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The current “one size fits all” approach to our cognitive aging population is not adequate
to close the gap between cognitive health span and lifespan. In this review article, we
present a novel model for understanding, preventing, and treating age-related cognitive
impairment (ARCI) based on concepts borrowed from precision medicine. We will
discuss how multiple risk factors can be classified into risk categories because of their
interrelatedness in real life, the genetic variants that increase sensitivity to, or ameliorate,
risk for ARCI, and the brain drivers or common mechanisms mediating brain aging.
Rather than providing a definitive model of risk for ARCI and cognitive decline, the
Precision Aging model is meant as a starting point to guide future research. To that end,
after briefly discussing key risk categories, genetic risks, and brain drivers, we conclude
with a discussion of steps that must be taken to move the field forward.
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INTRODUCTION

Cognitive health span does not currently match human lifespan. Sixteen million people in the
USA are living with cognitive impairment (Hurd et al., 2013), and more than 1.6 million of
these individuals will develop Alzheimer’s disease (AD) annually (Ward et al., 2013). However,
it is equally important to note that the majority of older adults—approximately 85%—will not
develop AD in their lifetime (Wagster et al., 2012). Nevertheless, many individuals in their 60s
and older will experience a range of age-related cognitive impairments (ARCIs) that contribute
to decreased quality of life and that have important socioeconomic consequences. ARCI results
in three times more hospitalizations—a $110 billion economic burden to the healthcare system,
loss of independent living—costing $160 billion in informal and unreimbursed care yearly,
and loss of productivity—worldwide costs in 2018 are expected to exceed 1 trillion US dollars
(Wimo et al., 2017).

The importance of understanding, preventing, and treating ARCI has resulted in dramatic
increases in research over the past 5 years. Most notably, the total National Institute
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on Aging appropriations doubled from $1.05 B in 2013 to
$2.05 B in 2017 (Richard Hodes, Ph.D., Presentation to the NIA
Division of Neuroscience Review Panel, October, 2018). While
our understanding of the factors that increase risk for ARCI
has grown, relatively little progress has been made on how to
prevent it. As one example, studies have reported beneficial
effects of various exercise programs on cognitive functioning
among older adults, both with and without cognitive decline.
However, recent reviews have emphasized that the majority of
these studies do not find any effect (van Uffelen et al., 2008;
Kelly et al., 2014). They note the small number of high quality
studies and the large variability in study populations, exercise
protocols, and outcome measures as factors that complicate
the interpretation of the results. Similar conclusions have been
made for studies of cognitive interventions that show small
and inconsistent effects (Lampit et al., 2014), although recent
studies have suggested that a combination of aerobic exercise
and cognitive training may increase the effectiveness of either
intervention alone (Karssemeijer et al., 2017; for review see
Bamidis et al., 2014).

Without a doubt, ARCI is complicated. Numerous factors
increase risk for ARCI including lifestyle choices such as
diet, physical activity, and the quality of social interactions,
stressors such as chronic illness, bereavement, and depression,
peripheral diseases such as heart disease, hypertension, and
diabetes, as well as demographic variables that are well known
but poorly understood including sex and education. We are
also learning about genetic variants that either exacerbate
the effects of these myriad risk factors or are protective
of them. None of them, however, has provided the magic
bullet. Many of these factors have been studied in terms of
the impact they have on brain structure and function using
neuroimaging methods, or the impact on both general and
specific cognitive functions, as well as their impact on risk
for disorders of the aging brain, most notably AD. But each
risk factor generally explains only some of the variance and
often applies to only a subset of individuals. Surprisingly few
studies have combined risk factors to understand the degree
of variance they explain collectively, and large-scale studies
taking an individualized approach to understanding interactions
between risks are exceedingly rare. Indeed, we can still say that
the overall best predictor of ARCI and risk for AD is, quite
simply, age itself.

In this review article, we suggest a reconceptualization of
ARCI and our approach to understanding risk, prevention, and
intervention. The current ‘‘one size fits all’’ approach to our
cognitive aging population is not adequate to close the gap
between cognitive health span and lifespan. Here, we present
a Precision Aging model, where we apply the concepts that
have been developed in the area of precision medicine to
understand, prevent, and treat ARCI and cognitive decline. We
will discuss how we can reconceptualize multiple risk factors
in terms of common categories of risk and their associated
pathways or ‘‘drivers’’ of brain function, and how interventions as
disparate as exercise and smoking cessation, or tai chi and social
interaction, may lead to amelioration of risk for ARCI through
similar mechanisms.

THE PROMISE OF PRECISION MEDICINE

Precision medicine (National Research Council, 2011) is a broad
concept that refers to tailoring therapies to subcategories of
disease, based on the specific profile of an individual that is
often, but not solely, defined by genomics. A highly successful
application of the precision medicine model is in oncology
(Vogelstein et al., 2013), where genomic sequencing can be
used to classify tumors according to the disordered pathways
expressed by a single tumor, rather than classifying tumors
based solely on the histological or anatomical tissue of origin.
Understanding the underlying mechanisms and factors that
encourage tumorigenesis in a given individual has led to more
precise and effective approaches to treatment.

Precision medicine requires re-evaluation of the way that
treatments for disorders are conceptualized and tested in clinical
trials (Ashley, 2015). While the comparison between group
outcomes in randomized trials may yield statistically significant
differences, it is often the case that the mean group difference is
driven by a relatively small number of participants who actually
respond to treatment. Taking a precision medicine approach,
the question is no longer ‘‘Does treatment × work?’’ but ‘‘Who
does treatment × work for?’’ Identifying the characteristics
of ‘‘nonresponders’’ becomes as important as ‘‘responders’’ in
understanding the impact of a particular intervention. Such an
approach may result in considerable health benefits by allowing
more effective selection of individuals for treatments based
on a priori known profiles of disease risk and their potential
response to treatment.

THE PRECISION AGING MODEL:
APPLYING PRECISION MEDICINE
CONCEPTS TO BRAIN HEALTH AND
COGNITIVE HEALTH

Like oncology, the successful application of precision medicine
requires a clear goal. We suggest that the goal is to maintain brain
health across the full extent of the adult lifespan. That is not to say
that age-related changes to the brain can be avoided completely.
Some degree of age-related change in brain health and hence,
cognitive health, is likely inevitable. In general, however, these
cognitive changes are rather subtle and often can be overcome by
implementing more efficient strategies for learning, recollecting,
and controlling cognition. Many individuals survive into their
’80s and ’90s without debilitating cognitive changes that impair
or limit daily functioning. Thus, we define maintenance of brain
health and cognitive health as those changes that do not interfere
substantially with activities of daily living, and allow continued
independence and maintenance of quality of life.

