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Abstract

Myostatin, also known as Growth and Differentiation Factor 8, is a secreted protein that inhibits 

muscle growth. Disruption of myostatin signaling increases muscle mass and decreases glucose, 

but it is unclear whether these changes are related. We treated mice on chow and high-fat diets 

with a soluble activin receptor type IIB (ActRIIB.Fc) which is a putative endogenous signaling 

receptor for myostatin and other ligands of the TGF-β superfamily. After 4 weeks, RAP-031 

increased lean and muscle mass, grip strength, and contractile force. RAP-031 enhanced the 

ability of insulin to suppress glucose production under clamp conditions in high-fat fed mice, but 

did not significantly change insulin-mediated glucose disposal. The hepatic insulin sensitizing 

effect of RAP-031 treatment was associated with increased adiponectin levels. RAP-031 treatment 

for 10 weeks further increased muscle mass and drastically reduced fat content in mice on either 

chow or high-fat diet. RAP-031 suppressed hepatic glucose production and increased peripheral 

glucose uptake in chow fed mice. In contrast, RAP-031 suppressed glucose production with no 

apparent change in glucose disposal in high-fat diet mice. Our findings demonstrate that disruption 

of ActRIIB signaling is a viable pharmacological approach for treating obesity and diabetes.
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Introduction

Myostatin is a member of the TGF-β superfamily that is predominantly expressed and 

secreted by skeletal muscle (1). Loss-of-function mutations in the myostatin gene results in 

massive increase in muscle mass in mice, cattle, dog and human (1-4). The biology of 

myostatin has been explored pharmacologically through injection of neutralizing antibodies 

or the myostatin propeptide which both increase muscle mass in mice (5-7). Proteins that 

bind to myostatin, e.g. follistatin, follistatin-related gene (FLRG), and growth and 

differentiation factor-associated serum protein-1 (GASP-1), result in inhibition of myostatin 

activity and increased muscle growth (8). In addition to its effects on muscle, myostatin has 

been reported to promote or inhibit adipogenesis (9-11).

The activin type IIB receptor (ActRIIB) is a signaling receptor for multiple TGF-β 

superfamily members, including activin A, nodal, BMP2, BMP6, BMP7, GDF5, GDF8 

(myostatin) and GDF11, that are involved in the negative regulation of muscle. ActRIIB is 

widely distributed in skeletal muscle, adipose tissue and various organs (12). Myostatin and 

ActRIIB levels are increased in obese mice (13). Interestingly, myotubes from extremely 

obese individuals secrete high levels of myostatin, and this is related to the severity of 

insulin resistance (14). Obesity is characterized by increased fat content and relative 

decrease in lean tissue; thus, it was postulated that inhibition of myostatin would increase 

lean and muscle mass and ameliorate insulin resistance and diabetes (15, 16). In agreement, 

crossing myostatin knockout mice with Lepob/ob and agouti lethal yellow (Ay/a) mice 

attenuated body fat and glucose levels (17). Myostatin deficient mice generated from ENU 

mutagenesis manifested reduced fat content and improved hepatic insulin sensitivity on 

high-fat diet (16). Disruption of myostatin signaling through transgenic myostatin 

propeptide expression also prevented diet-induced obesity and insulin resistance (18). 

However, these genetic models do not clarify whether the effect of myostatin deficiency on 

glucose homeostasis is directly attributable to increased muscle mass.

A soluble ActRIIB:Fc fusion protein (RAP-031) has been shown to increase muscle mass 

and strength in a mouse model of amyotrophic lateral sclerosis (19). In the current study we 

treated mice on chow or high-fat diets with this compound, and studied the temporal 

relationships between body composition and insulin sensitivity.

Materials and Methods

Animals and treatment

Experiments were performed according to protocols reviewed and approved by the 

Institutional Animal Care and Use Committee of the University of Pennsylvania School of 

Medicine. Eight-week-old wild-type male C57BL/6J mice (Jackson Laboratories, Bar 

Harbor, ME) were housed (n=5 per cage) under a 12: 12-h light-dark cycle (light on at 0700) 

and an ambient temperature of 22°C and allowed free access to water and food. The mice 

were fed a high-fat diet (Research Diets, New Brunswick, NJ; #D12451, containing 45% fat, 

35% carbohydrate, 20% protein of dry weight, and 4.7 kcal/g of dry weight (20, 21). 

