Het ASD

3 SHANK2 11:70858182 NM_012309.4:c.191T>C p.His64Arg Deleterious VUS rs200995537 0.0000379 Het ASD

4 MEFV 16: 3299468 NM_000243.3:c.1223G>A p.Arg408Gln Tolerable Pathogenic rs11466024 0.00001595 Het FMF

5 MEFV 16: 3299586 NM_000243.3:c.1105C>T p.Pro369Ser Deleterious Pathogenic rs11466023 0.01470 Het FMF

6 WNT10A 2:219755011 NM_025216.3:c.682T>A p.Phe228Ile Deleterious Pathogenic rs121908120 0.0137 Homo ED

Caption. VUS-variant of uncertain clinical significance; NA-not available; Het-Heterozygous; Homo- Homozygous; ASD-autism spectrum disorder; FMF-familial Mediterranean fever; ED-ectodermal dysplasia;
rows 1–3 strong evidence to support autism susceptibility; rows 4–6 lists published pathogenic variants with excellent clinical correlation. Based on review of WGS raw data, MEFV variants are in cis. Note:
VKORC1 and CYP2C9 variants described in the text are polymorphisms and thus not represented in the rare variant table above.
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Please see Supplementary Table S1 for additional variants, which were identified in
both the whole exome and whole genome sequencing assays that were run independently,
with additional clinical overlap that potentially contributes to T.G.’s ASD, sleep pathogenesis,
anxiety, mitochondrial function, and more, including some with potential therapeutic targets.

From a proactive standpoint, sequencing also identified a CYP2C9 genotype that
was associated with slowed metabolism of many drugs, including the anticoagulant war-
farin [40]. This information, coupled with T.G.’s heterozygous status of the VKORC1
1639G>A variant also revealed by this testing, provides specific dosing information if war-
farin is prescribed to reduce the risk adverse events. Furthermore, this CYP2C9 genotype is
also correlated with slowed metabolism of the anti-epileptic drug phenytoin, which would
impact the dosing recommendations; this is critical information, given that there is a high
rate of comorbidity between epilepsy/seizures and ASD [41,42].

Given the presence of multiple genetic variants potentially contributing to the man-
ifestation of ASD in T.G., we sought to explore her data through a currently available
polygenic risk score (PRS) algorithm (impute.me). This algorithm showed that T.G.’s PRS
for ASD is lower than 99% and greater than 1% of the general population by assessing 17
single nucleotide polymorphisms (SNPs) that were previously reported to be associated
with ASD [43].

4. Discussion

We present this case of a female scientist, Prof. Temple Grandin, with high-functioning
ASD and other clinical sequelae, who was referred for clinical diagnostic testing. Through
various test methodologies, we identified variants of unknown significance in three ASD
risk genes (SHANK2, ALX1, and RELN) and other variants that impact genes that are
possibly relevant to ASD pathology. This supports the concept of a polygenic model in
ASD. Surprisingly, the PRS model used for T.G. showed her risk for ASD in the 1st centile of
the general population. The tool did provide a pie chart indicating that the genetic liability
captured by this assessment is very small (~1%), which echoes the disclaimer supplied in
other publications regarding the limitations of PRS for clinical application [44]. There are
several potential reasons for the contradictory ASD PRS score in T.G., given her clinical
diagnosis. The SNPs that were used to generate the score in the impute.me tool were
derived from case cohort individuals diagnosed with ASD prior to 2014 [43]. Importantly,
Asperger disorder was a diagnostic entity until 2013, according to the American Psychiatric
Association’s Diagnostic and Statistical Manual of Mental Disorders (DSM). Therefore,
the case cohort whose data are represented in the tool is likely more representative of
those individuals who are lower functioning, which is in stark contrast to the phenotype
of T.G. Additionally, we, as a community, do not yet know all of the genes and variants
contributing to ASD. Additionally, finally, some co-occurring traits in those with ASD
are also clearly polygenic (IQ and anxiety for instance) and may skew the algorithmic
outcomes. In summary, a low PRS score, at least for ASD, cannot be used to rule out the
potential for a future clinical diagnosis.

While T.G. herself does not harbor any known, identifiable ASD-related variants that
garner specific medical management changes, this is a possibility for others with ASD
and genetic testing should be pursued as a standard of care in line with ACMG and other
medical guidelines [45]. Importantly, genetic testing did identify actionable variants that
contribute to T.G.’s clinical symptomatology and can be specifically addressed in order
to improve her functional symptoms and prevent further medical issues. Of note, prior
to testing, additional neurological and non-neurological symptoms were attributed to a
broader diagnosis of ASD and not specifically addressed based on underlying genetic
etiology. This is critical for medical action, as well as family understanding, coping, and
improved quality of life.

For example, clinical features that disturb T.G.’s activities of daily living are long-
standing calor and paresthesia in both feet. These correlate with the two identified MEFV
variants that were reported in cases with atypical familial Mediterranean fever. FMF is a
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treatable condition, and T.G. has since been referred to see a specialist. In addition, the
homozygous pathogenic variant in WNT10A is likely to explain T.G.’s multiple ED-related
symptoms. Dentists and orthodontists incorporate specific management decisions for
individuals with ED-related disorders. Fortunately, T.G. herself chose not to have dental
implants; the avoidance of dental implants would have been advised previously had a
diagnosis of ED been known at the time. Moreover, genetic testing has provided actionable
guidelines for the future prescription of certain pharmacologic treatments that were im-
pacted by CYP2C9 metabolism. There are a variety of other findings for T.G. with currently
less well-supported medical literature that will advance with time. For example, will some
combination of CNVs and SNVs that are currently classified as benign emerge as a risk
susceptibility for ASD? In the future, will the reclassification of VUS to pathogenic or likely
pathogenic variants trigger medical action that prevents medical morbidity or mortality?
A reinterpretation of the raw data and integration with medical care can be pursued based
on T.G.’s medical course and preferences in the future.