Here, we present a Precision Aging model that
reconceptualizes both the risk factors for ARCI and potential
targets for prevention and intervention, depicted in Figure 1.
First, while there is a long list of known risk factors associated
with ARCI, it is often the case that multiple factors can
be classified into a single risk category because of their
interrelatedness in real life. Major risk categories would
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FIGURE 1 | The Precision Aging model. Specific risk factors are grouped
into “Risk Categories” that can then be combined with known genetric
variants to create individualized profiles of risk for age-related cognitive
impairment (ARCI). Understanding the major “Brain Drivers” associated with
each category that increase age-related changes in brain structure and
function can lead to optimized preventive and therapeutic interventions.

include, among others, cardiovascular insufficiency, glucose
dysregulation, and chronic stress, as well as some that are less
well characterized such as immune dysfunction and circadian
disruption (see Table 1). Second, all of the individual factors in
a risk category likely influence the brain through common brain
drivers—brain inflammation, compromised brain blood flow,
increased neuropathology, and altered synaptic connectivity
and function—that exacerbate the aging process and create an
environment that is conducive to the accelerated development of
neurodegenerative disease. A better understanding of the brain
drivers associated with each risk category is key to developing
and choosing effective interventions for a given individual.
Third, gene variants act to either increase the influence of a risk
category or protect against it by moderating the impact of brain
drivers. Identifying both risk-enhancing and risk-protecting

genomic information is critical to understanding the true effect
of risk categories on brain health, and becomes more feasible
as more individuals have genomic data readily available in
their medical records that can be used to support precision
genetic profiling.

By focusing on commonalities, the Precision Aging model
has the potential to both greatly simplify our understanding
of risk for ARCI and the impact of a multitude of risk
factors on brain structure and function, and provide a way to
choose appropriate interventions to mitigate risk. Using this
approach, each individual can be characterized based on a
profile of risk categories and genetic variants. Importantly, this
individualized risk profile can be used to identify targets for
prevention of brain injury (for example, increasing physical
activity or controlling hypertension) as well as therapeutic
interventions to ameliorate the impact of brain drivers already
resulting in accelerated age-related brain injury. For this reason,
focusing on a single lifestyle or health factor is probably
insufficient to reduce risk for ARCI and risk for dementias. The
most effective strategy for maintaining brain health will be a
combination of approaches—preventative and therapeutic—in
order to ameliorate existing brain injury as well as removing,
to whatever extent possible, the specific risk factors for a given
individual (Baumgart et al., 2015).

Thus, understanding the underlying mechanisms by which
risk categories affect brain structure and function is critical
for choosing appropriate therapeutic interventions. While some
interventions may be ‘‘risk specific’’ (such as grief counseling
for the loss of a spouse), others may be more generic (such
as mindfulness meditation) and beneficial for multiple specific
risks or an entire risk category. Additionally, while various
interventions may appear dissimilar on the surface, they, like
specific risk factors, may be categorized based on the effect they
have on brain drivers. For example, mindfulness meditation,
increasing social interaction, and anti-inflammatory medications
may all provide the same benefit to the brain by decreasing brain
inflammation and oxidative stress.

In the following sections, we unpack each component of the
Precision Aging model (Figure 1), including a brief discussion of
key known risk categories and some of the specific risk factors
that likely cluster together (Table 1), the brain drivers that
are the primary mechanisms of brain aging, and how genetic
variants may increase risk or provide protection. However, it
is important to emphasize that our Precision Aging model

TABLE 1 | Some of the major risk categories for age-related cognitive impairment (ARCI) and cognitive decline, and a list of individual factors that have been associated
with each category.

Risk Category Factors

Cardiovascular Insufficiency Hypertension, increased body fat/obesity, heart failure, heart disease, high cholesterol, smoking, sedentary lifestyle, poor diet
Glucose Dysregulation Type 1 and 2 diabetes, prediabetes, poor diet, sedentary lifestyle, increased body fat/obesity, family history
Immune dysfunction Hormonal changes, environmental exposure to toxins, infections
Chronic Stress Social isolation, chronic illness, life adversity and loss, trauma, bereavement and grief, caregiving, depression/anxiety, financial hardship
Reserve and Resilience Educational attainment, early life experiences, occupational complexity, lifelong learning opportunities
Circadian Rhythm Disruption Sleep disruptions, multi-system dysregulation
Neuropathologies Plaques, tangles, α synuclein, proteinopathies
Physical Changes Sensory dysfunction (hearing, vision, balance, olfaction), physical frailty, chronic pain, polypharmacy

Some risk categories are also commonly related to one another and may share individual risk factors.
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is a ‘‘work-in-progress.’’ No doubt other risk categories can
be added to our list, and some of the individual constituents
within each risk category may be unknown or may be based
on limited existing data. There is also a need for a better
understanding of how these risk categories relate to brain
drivers, as well as the genetic variants that increase sensitivity
to, or ameliorate, risk factors within each category. Rather than
providing a definitive model of risk for ARCI and cognitive
decline, the Precision Aging model is meant as a starting point
to guide future research. To that end, after briefly discussing
key risk categories, brain drivers, and genetic risks, we conclude
with a discussion of steps that can be taken to move the
field forward.

CATEGORIES OF RISK FOR AGE-RELATED
COGNITIVE IMPAIRMENT

In Table 1, individual factors are organized into risk categories
based on shared characteristics—they may have a tendency to
co-occur in real life, they may share underlying brain drivers,
and they may share genetic variants that increase or mitigate risk.
Each of the key categories listed could easily warrant a full review
that is beyond the scope of current article; instead, we provide
a brief overview to highlight the importance of these categories
as a starting point in understanding risk for ARCI. Some,
such as cardiovascular insufficiency, glucose dysregulation, and
chronic stress are well-established. Others, including immune
dysfunction and circadian disruption, are relatively novel
areas of risk that warrant additional consideration. Others
included in the list are reserve and resilience, pathologies, and
physical changes.

Cardiovascular Insufficiency
One of the most visible and best studied risk categories for
ARCI and cognitive decline is undoubtedly cardiovascular
insufficiency, because it is related to many highly prevalent
risk factors including hypertension, obesity, hypercholesteremia,
heart failure (HF), coronary artery disease, and lifestyle factors
including sedentary lifestyle, smoking, and diet. While each
factor can occur in isolation, they have a high rate of
comorbidity, particularly as severity of any one risk factor
increases (Guh et al., 2009). Cardiovascular insufficiency is
consistently associated with increased risk for ARCI as well
as multiple types of dementias (Corriveau et al., 2016). Most
commonly, risk factors in this category have been studied
separately, often controlling for other related risk factors. For
example, overweight and obese individuals show lower levels
of cognitive performance in the areas of executive function,
sustained attention, and memory (Cournot et al., 2006; Gunstad
et al., 2007; Wolf et al., 2007; Sturman et al., 2008; Volkow
et al., 2009) even when controlling for other factors such
as hypertension (Walther et al., 2010). Additionally, obese
individuals show increased rates of cognitive decline (Elias et al.,
2003; Cournot et al., 2006), and increased risk for dementias,
including AD (Gustafson et al., 2003; Rosengren et al., 2005;
Stewart et al., 2005; Whitmer et al., 2005). Hypertension has
been associated with deficits in memory, processing speed,