ActRIIB:Fc fusion protein (RAP-031 10 mg/kg; provided by Acceleron Pharmaceuticals, 

Cambridge, MA) was injected intraperitoneally twice weekly (19). Preliminary studies 
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showed that RAP-031 treatment increased lean and muscle mass in a dose dependent 

manner. The vehicle was phosphate-buffered saline. Control mice on regular chow diet 

(LabDiet, Richmond, IN, #5001, containing 4.5% fat, 49.9% carbohydrate, 23.4% protein of 

dry weight; 4 kcal/g of dry weight) received RAP-031 (10 mg/kg IP twice weekly) or 

vehicle. Food intake was measured weekly, and body composition was assessed prior to 

treatment, and 4 and 10 weeks later with nuclear magnetic resonance (NMR) (Echo Medical 

Systems, Houston, TX) (21, 22).

Treadmill and muscle studies

RAP-031- or vehicle-treated mice were acclimatized to a modular treadmill connected to an 

open circuit indirect calorimeter (CLAMS, Columbus Instruments, Columbus, OH). After 4 

weeks of treatment, the mice were deprived of food for 5 hours, and indirect calorimetry was 

performed at rest for 1 hour followed by forced exercise on the treadmill (angle 10°, 15 min 

at 10 meters/min and then 2 hours at 15 meters/min).

The muscle strength in the forelimbs was measured with a grip meter (TSE; Bad Hamburg, 

Germany). The mice were trained to grasp a horizontal metal bar while being pulled by their 

tail, and the force was detected by a sensor. Ten measurements were determined for each 

mouse and averaged. The mice were euthanized with carbon dioxide, muscles were 

dissected and weighed, and contraction of the extensor digitorum longus (EDL) muscle was 

analyzed ex vivo. Twitch and tetanic responses were evaluated as previously described (5, 

23, 24). At the end of the physiological studies, muscles were flash-frozen in isopentane 

cooled in liquid nitrogen and stored at -80°C prior to sectioning. Serial frozen sections (10 

μm) were cut at mid-belly of the EDL muscle, fixed using 100% ice-cold methanol (5 min), 

and stored in airtight containers at -80°C. Sections were examined after staining with 

hematoxylin and eosin (H&E) or ATPase. Pictures were taken using an Olympus BX51 

microscope equipped with a Magnafire camera. Morphometric measurements were 

performed on digitized images using the Scion Image 4.02 software as previously described 

(5).

Hyperinsulinemic-Euglycemic Clamp

RAP-031 or vehicle-treated mice on normal chow or high-fat diets for 4 or 10 weeks 

respectively underwent hyperinsulinemic-euglycemic clamp to assess glucose kinetics (21, 

22). An indwelling catheter was inserted in the right internal jugular vein under sodium 

pentobarbital anesthesia and extended to the right atrium. Four days after recovery, the mice 

were fasted for 6 hours (0800-1300), placed in restrainers and administered a bolus injection 

of 5 μCi of [3-3H] glucose, followed by continuous intravenous infusion at 0.05 μCi/min. 

Baseline glucose kinetics were measured for 60 min, followed by hyperinsulinemic clamp 

for 120 min. A priming dose of regular insulin (16 mU/kg, Humulin; Eli Lilly, Indianapolis, 

IN) was given intravenously, followed by continuous infusion at 2.5 mU•kg-1•min-1. A 

variable intravenous infusion of 20% glucose was administered to attain blood glucose 

levels of 120-140 mg/dL. The target glucose concentration was maintained for 90 min. The 

mice were euthanized, and liver, perigonadal white adipose tissue (WAT), and soleus/

gastrocnemius muscles were excised, frozen immediately in liquid nitrogen and stored at 

-80°C for analysis of glucose uptake. Rates of whole body glucose uptake and basal glucose 
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turnover are measured as the ratio of the [3H] glucose infusion rate (dpm) to the specific 

activity of plasma glucose. Hepatic glucose production (HGP) during clamp is measured by 

subtracting the glucose infusion rate (GIR) from the whole body glucose uptake (Rd).

Chemistry

RAP-031 or vehicle-treated mice on normal chow or high-fat diets for 4 or 10 weeks 

respectively, were deprived of food from 0800-1300h, and then euthanized with carbon 

dioxide. Cardiac blood was drawn and serum was stored at -20°C. Serum glucose and lipids 

were measured using colorimetric enzymatic assays (Stanbio, Boerne, TX). Insulin, leptin, 

and adiponectin were measured with enzyme immunoassays (Crystal Chem, Evanston, IL; 

Linco, St. Charles, MO).