The power of clinically available genetic testing for those with ASD with or without
co-occurring morbidities can be substantial for neurologic and non-neurologic precision
medicine, as shown in this study. However, there are associated challenges that we must
address as a medical community to make this process more impactful. One is a lack of
trained clinical experts that are comfortable in reading vast amounts of genetic data and
translating it in order to inform disease-associated factors and treatment options. Efforts
should be made to train physicians and other healthcare providers in the practical use
of genomics, as the future of health care depends on its understanding and application,
including the limitations of using PRS models to predict future presence and severity
for ASD. A second challenge is that the feasibility of a “genomics board” (akin to that of
a multidisciplinary “tumor board”, which is standard in oncologic care) is hindered by
state medical licensing and telemedicine laws. Genetic counselors (GCs) are essential in
this process and growing in number, but they typically have long wait lists or their own
state licensure barriers that encumber integrated care. Peer-to-peer consultation between
physicians and GCs is not precluded by such laws; however, including the family in
the discussion constitutes the practice of medicine in most jurisdictions. Third, market
forces have resulted in low-cost exome and genome testing. However, careful report
generation and detailed discussion with the patient’s attending providers takes substantial
professional time and it is not practical under the current cost structures. Paradoxically,
this results in healthcare providers being unaware of or unable to utilize the resulting
complex genetic reports in order to improve clinical care and leads insurance companies
to deny coverage for lack of clinical application. We propose that payer policies should
be devised to commensurately compensate parties that are involved in sequencing and
variant interpretation, as well as physicians and GCs for effective use of the data and the
treatment of the patients.

To summarize, these data support the concept that the genetic etiology of high-functioning
ASD in T.G. could result from a combination of multiple genetic factors interacting in order to
yield the observed clinical features. We demonstrated that comprehensive clinical phenotype
information and genomics-trained providers/laboratorians are critical in the interpretation of
genomic variants that were identified through these high-throughput genomic technologies.
The genomic analysis that was carried out in this study provides a basis for at least part
of T.G.’s clinical features and delivers suggestions for effective management of some of the
symptoms. While improvements can be made to the process and application of genetic testing
for individuals with ASD, it is effective and critical, as it currently exists for optimal medical
and improved personal and family quality of life.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-4
426/11/1/21/s1, Table S1: Detailed Sequence Variant Spreadsheet, Table S2: Detailed Structural
Variant Spreadsheet.

https://www.mdpi.com/2075-4426/11/1/21/s1
https://www.mdpi.com/2075-4426/11/1/21/s1


J. Pers. Med. 2021, 11, 21 9 of 11

Author Contributions: Conceptualization, R.J.V., C.H.H., E.R.W., T.G., R.G.B.; resources, R.J.V., L.S.,
E.R.W., T.G., R.G.B.; data curation, A.P., M.A.S., A.K.; writing—original draft preparation, R.J.V., A.P.;
writing—review and editing, R.J.V., A.P., L.S., M.A.S., R.G.B.; visualization, R.J.V., E.R.W., T.G., A.K.,
R.G.B.; supervision, R.J.V., C.H.H., E.R.W., R.G.B.; project administration, R.J.V.; funding acquisition,
R.J.V., C.H.H., E.R.W., T.G., R.G.B. All authors have read and agreed to the published version of the
manuscript.

Funding: This study was funded by Lineagen, Inc.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki and approved by Western Institutional Review Board (protocol code
20162032 and date of approval 11/1/2018).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: The data presented in this study are available in the supplemental
materials of this manuscript submission.

Acknowledgments: We thank members of our CAP/CLIA laboratory partners (including Predictive
Laboratories, formerly known as Taueret Laboratories, LLC and PerkinElmer Genomics) for their
assistance in processing and analyzing this sample and the team at Variantyx, Inc. for providing
access to its Genomic Intelligence®software for WGS analysis. We also thank Jehannine Austin for
providing expert guidance regarding the impute.me website and utility of polygenic risk scores as
well as the entire Lineagen team for upholding our vision and mission to improve the lives of all
individuals with autism spectrum disorder.

Conflicts of Interest: A.P., C.H.H., E.R.W., and L.S. were employees of Lineagen. M.A.S. and R.J.V.
are employees and shareholders of Bionano Genomics, Lineagen’s owner. A.K. is an employee and
shareholder of Variantyx, Inc. T.G. and R.G.B. have no conflicts to declare.

References
1. Veenstra-Vanderweele, J.; Christian, S.L.; Cook, E.H. Autism as a paradigmatic complex genetic disorder. Annu. Rev. Genom.

Hum. Genet. 2004, 5, 379–405. [CrossRef] [PubMed]
2. Schaefer, G.B.; Mendelsohn, N.J.; Professional Practice and Guidelines Committee. Clinical genetics evaluation in identifying

the etiology of autism spectrum disorders: 2013 guideline revisions. Genet. Med. Off. J. Am. Coll. Med. Genet. 2013, 15, 399–407.
[CrossRef]
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