and cognitive flexibility (Hannesdottir et al., 2009; Nguyen
et al., 2016) even after optimal medication control (Brady
et al., 2005; Verhaaren et al., 2013), as well as increased risk
for AD (McGuinness et al., 2009; Power et al., 2018). HF
most prominently affects learning and memory, but may also
impact information processing speed, attention, language, and
executive functions (Mapelli et al., 2011; Miller et al., 2012;
Hajduk et al., 2013) and results in faster age-related memory
decline (Vogels et al., 2007; Harkness et al., 2011). While
cognition can improve following optimal management of HF
(Stanek et al., 2009), significant cognitive impairment persists
for many individuals, along with a significantly higher risk
of dementia compared to age-matched controls (Qiu et al.,
2006) Although less common, studies of cardiovascular risk
factors in combination with one another provide good evidence
that each additional factor adds to an individual’s risk for
ARCI (Middleton and Yaffe, 2010; Baumgart et al., 2015;
Roberts et al., 2015).

Cardiovascular insufficiency risk factors also share the
characteristic that each of them likely contributes to brain
aging primarily through chronic systemic and central nervous
system (CNS) inflammation and secondarily through the loss
of adequate brain perfusion due to vascular damage (Corriveau
et al., 2016). Neuroimaging studies consistently find that
white matter (WM) appears to be particularly vulnerable to
these risk factors. Increases in WM hyperintensity burden
on magnetic resonance imaging (MRI) have been associated
with hypertension (Raz et al., 2012a,b), obesity (Jagust et al.,
2005), and HF (Almeida et al., 2012). WM integrity is
negatively impacted by increased body weight, demonstrated
using spectroscopy with N-acetylasparate, a microstructural
marker of neural viability (Gazdzinski et al., 2008), as well as
diffusion tensor imaging (Ryan and Walther, 2014; Kullmann
et al., 2016). This association persists even when controlling
for other cardiovascular conditions (Bettcher et al., 2013) and
hypertension, particularly in frontal cortical regions (Burgmans
et al., 2010; Salat et al., 2012).

Cardiovascular insufficiency highlights the complexity of risk
for ARCI and the need for longitudinal studies, because some
of these relationships may actually change across the lifespan.
For example, while there is strong evidence for the link between
obesity and increased risk for ARCI, obesity in very late life
may be associated with reduced risk for ARCI and dementia
(Luchsinger et al., 2007; Dahl et al., 2008; Barnes et al., 2009;
Fitzpatrick et al., 2009; Gustafson and Luchsinger, 2013) and this
may be true for late-life hypertension as well (Kennelly et al.,
2009; Corrada et al., 2014).

Glucose Dysregulation
Closely related to cardiovascular insufficiency is the risk category
of glucose dysregulation, including diabetes and prediabetes,
a condition characterized by elevated fasting glucose levels,
impaired glucose tolerance, and elevated HbA1c levels in the
absence of diabetes. Currently, more than 100 million U.S.
adults are living with diabetes or prediabetes, according to
the National Diabetes Statistics Report (2017) released by the
Centers for Disease Control and Prevention. Type 2 diabetes
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and glucose dysregulation are impacted by both genetics and
lifestyle factors such as body composition (e.g., obesity), diet,
and physical inactivity. In older adults, diabetes is a risk factor
for ARCI, mild cognitive impairment, and dementia (Cukierman
et al., 2005; Cheng et al., 2012). Diabetes at midlife is associated
with greater ARCI, neurodegeneration, and cerebrovascular
disease among older adults (Knopman et al., 2011; Rawlings
et al., 2014; Roberts et al., 2014). Especially important is the
finding that prediabetes is also associated with greater ARCI
(Rawlings et al., 2014). Given that one-third of adults are
estimated to have prediabetes (Kalyani et al., 2017), this is
an area that clearly warrants further study. Diabetes has been
linked to increased global brain atrophy, increased burden of
small vessel disease (especially lacunes), alterations in WM,
and reductions in functional connectivity among older adults
(Biessels and Reijmer, 2014).

Chronic Stress
Chronic stress is a risk category that has emerged as a consistent
predictor of ARCI, cognitive decline, and elevated risk for
dementia. Specific risk factors in this category include early and
accumulated life adversity (Andel et al., 2011; Korten et al.,
2014), chronically experienced social isolation (Cacioppo and
Hawkley, 2009; Holwerda et al., 2014), dispositional distress
proneness (Wilson R. S. et al., 2005; Wilson et al., 2007; Aggarwal
et al., 2014), a life history of depression (Byers and Yaffe, 2011;
Cooper et al., 2015), and caregiving for a person with dementia
(Allen et al., 2017). Less is known, however, about the brain
drivers associated with this category, but these likely include
both dysregulated endocrine function (Cacioppo et al., 2015;
Lupien et al., 2018) and immune function (Eisenberger and
Cole, 2012; Macht and Reagan, 2018), both associated with
low-grade inflammation.

Physical Changes
Physical changes are well recognized as common correlates of
the biological aging process, including sensory changes (loss of
vision, audition, vestibular function, olfaction and gustation),
frailty (decreases in strength, speed, and balance) and chronic
pain. However, the predictive value of these changes for
cognitive and health-related outcomes is not well understood
(Lara et al., 2015). Physical frailty is characterized by increased
vulnerability and depleted physiological reserve associated with
age. In particular, frailty disproportionately affects older women,
especially African Americans, with older women twice as likely
to be frail than older men. Frailty symptoms have been found
to be linked to cognition. For example, walking speed and
grip strength are associated with reduced executive function
and memory (Boyle et al., 2010). In general, as the number
of frailty symptoms increase, cognition is poorer (Robertson
et al., 2014). Pain is a related and common but understudied
area of risk among older adults. It is estimated that 60%–70%
of people over 65 years report some degree of persistent pain,
and this figure is higher among adults who reside in assisted
living and nursing homes. Research indicates that pain is likely
to increase with age, be reported more often by women and
linked to poor sleep and severity of depression (Molton and

Terrill, 2014), but its relationship to cognitive impairment is not
well understood.