Statistical Analysis

The effect of RAP-031 treatment on various parameters within each diet group was assessed 

using unpaired t-test. P<0.05 is significant.

Results

Short-term RAP-031 treatment increases muscle mass, strength and contraction

RAP-031 (10 mg/kg IP twice weekly) significantly increased body weight in mice on 

normal chow diet (31± 0.89 vs 27.1±1.25 g) or high-fat diet (35.5±1.34 vs 29.8±1.42 g) after 

4 weeks (Fig. 1A). There was a significant increase in food intake in RAP-031-treated mice 

on chow diet (12.8±0.46 in vs 11.7±0.39 kcal/mouse/day, P= 0.036), and a slight increase 

on high-fat diet (14.6±0.69 vs 13±0.57 kcal/mouse/day; P=0.11). Lean mass was increased 

by RAP-031 but fat content was not significantly different (Figs. 1B, C). RAP-031 treatment 

increased the weights of gastrocnemius, quadriceps, and extensor digitorum longus (EDL) 

muscles (Figs. 1D-F). Morphometric analysis showed that RAP-031 did not significantly 

increase the number of EDL muscle fibers compared to vehicle treatment (chow diet: 

807.5±76.1 vs. 848.6±99.7, P=0.75; high-fat diet: 1044±60.2 vs. 982.7±27.4, P=0.38). 

Rather, the cross-sectional area of EDL fibers was shifted to the right and the mean fiber 

area increased in response to RAP-031 treatment, consistent with muscle hypertrophy (Figs. 

2A-D).

RAP-031 treatment did not significantly alter the basal or peak VO2 levels during treadmill 

exercise (Figs. 3A, B), or the respiratory quotient (RQ) under basal or peak exercise 

conditions (data not shown). On the other hand, the forelimb grip strength was increased by 

RAP-031 on both chow and high-fat diets (Fig. 3C). EDL twitch force was increased by 

RAP-031 treatment (Fig. 3D). Moreover, EDL contraction under tetanic stimulation was 

enhanced by RAP-031 in high-fat fed mice (Fig. 3E).

RAP-031 treatment for 4 weeks resulted in elevation of serum adiponectin in high-fat fed 

mice, but glucose, lipids, insulin and leptin were not significantly different (Table 1). We 

performed hyperinsulinemic-euglycemic clamp with radioisotopic tracers to examine the 

effects of 4 weeks RAP-031 treatment on glucose homeostasis. The basal glucose 

production was not significantly affected by RAP-031 treatment in chow-fed mice (Fig. 4A). 
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Moreover, we did not detect a statistically significant difference in the glucose infusion rate 

(GIR) needed to maintain euglycemia in vehicle and RAP-031-treated mice under insulin 

clamp (Fig. 4A). Hepatic glucose production (HGP), glucose disposal rate (Rd), and glucose 

uptake by white adipose tissue (WAT) and muscle under insulin clamp were not different 

between chow-fed mice treated with RAP-031 or vehicle (Figs. 4A, B). In contrast, 

RAP-031 treatment increased GIR (43.9±4.33 vs 27±6 mL/kg/min, P=0.03) in mice on a 

high-fat diet, consistent with improvement of insulin sensitivity (Fig. 4C). The ability of 

insulin to suppress HGP (25.3±2.9 vs 33.7±2.1 mL/kg/min, P=0.047) was enhanced by 

RAP-031, but we did not detect a statistically significant effect of RAP-031 on Rd 

(69.2±2.35 vs 60.7±4.48 mL/kg/min, P=0.12) (Fig. 4C), or glucose uptake by WAT or 

muscle (Fig. 4D).

Long-term RAP-031 treatment increases muscle mass, decreases fat and enhances insulin 
sensitivity

RAP-031 treatment did not significantly alter body weight at 10 weeks (Fig. 5A), but 

increased lean mass (Fig. 5B). Body fat was drastically reduced by RAP-031 after 10 weeks 

(Figs. 5C-I). Serum levels of leptin, glucose and cholesterol levels fell in parallel with 

reduced adiposity in high-fat diet mice after RAP-031 treatment (Table 2). Adiponectin 

concentration in the serum was highly variable and did not change significantly after 10 

weeks RAP031 treatment (Table 2). However, on the high-fat diet, the ratio of serum 

adiponectin-to-body fat was higher in mice treated with RAP-031 than vehicle (1.42 vs. 