Immune Dysfunction
An area that clearly warrants additional investigation is the
aging immune system. Despite the importance of inflammation
as a putative brain driver associated with many risk factors
for ARCI including cardiovascular insufficiency and chronic
stress, we know relatively little about the bi-directional
immune/inflammatory mechanisms of the brain, how they
change with age, and how these age-related changes relate
to ARCI and risk for dementia. Inflammation and immunity
coexist in the same pathological process and they share the
same cellular basis where inflammatory cells are also immune
cells (Andreasson et al., 2016). We know that aging substantially
affects immune system regulation resulting in defects in both
rapid responses to infectious agents (the innate immune
system) and the slower generation of antibodies to infectious
pathogens (the adaptive immune system; Franceschi et al.,
2007; Montecino-Rodriguez et al., 2013; Shaw et al., 2013).
The most pronounced changes observed with aging are in the
adaptive immune system characterized by a decrease in naive
T cells and an increase in memory cells (Hearps et al., 2012).
These changes result in a low-grade chronic proinflammatory
environment with increased production of proinflammatory
cytokines [e.g., IL-6, TNF-α, acute-phase proteins, reactive
oxygen species (ROS), and autoantibodies]. Age-related immune
system changes are also accelerated by genetic predisposition,
hormonal changes with decreased production of estrogens
or androgens, mitochondrial function, and metabolic changes
in the adipose tissue associated with obesity (Deleidi et al.,
2015). Therefore, an individual’s genetic profile, environmental
exposures, and infections over a lifetime likely exacerbate the
dysregulation of immune responses. However, relatively little is
known about the cellular and molecular mechanisms controlling
age-related changes in immune function, or the impact they
have on risk for ARCI and neurodegenerative disorders (von
Bernhardi et al., 2010; Rawji et al., 2016).

Circadian Disruption
Another emerging area of interest is understanding the
mechanisms that drive and coordinate circadian oscillations
of multiple organ systems, how they change with age, and
how these changes may impact cognition. Circadian disruption
is most often studied in the context of physiological arousal
and sleep-wake cycles measured by melatonin and cortisol
sampling, wearable devices for capturing activity levels, and
polysomnography to study neural oscillation characteristics
of different sleep stages (for review see Duffy et al., 2015).
Importantly, evidence from all methods suggests that increasing
age is associated with a disruption in circadian oscillations or
rhythms that play an essential role in numerous aspects of health
including temperature regulation, hormone release, and sleep
(for reviews see Spira et al., 2014; Hood and Amir, 2017).

In mammals, the neurons of the suprachiasmatic nucleus
(SCN) in the hypothalamus are the principal drivers of circadian
oscillations through synaptic connections with multiple areas
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including the cerebral cortex, pineal gland, lungs, liver, kidney,
heart, and other organs (for review see Hastings et al., 2003).
Although the mechanisms underlying age-related circadian
disruptions are not fully understood, post-mortem histology
has revealed deterioration of SCN neurons in humans (Swaab
et al., 1985), which may contribute to circadian disruption
in many downstream tissues (for review see Hood and
Amir, 2017). While SCN cellular changes are not typically
measurable in living humans, several downstream macro-
level changes can be observed. For example, earlier phase
shifts in body temperature, melatonin, and cortisol rhythms
have all been observed in normal aging (Duffy et al., 2015).
Melatonin, in turn, promotes sleep onset, which also shifts
earlier with age. Age-related sleep disruptions are perhaps
the most notable and commonly measured circadian change.
Older adults exhibit a strong preference for morningness,
more fragmented sleep, and reduced total sleep time compared
to younger adults (for reviews see Scullin and Bliwise,
2015; Mander et al., 2017). Critically, emerging longitudinal
work from humans suggests that self-reported and objectively
measured sleep declines are associated with an increased
risk of ARCI and AD, even after accounting for other risk
variables including body weight and depression (for review
see Spira et al., 2014; Holth et al., 2017; Sterniczuk et al.,
2013). However, most research to date has been cross-sectional,
and little is known about how age-related disruptions in
these rhythms are related to other risk factors and how the
interaction between these factors contribute to ARCI within
an individual.

Reserve and Resilience
Finally, in any model of aging, it is important to consider
not only those factors that increase risk for ARCI, but
also those factors that may protect against it. Reserve and
resilience are theoretical concepts suggesting that individual
differences in genetic predisposition, combined with lifetime
experiences, may modify the brain in a way that allows for the
preservation of cognitive health in the presence of age-related
brain changes and/or neuropathology (Barulli and Stern, 2013;
Reuter-Lorenz and Park, 2014; Stern et al., 2018). These are
most commonly measured by socio-behavioral proxies such
as educational attainment, IQ, occupational complexity, and
cognitively engaging leisure activities. Considerable evidence
suggests that these lifetime experiences are associated with a
lower risk of ARCI (Roe et al., 2011; Pettigrew et al., 2013)
and dementia (for a meta-analysis, see Valenzuela and Sachdev,
2006). Despite the strong evidence for the beneficial effects
of these lifetime variables on the risk of developing AD, little
is known about their neurobiological basis and how they
moderate the impact of the normal aging trajectory and ARCI.
Importantly, these socio-behavioral proxies reflect experiences
across the lifespan, and may continue to evolve even in mid-
to late-life, and as such may provide important avenues for
behavioral interventions. The concept of reserve, therefore,
provides multiple, possibly time-varying mechanisms by which
individual differences in lifetime experiences could influence
aging trajectories (Soldan et al., 2017).

GENETIC INFLUENCES THAT INCREASE
COGNITIVE RISK OR PROTECT
AGAINST IT

While a detailed discussion of genetically encoded risk
and protective factors is beyond the scope of this article,
several reviews of this topic are available (Visscher et al.,
2012; Hayes, 2013). For most of the risk categories in
Table 1, well-powered genome-wide association (GWAS) studies
have already been performed. These studies are designed
to identify alleles in the population that are statistically
enriched or depleted in individuals with the disease (or
trait) of interest. The ultimate resulting outcome is a panel
of associated alleles that can be utilized to assess each
individual’s polygenic risk score (PRS) for the specific risk
category. There are published examples of well powered use
of the GWAS/PRS approach in cardiovascular insufficiency
(hypertension and heart disease), glucose dysregulation (obesity),
neuropathological conditions (Alzheimer’s and Parkinson’s),
and circadian disruption (sleep phenotypes) among others. For
many of the listed risk categories, data exists that would empower
an individualized PRS assessment provided that a genome-wide
single nucleotide polymorphism profile for the study participant
could be generated.

It is important to note that for most, if not all, of the risk
categories, a personalized PRS is simply a risk assessment. The
risk categories in Table 1 are complex and therefore rely on
the interplay between genetic risk, environmental exposure, and
lifestyle factors to determine whether an individual will develop
disease. For example, an individual may be at high genetic risk
for Type II diabetes but may be able to avoid the disease entirely
through strict lifestyle choices related to diet and exercise. This
example raises important questions that need to be explored
more deeply. What if an individual is at high risk for a disorder
such as obesity, but is able to avoid obesity entirely? How do their
genetic risk factors related to the heightened obesity risk alter
their cognitive performance in the absence of disease? In other
words, can we observe differential cognitive performance in these
individuals in the absence of obesity? An example of this is
found in the FTO gene. Specific alleles within FTO are associated
with altered risk for obesity (Yang et al., 2012). Interestingly,
these same alleles are associated with increased declines in
verbal memory among middle-aged adults in the absence of
diabetes, hypertension, and obesity (Bressler et al., 2013). There
are likely many other examples of genetic associations for specific
risk factors that exert an influence on cognition even in the
absence of disease. This argues strongly for an understanding
of an individual’s genetic profile in addition to their ‘‘expressed
phenotype’’ (e.g., observable disease), as both measures may
contain important information about cognitive health.

BRAIN DRIVERS: MECHANISMS OF BRAIN
AGING

The discovery of targets for intervention to promote brain health
and to prevent and attenuate ARCI requires identification of
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FIGURE 2 | Primary drivers of brain function. Illustration of the interactions of
the primary drivers of brain function that work to influence brain health and
cognitive outcomes in aging.

drivers of brain and cognitive health that are linked to the
major risk categories (Figure 2). Critical categories of drivers that
are known to impact brain and cognitive health include brain
inflammation (Sankowski et al., 2015; Janota et al., 2016; Clarke
et al., 2018; Miners et al., 2018), compromised brain blood flow
(Love and Miners, 2016), increased neuropathological markers
(Rahimi and Kovacs, 2014) and altered synaptic function and
synaptic connectivity (Berchtold et al., 2013). Each of these
drivers can be linked to identified risk categories outlined above
and can ultimately accumulate and interact to alter neuron
function and cognition.

Brain Inflammation
Inflammation is a physiological function essential for
recovery from injury and protection from infection. Under
chronic pathological conditions, however, it can activate
feed-forward cascades that contribute to neuroinflammation and
ultimately neuronal dysfunction and neurodegeneration.
This inflammatory cascade is thought to result from
cytokine and chemokine activity in endothelial cells of
the brain microvasculature as well as within the brain
parenchyma affecting microglia, astrocytes, oligodendroglia, and
ultimately, neurons.

Brain inflammation is an important driver of brain function
and linked to many of the risk categories for ARCI including
cardiovascular insufficiency, immune dysfunction, glucose
dysregulation, chronic stress and neuropathologies. For
example, with regards to cardiovascular risk categories, increases
in inflammation are known to occur in normal brain aging
(Lynch, 2010; Gabuzda and Yankner, 2013) as well as in systemic
inflammatory diseases such as HF, diabetes and hypertension.
Studies in HF patients have shown that increases in circulating
inflammatory factors such as interleukin-1alpha (IL1α) and
interleukin 6 (IL-6) are strongly correlated with decreased
cognitive performance (Athilingam et al., 2013; Mann, 2015;
Kure et al., 2016). Impairments in memory (Teunissen et al.,
2003), executive function (Heringa et al., 2014) and processing
speed (Bettcher et al., 2014) as well as general changes in
cognitive function (Weaver et al., 2002; Schram et al., 2007) are

also associated with circulating increases in cytokines including
TNF-α, IL-6, and C-reactive protein.

Overproduction of pro-inflammatory cytokines, including
TNF-α, is also a key feature of the pathophysiology of metabolic
disorders including type 2 diabetes (for review, see Ferreira
et al., 2014). TNF-α is overexpressed in adipose tissue of obese
individuals. Interestingly, brain inflammation has been suggested
to underlie defective neuronal insulin signaling in individuals
with AD (Bomfim et al., 2012). AD and diabetes share common
inflammatory signaling pathways, suggesting that mechanisms
similar to those that mediate peripheral insulin resistance in type
2 diabetes may also underlie impaired brain insulin signaling and
neuronal dysfunction in AD.

Microglia, found in the CNS, are analogous to macrophages
in the peripheral nervous system and are the resident immune
cells of the brain. Microglia have a pleotropic role in the
brain and under normal physiological conditions microglia
maintain an M2 phenotype associated with neuroprotection and
repair and in the maintenance of healthy synapses via synaptic
pruning, neurogenesis and immunosurveillance (Hickman
et al., 2018). Under chronic neuroinflammatory conditions,
however, microglia transition to an M1 activated state which
is pro-inflammatory. Activation of microglia has been shown
to be linked to the development of neuropathologies which
is a major risk category for ARCI. For example, microglia
are activated in several neurodegenerative diseases including
AD, Parkinson’s disease and multiple sclerosis. Furthermore,
microglia can be activated by hypoxia, trauma, stroke and
by systemic inflammation such as that observed in patients
with HF or diabetes (Nimmerjahn et al., 2005; Durafourt
et al., 2012; Melief et al., 2012). Microglia activation results
in increased ROS production, cytokine production, and
activation of brain inflammatory pathways that contribute to
neuronal dysfunction and cognitive impairment, including
memory loss (Streit et al., 2004; Hein et al., 2010; Matousek
et al., 2010). Recent studies employing epigenetics and
transcriptomics have shown that normal aging is associated
with regionally-specific changes in glial gene expression patterns
(e.g., Soreq et al., 2017).

Activated microglia are also known to result in the
up-regulation of astrocyte reactive genes (Liddelow et al., 2017;
Clarke et al., 2018) and the conversion of astrocytes from
the A2 ‘‘neuroprotective’’ phenotype to the A1 phenotype
that induces neuronal and oligodendrocyte cell death. These
A1 astrocytes are also linked to the neuropathology risk category
for ARCI. During normal aging, astrocytes show region-specific
changes in gene expression related to neuroinflammation, with
brain areas involved in cognition such as hippocampus and
striatum showing greater transcriptional changes than observed
in neocortical astrocytes (Clarke et al., 2018).

Oligodendrocytes are responsible for the production and
maintenance of myelin in the brain. Myelin is known to show
degenerative changes with age (Bennett and Madden, 2014;
Lockhart and DeCarli, 2014) that are observable on MRI as
increased WM hyperintensities, loss of WM volume both cross-
sectionally (Sullivan and Pfefferbaum, 2006) and longitudinally
(Resnick et al., 2003) and changes in characteristics of diffusion
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properties of myelin tracts (Ryan et al., 2011; Salat et al.,
2012). How age-related changes in oligodendrocytes are related
to changes in neuronal function is an important area of
continued study. In addition to providing and maintaining
myelin, oligodendrocytes also provide metabolic support for
axons. Recent studies have shown that oligodendrocytes are
metabolically coupled to their associated axons by providing
lactate for the axons to use for ATP production (Fünfschilling
et al., 2012). Age-related changes in the metabolic functions of
oligodendroglia may further contribute to age-related changes in
WM and cognitive function.

In summary, age-related changes in both systemic and
central inflammation serve as important drivers of brain
health. One would predict that interventions that preserve
the health-promoting aspects of glia function, as well as
reducing pathophysiological neuroinflammatory cascades, could
be particularly effective at attenuating ARCI.