0.76). The basal glucose production rate was not significantly different between vehicle or 

RAP-031-treated mice on chow diet (Fig. 6A). Under insulin clamp, RAP-031 treatment 

resulted in significant increase of GIR (113.2±25 vs 45.7±6.1 mL/kg/min, P=0.03) and Rd 

(118±15.3 vs 62.6±5.5 mL/kg/min, P=0.009), while HGP was suppressed (5.67±0.63 vs 

16.9±3.17 mL/kg/min, P=0.008) (Fig. 6A). Insulin-stimulated glucose uptake in WAT and 

muscle was increased by RAP-031 (Fig. 6B). On the high-fat diet, RAP-031 increased GIR 

(43.3±3.9 vs 27.8±2.7 mL/kg/min, P=0.03) and suppressed HGP (6.78±0.5 vs 22.3±4.8 

mL/kg/min, P=0.008) (Fig. 6C), but did not change Rd (50.2±3.5 vs 51.1±3.3 mL/kg/min, 

P=0.12) or glucose uptake by WAT or muscle (Fig. 6D).

Discussion

There is evidence to suggest that multiple ligands including myostatin control muscle 

growth by signaling through ActRIIB (15). We confirm here with the use of RAP-031 that 

disrupting ActRIIB signaling leads to increased muscle mass and improved functional 

parameters such as grip strength and ex vivo muscle contraction (19). This increase in 

functional muscle mass occurs rapidly within 4 weeks of treatment, and is in agreement with 

published reports on myostatin knock-out (Mstn-/-)mice (2, 16), transgenic myostatin 

propeptide overexpression (18), chronic administration of anti-myostatin antibodies (5, 19) 

and myostatin propeptide antibodies (6, 7), and viral overexpression of myostatin inhibitors 

(8). The change in EDL mass and contraction force after 4 weeks of RAP-031 treatment is 

similar to that of 10-12 month old Mstn heterozygous and null mice (25). However, unlike 

Mstn-/- mice, our results showed that RAP-031 treatment resulted in muscle hypertrophy 

rather than hyperplasia (23).
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Obesity is associated with increased accumulation of fat and a relative decrease in lean and 

muscle mass (26). Adipose tissue has been linked to insulin resistance and type 2 diabetes 

through the secretion of fatty acids, adipokines and proinflammatory cytokines (27). Skeletal 

muscle is normally responsible for more than 75% of insulin-mediated glucose disposal, 

thus the reduction in muscle mass associated with obesity is thought to contribute to the 

development of insulin resistance and type 2 diabetes (27, 28). Other factors implicated in 

skeletal muscle insulin resistance include the accumulation of intramyocellular lipids and 

metabolites, such as diacylglycerol and ceramides (29, 30). Low-grade chronic inflammation 

and oxidative stress also contribute to skeletal muscle insulin resistance (28). In contrast to 

the secretion of proinflammatory cytokines by adipose tissue, studies indicate that IL-6 is 

secreted by skeletal muscle during exercise and stimulates the release of other anti-

inflammatory cytokines, e.g. IL-1ra and IL-10, which inhibit the production of TNFα. In 

addition, IL-6 stimulates lipolysis and fat oxidation, thereby preventing fat accumulation in 

muscle and liver (31). Thus, it appears IL-6 is a muscle-secreted peptide (myokine) that 

protects against diabetes and cardiovascular disease (31). In contrast, myostatin secretion is 

increased in extremely obese women and associated with insulin resistance (14). Myostatin 

treatment in mice induces insulin resistance (16).

Several lines of evidence led us to believe that postnatal inhibition of ActRIIB signaling 

would increase muscle, reduce fat and lead to improved glucose homeostasis. Myostatin and 

ActRIIB expression is altered in adipose tissue and skeletal muscle of obese mice (13). 

Mstn-/- mice have increased muscle, decreased fat and improved insulin sensitivity (16, 17). 

Likewise, transgenic mice overexpressing the myostatin propeptide that blocks myostatin 

signaling develop improved glucose tolerance and insulin sensitivity on a high-fat diet (18). 

However, in vivo myostatin treatment has produced inconsistent effects on muscle and fat. 

Zimmers et al. reported that subcutaneous injection of 2 μg myostatin for 7 days decreased 

body fat in female mice (32). These results could not be reproduced in another study (33). 

Instead, 120 μg myostatin administered for 21 days decreased muscle mass without 

changing fat in wild type or genetically obese mice (33).