Brain Blood Flow and Brain Lymphatic
Vascular Systems
Adequate brain blood flow is a key brain health driver
and directly linked to some ARCI risk factors including
cardiovascular insufficiency, glucose dysregulation and immune
dysfunction. Maintenance of brain health and homeostasis
over the lifespan is dependent on adequate cerebral perfusion
and oxygenation as well as drainage of cerebral spinal fluid
(CSF) and brain interstitial fluid waste products (Louveau et al.,
2015). Increased age is a known risk factor for cerebrovascular
dysfunction and dementia (Alzheimer’s Association, 2014).
In addition, there are a number of pathophysiological
conditions that can increase cardiovascular risk and thus
increase the risk for changes in cerebral blood flow including
heart disease, hypertension, atherosclerosis and diabetes
(see Hays et al., 2018).

Cellular mechanisms responsible for the regulation of cerebral
blood flow, such as endothelial nitric oxide (NO) availability may
also be involved in age-related changes in brain health (Katusic
and Austin, 2014). A recent study using arterial spin labeled
perfusion MRI (Venturelli et al., 2018) showed that healthy
older participants showed reductions in both cerebral blood flow
and NO bioavailability compared to younger individuals, and
those with MCI and AD showed further declines. Both changes
were correlated with age-related declines in cognitive function,
suggesting that changes in NO and cerebral blood flow may be
related, and important for cognitive health.

Brain health drivers related to brain vasculature include
not only cerebral blood vasculature and the delivery of
oxygen to the brain but also the brain lymphatic vascular
systems involved in CSF turnover and waste removal. The
discovery of the CNS meningeal lymphatic vascular system
(Aspelund et al., 2015; Louveau et al., 2015) has opened new
areas of understanding of how the age-related changes in
the brain lymphatic circulation may affect brain health. A
recent pre-clinical study of young and old mice demonstrated
that there is a significant age-dependent decline in CSF
recirculation via the paravascular lymphatic system (Kress et al.,
2014). This dysfunction in the older mice was ameliorated

when the meningeal lymphatic circulation was augmented
with meningeal transfection with vascular endothelial growth
factor C. While these studies have yet to be confirmed in
humans, together they suggest that the meningeal lymphatic
vascular system is also an important component of healthy
brain aging.

The blood-brain-barrier (BBB), comprised of cerebrovascular
endothelial cells and perivascular mural cells and pericytes,
serves to protect the brain from circulating neurotoxins and
pathogens. Age-related degeneration of the BBB is linked to
neuropathologies which is an important risk category for ARCI.
Studies from brain autopsies in individuals diagnosed with AD
have demonstrated damage to the BBB and infiltration of blood-
related proteins in the hippocampus and cortex Post-mortem
studies have shown BBB damage in AD including accumulation
in the hippocampus and cortex of blood-derived proteins
(Baloyannis and Baloyannis, 2012; Sengillo et al., 2013). Recent
studies in the living human brain using contrast MRI have
shown age-related decreases in BBB integrity in the region of the
hippocampus (Montagne et al., 2015). These studies compared
BBB integrity between individuals with MCI and age-matched
cognitively normal individuals. They reported greater BBB
breakdown in the MCI group suggesting that decreased BBB
integrity may be a driver of ARCI.

Neuropathologies
Neuropathologic changes in the aging brain often include
changes in extracellular amyloid-β (Aβ) in plaques, increases
in intracellular hyperphosphorylated tau and neurofibrillary
tangles (NFTs), with α-synuclein, TDP-43 proteinopathy, and
hippocampal sclerosis occurring less frequently (Rahimi and
Kovacs, 2014). These neuropathological changes have been
suggested to drive alterations in functional synaptic circuits and
neuron loss. While some of the ARCI risk categories, such as
immune dysfunction and cardiovascular insufficiency are linked
to increased neuropathologies, other risk factors are not. For
example, glucose dysregulation including Type 1 and 2 diabetes,
which is a key risk category associated with ARCI, has not been
found to be associated with increases in neuritic plaques and
neurofibrillary tangles identified with an AD diagnosis (Biessels
and Despa, 2018). Some of these pathologies, such Aβ plaques
and tangles, develop in relatively predictable patterns, while
others, such as cerebrovascular pathology, can be highly variable
in terms of type, cause, location, and consequence (O’Brien and
Thomas, 2015).

Postmortem neuropathological (Driscoll et al., 2006; O’Brien
et al., 2009) and biomarker studies (e.g., Toledo et al., 2015;
Vemuri and Knopman, 2016), as well as recent studies using
positron emission tomography (PET; Aizenstein et al., 2008;
Resnick et al., 2010; Resnick and Sojkova, 2011) indicate that
approximately 30% of cognitively normal individuals have some
level of increased Aβ plaques. In individuals without dementia,
this neuropathology has been shown to decrease cognition
cross-sectionally and to increase the rate of cognitive decline
(e.g., Vemuri et al., 2015; Duke Han et al., 2017).

In normal functioning neurons, tau is a prominent
microtubule-associated protein involved in the assembly
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of tubulin into microtubules and structure stabilization
(Weingarten et al., 1975). In AD, tau protein is
hyperphosphorylated and results in NFT that correlate quite well
with the degree of cognitive impairment in AD (Cho et al., 2016;
Schöll et al., 2016). The impact of NFTs on normal aging is still
being defined (Crary et al., 2014). The term primary age related
tauopathy (PART) has been used to describe a continuum of
NFT distribution from focally-distributed in cognitively normal
individuals to tau-predominant in dementia. Generally, PART
occurs with minimal to absent β-amyloid pathology and may
account for as much as 18% of pathologies in cognitively normal
older individuals (Knopman et al., 2003; Josephs et al., 2017).

A third protein, alpha-synuclein, is also important to
consider, along with Aβ and hyperphosphorylated tau. Abnormal
aggregation of alpha-synuclein is involved in Parkinson’s disease
and Lewy Body dementia as well as in synaptic dysfunction
(Colom-Cadena et al., 2013). A study of plasma levels in healthy
older males showed a significant decrease in alpha-synuclein
between the 3rd and 5th decade of life (Koehler et al., 2015),
indicating that these changes may reflect normal age-related
changes in protein homeostasis.

The combination of AD, cerebrovascular, and Lewy body
pathologies account for significant variance in longitudinal rates
of global cognitive decline among older adults (Boyle et al.,
2013; Power et al., 2018). However, even after accounting for
the presence of these pathologies, the majority of variance in
cognitive decline remains unexplained. Additionally, there are
a number of reports in which individuals show substantial
neuropathology, such as Aβ plaques (Jack and Holtzman,
2013) without cognitive decline. Together, these findings raise
the possibility that there may be ‘‘resilience factors’’ that
protect some individuals from developing cognitive impairment
in the presence of these neuropathologies (Dickson, 1997;
Murray and Dickson, 2014)—possibly including genomics,
lifetime experiences, measures related to neuronal integrity and
synaptic function, or individual differences in neurotransmitter
system functions (e.g., Kaasinen et al., 2000; Barulli and Stern,
2013). More research is needed to understand whether the
effects of multiple pathologies are independent or synergistic,
and how they are modified by other risk or resilience
factors, such as overall health, genetic predisposition, and
lifestyle factors.

Neuron and Synaptic Function
Each of the drivers of brain health discussed
above—inflammation, blood flow, neuropathologies and
their associated risk categories—ultimately interact to affect
neuron function. Neurons do not work in isolation. Rather,
they function as interconnected networks within and across
brain regions. The neural circuit dynamics that support
cognition can be affected by cerebral blood vascularization
and oxygen delivery, brain lymphatic vascular efficiency, by
toxic Aβ, tau or alpha-synuclein species, or by changes in the
function of glia-neuron interactions. In addition, neuron to
neuron communication through the synapse is altered by both
normative and pathological aging processes, directly impacting
network function (Eastwood et al., 2006; Burke and Barnes,

2010; Schimanski et al., 2013). Critically, functional synapses are
necessary for enabling the computations required to support
high levels of cognition.

Data from humans, nonhuman primates and rodents all
suggest relative preservation of neuron number and morphology
in normative aging (Burke and Barnes, 2010). It has also been
demonstrated that neuronal membrane dynamics and other
biophysical properties of old cells are well preserved with age
(Rosenzweig and Barnes, 2003) in animal models of aging.
Synapse number and function, however, are clearly impacted by
age across species. The structure and function of aging synapses
have been examined most extensively in two primary regions of
the brain—the hippocampus and the prefrontal cortex. Both of
these regions play important, independent roles in cognition, and
these structures are highly interconnected.

The number of synaptic contacts made onto hippocampus
and prefrontal cortex cells in the rodent and nonhuman primate
declines with age, but these changes appear to be restricted to
certain synaptic input types, spine types and regional cell types.
For example, in the rodent hippocampus, synaptic loss is selective
to synapses from layer II medial entorhinal projections to granule
cells and CA3 pyramidal cells (Geinisman et al., 1992; Smith et al.,
2000). In the nonhuman primate prefrontal cortex, the reduction
in synaptic contacts occurs specifically in those synapses made
onto thin dendritic spines (Morrison and Baxter, 2012).

While the exact triggers responsible for loss of anatomical
and functional synapses across the lifespan are not completely
understood, alterations in gene transcription and translation
are clearly involved (Fraga et al., 2005; Starnawska et al., 2017;
Barter and Foster, 2018). For example, there are increases with
age in genes related to neuroinflammation, oxidative stress,
mitochondrial and calcium dyshomeostasis (Prolla, 2002; Blalock
et al., 2003; Ianov et al., 2016, 2017a). In addition, there is reduced
expression of hippocampal and prefrontal cortical genes linked
to synaptic structure and plasticity in the aging brain, as well as
changes in expression of immediate early genes (IEGs) that are
responsive to neuron activity (e.g., Prolla, 2002; Blalock et al.,
2003; Penner et al., 2011; Ianov et al., 2016, 2017a; Barter and
Foster, 2018). In neurons of both regions, epigenetic increases
in methylation of synaptic genes appear to result in decreased
transcription (Penner et al., 2011, 2016; Ianov et al., 2016,
2017b). Critically, these changes in synaptic genes are linked
to cognitive impairment in aged animals (Penner et al., 2011;
Ianov et al., 2017b). Thus, the co-occurrence of an increase in
genes involved in neuroinflammation (e.g., Mangold et al., 2017)
with a decrease in synaptic genes suggest that brain or systemic
inflammation may be an important driver of changes at the
aging synapse.

Not only are synapses lost in aging, but the synaptic plasticity
mechanisms thought to reflect the biological basis of stable
memories are also altered in the aging process (e.g., Barnes,
1979). In the rodent, both long-term potentiation (LTP) that
strengthens synaptic communication, and long-term depression
(LTD) that weakens synaptic strength are altered in aging
(Deupree et al., 1993; Norris et al., 1996; Rosenzweig and Barnes,
2003). For example, the durability of LTP is correlated with
spatial memory in individual rats (e.g., Barnes, 1979)—i.e., the
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better the memory the more durable LTP is over weeks. Old
spatial memory-impaired rats have the fastest decaying LTP and
LTP is harder to induce at old hippocampal synapses than in
young. The age-related changes in plasticity mechanisms may be
partly explained by dysregulation of microRNAs that influence
translation of synaptic genes into proteins (Siegel et al., 2011;
DankaMohammed et al., 2017) that affect LTP (Ryan et al., 2017)
and LTD (Fiore et al., 2014) mechanisms in hippocampus.

Among the processes that underlie synapse health and
synaptic plasticity is the activation of genes in the IEG family. For
example, the IEG Arc (activity-regulated cytoskeleton-associated
protein; Lyford et al., 1995) is important both for spatial
memory consolidation and the persistence of hippocampal LTP
(Guzowski et al., 2000; Plath et al., 2006), and provides an
excellent single cell marker of behavior-induced circuit activity
(Guzowski et al., 1999). Penner et al. (2011) showed that
behaviorally-induced transcription of Arc is altered in aging, and
this may in part be due to a higher level of methylation of the Arc
gene that restricts transcription.

A second IEG that is known to be important for memory
stabilization is Neuronal Pentraxin 2 (NPTX2), also known as
Narp (Tsui et al., 1996; Chang et al., 2010). NPTX2 is thought to
maintain the excitatory-inhibitory balance within brain circuits,
and we know that this balance is disrupted in aging, from
single cell recording and immunohistochemistry experiments
in rats (Wilson I. A. et al., 2005; Spiegel et al., 2013) and
monkeys (Thome et al., 2012), and from MRI experiments in
humans (Yassa et al., 2011). Recent studies in humans have
shown a significant reduction in NPTX2 in CSF of AD patients
(Swanson and Willette, 2016; Xiao et al., 2017) that correlate
with hippocampal volume and cognitive function. Additionally,
data support the idea that high levels of NPTX2 can serve as a
‘‘resilience factor’’ to protect brain circuit function and cognition,
even in those with significant neuropathology (Xiao et al., 2017).

The changes in synaptic connections and synaptic plasticity
that occur with age predict that network function should also
be altered in aging. Spatial navigation and memory depend on
the function of the hippocampus (O’Keefe and Nadel, 1978),
and are altered in aging across all species investigated—including
mice, rats, dogs, monkeys and humans (Lester et al., 2017). Two
different kinds of circuit dysfunction have been observed in old,
spatial memory-impaired rats. One is an age-related change in
CA1 pyramidal cells that involves the ‘‘CA1 place field map’’
becoming unstable in old rats. Even in familiar environments,
sometimes old rats’ CA1 place fields ‘‘remap’’ (change their
spatial distribution) when they should not. In CA3, on the
other hand, old rats’ ‘‘CA3 place field map’’ becomes rigid,
and sometimes does not remap when it should, even from one
distinctly different environment to another.

In summary, enabling neuron and synaptic health is key
to preserving cognitive health in aging. Each of the other
brain drivers of ARCI can impact synaptic and circuit function
via multiple pathways. Understanding individual differences
in the mechanisms through which synapses and circuits are
changed with age will be fundamental to implementing Precision
Aging approaches to maintain brain and cognitive health across
the lifespan.