Our study revealed an interesting dynamic between body composition and glucose 

homeostasis following RAP-031 treatment. As predicted, RAP-031 rapidly increased lean 

and muscle mass. However, this did not lead to a significant enhancement of insulin-

mediated glucose disposal in muscle or fat of mice on chow or high-fat diet. Instead, 4 

weeks of RAP-031 treatment in high-fat diet mice resulted in a significant increase in 

insulin's effect to suppress glucose production. Interestingly, the hepatic insulin sensitizing 

action of RAP-031 was associated with elevation of adiponectin levels. Adiponectin is 

expressed in adipose tissue, circulates as low and high molecular weight complexes, and has 

been shown enhance insulin sensitivity (34). Similar to our results, transgenic 

overexpression of myostatin propeptide in mice fed a high-fat diet resulted in elevation of 

adiponectin levels (7). The expression of adiponectin mRNA in epidydimal fat of transgenic 

myostatin propeptide mice was 12 times higher than in wild type littermates, suggesting that 

enhanced muscle growth somehow stimulates the expression of adiponectin (7).

We observed that longer RAP-031 treatment for 10 weeks increased muscle mass, decreased 

body fat content significantly increased hepatic and peripheral insulin sensitivity, 
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particularly in chow-fed mice. Adiponectin concentration in the serum was not significantly 

increased by RAP-031, however, the ratio of adiponectin to body fat was greater, suggesting 

an increase in adiponectin secretion. The insulin sensitizing action of adiponectin has been 

associated with fatty acid oxidation, which may be a potential mechanism for RAP-031 (34). 

The ability of prolonged RAP-031 treatment to improve sensitivity in the liver and 

peripheral organs is related to muscle hypertrophy and loss of body fat respectively. A 

similar phenotype resulted from chronic activation of Akt signaling in skeletal muscle (35). 

As with RAP-031 treatment, constitutive Akt expression in skeletal muscle caused skeletal 

muscle hypertrophy, increased strength, diminished fat deposition and improvement in 

whole body metabolism (35). Interestingly, the anti-obesity effect of Akt activation was 

attributed to increased fatty acid oxidation in muscle (35). Based on these findings, it was 

proposed that muscle-secreted proteins (known as myokines), serve as critical signals 

linking muscle to liver, adipose tissue and various organs. Indeed, follistatin-like 1 has 

recently been identified as a myokine that promotes limb vascularization (36).

We believe ours is the first study to show that pharmacological disruption of ActRIIB 

signaling results in reduced fat content, enhanced insulin sensitivity, as well as increased 

skeletal muscle mass. These results demonstrate that inhibition of ActRIIB signaling is a 

viable strategy for the prevention or treatment of obesity, insulin resistance and diabetes. 

The signaling mechanisms by which RAP-031 regulates muscle mass and insulin sensitivity 

are yet to be determined. A recent study showed that myostatin induced muscle atrophy 

through the transcription factors, Smad 2 and Smad3 (37). Conversely, Smad2/3 inhibition 

promoted muscle hypertrophy partially mTOR and Akt signaling (37). These results were 

corroborated by another study which showed that myostatin inhibited myoblast 

differentiation by suppressing Akt/TORC1/p70S6 kinase activity (38). Further work is 

needed to determine whether these pathways mediate the effects of ActRIIB on insulin 

sensitivity, adiposity and other metabolic processes.
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Figure 1. 
Effects of 4 weeks RAP-031 treatment (white bar) or vehicle (black bar) on (A) body 

weight, (B) lean, and (C) fat mass. (D-F) skeletal muscle weights. Data are mean ± SEM, 

N=10; *P<0.05 vs vehicle; **P<0.01 vs vehicle; ***P<0.001 vs vehicle. NC, normal chow 

diet; HF, high-fat diet.
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Figure 2. 
Effects of 4 weeks RAP-031 treatment (white bar) or vehicle (black bar) on EDL muscle 

fiber cross-sectional areas in mice on normal chow diet (A, B) or high-fat diet (C, D). Data 

are mean ± SEM. N=5; *P<0.01 vs vehicle. NC, normal chow diet; HF, high-fat diet.
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Figure 3. 
Effects of 4 weeks RAP-031 treatment (white bar) or vehicle (black bar) on oxygen 

consumption (VO2) under (A) basal and (B) peak treadmill exercise conditions, (C) grip 

strength, and (D, E) ex vivo EDL contraction. Data are mean ± SEM. N=5; *P<0.05 vs 

vehicle, **P<0.01 vs vehicle, ***P<0.001 vs vehicle. NC, normal chow diet; HF, high-fat 

diet.
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Figure 4. 
Basal glucose production and hyperinsulinemic-euglycemic clamp in chow (NC) or high-fat 

(HF) fed mice treated with RAP031 (white bar) or vehicle (black bar) for 4 weeks. (A) 

Glucose kinetics under basal and clamp conditions on NC diet; (B) WAT and muscle 

glucose uptake on NC diet; (C) Glucose kinetics under basal and clamp conditions on HF 

diet; (D) WAT and muscle glucose uptake on HF diet. Data are mean ± SEM. N=5. *P<0.05 

vs vehicle.
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Figure 5. 
Effects of 10 weeks RAP-031 treatment (white bar) or vehicle (black bar) on (A) body 

weight, (B) lean mass, (C) fat mass. Data are mean ± SEM. N=5; *P<0.01 vs vehicle; 

**P<0.001 vs vehicle. NC, normal chow diet; HF, high-fat diet. Photographs showing the 

effects of (D) vehicle and (E) RAP-031 treatment on muscle and fat in the dorsal region of 

NC mice. Effects of (F, G) vehicle or (H, I) RAP-031 treatment on fat and muscle in HF 

mice.
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Figure 6. 
Basal glucose production and hyperinsulinemic-euglycemic clamp in mice chow (NC) or 

high-fat (HF) fed mice, treated with RAP-031 (white bar) or vehicle (black bar) for 10 

weeks. (A) Glucose kinetics under basal or clamp conditions on NC diet; (B) WAT and 

muscle glucose uptake on NC diet; (C) Glucose kinetics under basal and clamp conditions 

on HF diet; (D) WAT and muscle glucose uptake on HF diet. Data are mean ± SEM. N=5. 

*P<0.01, **P<0.001 vs vehicle.
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Table 1
Effects of 4 weeks RAP-031 treatment on serum chemistry

Normal chow diet High fat diet

Vehicle RAP-031 Vehicle RAP-031

Glucose (mg/dL) 144 ± 8.87 144 ± 6.1 188 ± 12 164 ± 6.35

Insulin (ng/mL) 0.55 ± 0.16 0.62 ± 0.13 1.36 ± 0.57 0.8 ± 0.08

Leptin (ng/mL) 2.6 ± 0.8 3.5 ± 0.8 5.0 ± 0.6 4.2 ± 0.6

Adiponectin (μg/mL) 11.9 ± 0.72 13.9 ± 2.14 7.55 ± 0.9 17.1 ± 0.87*

Triglycerides (mg/dL) 81 ± 12 91.4 ± 10.1 78.7 ± 9.4 92 ± 10.7

NEFA (mEq/L) 0.7 ± 0.1 0.69 ± 0.09 0.75 ± 0.09 0.82 ± 0.09

Cholesterol (mg/dL) 85.9 ± 2.36 103 ± 7.3 151 ± 8.3 149 ± 8.01

Data are mean +/- SEM. N=5;

*
P<0.0001 vs vehicle.

NEFA: non-esterified fatty acids.
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Table 2
Effects of 10 weeks RAP-031 treatment on serum chemistry

Normal chow diet High fat diet

Vehicle RAP-031 Vehicle RAP-031

Glucose (mg/dL) 131 ± 5.47 95.3 ± 11.7* 166 ± 9.1 136 ± 6.81*

Insulin (ng/mL) 1.96 ± 0.27 5.35 ± 2.63 4.75 ± 1.45 2.04 ± 0.8

Leptin (ng/mL) 3.35 ± 0.8 2.37 ± 0.24 36.2 ± 5.37 19.1 ± 3.1*

Adiponectin (μg/mL) 6.76 ± 0.65 19.9 ± 10.1 10.2 ± 1.15 9.64 ± 0.32

Triglycerides (mg/dL) 57.8 ± 10.4 83.8 ± 17.4 58.8 ± 3.9 68.7 ± 16.8

NEFA (mEq/L) 0.35 ± 0.05 0.54 ± 0.27 0.57 ± 0.08 0.36 ± 0.08

Cholesterol (mg/dL) 82.8 ± 7.68 111 ± 16.7 150 ± 5.4 106 ± 5.63**

Data are mean +/- SEM. N=5;

*
P< 0.05 vs vehicle;

**
P< 0.001 vs vehicle.

NEFA: non-esterified fatty acids.
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