BIOMARKERS RELATED TO BRAIN
DRIVERS

Our model suggests that the primary targets for intervention to
improve the cognitive life-span are the brain drivers that lead to
cognitive impairments. Thus, a critical companion to cognitive
testing is an ability to ascertain the molecular state of the brain
as well as an individual’s inherited genetic factors associated
with ARCI. Circulating biomarkers—molecules that can be
isolated from biological fluids and/or cells in the blood—will
play an important role in understanding an individual’s risk
for ARCI because such molecules exhibit changes before such
effects are evident through standardized cognitive testing. For
example, the cerebrospinal levels of amyloid-β fragments are
known to decrease years before a diagnosis of AD is reached
clinically (Skoog et al., 2003; Moonis et al., 2005; Gustafson
et al., 2007; Stomrud et al., 2007). Whether the same basic
concept applies to ARCI is unknown, however. Are there
molecules that can serve as early indicators of ARCI? Do
these molecules change before, after, or during the point
at which the alteration can be recognized through cognitive
testing? What role can these markers play in determining an
individual’s risk/protective profile for ARCI? The development
of a panel of molecular tests that are informative for each
class of brain driver, including neural inflammation, blood
flow, neuropathology, and neuron function, is key for creating
individualized panels of risk as well as determining the impact
of therapeutic interventions. Examples of known biomarkers
related to the four classes of brain drivers are discussed
briefly below.

Biomarkers of Inflammation
Markers of brain inflammation are of interest to characterize
in the context of cognitive aging due to the known role of
immune and inflammatory processes on brain health and disease.
It is important to note that peripheral and central biomarkers
of inflammation can be different and therefore the source
of the biospecimen (CSF vs. blood) must be considered as
well. Also of interest is the comparison between peripheral
inflammation biomarkers and central inflammatory biomarkers
as predictors of cognition. Very little is known about this
because it requires the collection of blood and CSF from each
study participant.

The three most studied biomarkers of inflammation and
cognition are IL-6, TNF alpha, and C-reactive protein. In
fact, these molecules are closely connected in a signaling
cascade whereby IL-6 stimulates TNF-alpha production and
CRP levels rise as a consequence of the resulting inflammation.
Multiple lines of research have suggested that these cytokines
are altered in both ARCI and dementia. A recent meta-analysis
(Bradburn et al., 2018) demonstrated that levels of IL-6—a
pro-inflammatory cytokine that can cross the blood brain
barrier—in plasma can be predictive of cognitive decline over
a 2–7 year follow-up period such that those with higher
circulating levels of IL-6 were at increased risk for cognitive
decline. TNF-alpha, a pro-inflammatory cytokine produced
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primarily by activated macrophages but also neurons, was
found to be elevated with aging in general in a study of
centenarians, and higher levels were associated with dementia
(Bruunsgaard et al., 1999). C-reactive protein was found to
be elevated in non-demented participants of the Northern
Manhattan Study who demonstrated higher risk for impaired
memory (Noble et al., 2010). The understanding of the molecular
inflammatory profile—both circulating and central—is critical
to fully characterize an individual’s inflammation status in the
context of cognitive aging.

Biomarkers of Neuropathology
Biomarkers of neurodegenerative brain disorders including
Alzheimer’s (AD) and Parkinson’s (PD) have been well
characterized from the aspect of CSF, and to a lesser extent,
blood-based assessments. Currently amyloid-β fragments
(Aβ1–40 and 1–42), total tau, and phosphorylated tau levels
are of interest in the CSF of individuals with suspected,
or at high risk for, AD. The ratios of these biomarkers
can be utilized to aid in diagnostic accuracy in suspected
AD. Importantly, they can predict progression from mild
cognitive impairment or even cognitively normal status
to AD up to 10 years in advance (Rosenmann, 2012).
Recent findings in the field of extracellular vesicles provide
promise for CNS-specific biomarkers of neuropathology and
neurodegenerative disease (Chen et al., 2017). In the CNS,
neurons as well as astrocytes, microglia, and oligodendrocytes
secrete exosomes into the extracellular space. Exosomes act as
mediators delivering important proteins, short interfering
RNA (siRNA), and microRNAs (miRNAs) that aid in
intercellular communication (De Toro et al., 2015). Alterations
in microRNA profiles in exosomes associated with pathologies
such as beta and tau are measurable in CSF and blood,
providing promise for new biomarkers in the diagnosis
of AD (Cheng et al., 2015).

Biomarkers of Neuron Function
An ability to assess neuron function using a molecular biomarker
approach would be of significant utility in understanding an
individual’s brain physiology. Recent work using CSF-based
measurements of the NPTX2 and GluA4 proteins show
promise as neural function molecular biomarkers. NPTX2 is
a presynaptically-expressed immediate-early gene whose
expression can regulate the levels of the AMPA receptor subunit,
GluA4, in PV-positive interneurons. By assaying thesemarkers in
the CSF one can begin to assess the circuit dynamics of the brain
in a quantitative fashion. Higher CSF levels of NPTX2 have been
correlated with less MTL atrophy and cognitive decline across
2 years (Swanson and Willette, 2016). NPTX2 and GluA4 levels
are reduced in the cortex of AD patients and CSF measurements
of NPTX2 show reductions as well, and both levels correlate
with cognitive function and hippocampal volume (Xiao et al.,
2017). One critical next step for the assay of these biomarkers
would be to measure them in the blood as this would vastly
improve the ease with which they could be studied in larger
aging cohorts. Biomarkers related to this brain driver are
of particular interest because they may serve as a molecular

phenotype of neural circuit function that may precede the
actual functional changes such as the development of ARCI or
cognitive decline.

Our model suggests that the presence of risk categories will
alter specific brain drivers which, in turn, will result in a predicted
biomarker signal for that altered brain driver. However, there
are likely examples where biomarker signals may remain within
the normal range, even in the presence of significant risk.
This could be due to our inability to measure the brain driver
biomarker signal with sufficient sensitivity. Alternatively, this
could represent a particular resistance in an individual to
brain driver changes, which is also of great interest. Identifying
and adding well validated and reliable biomarkers for brain
drivers can only be addressed through the in-depth molecular
and phenotypic study of large longitudinal cohorts of healthy
older adults.

THE PRECISION AGING MODEL IN
PRACTICE

Figure 3 provides a conceptual representation of the Precision
Aging approach in practice as it might apply to a given
individual. Panel A represents detailed assessments of each
of the previously described risk categories (e.g., Chronic
Stress, Immune Dysfunction, Cardiovascular Risk, Glucose
Dysregulation). Each of the categories will include assessments of
multiplemeasurable classes of variables that may include genetics
(G), phenotype (P), Biomarkers (B), Demographics (D), and
Lifestyle/Medical factors (L/M). The specific factors contributing
to a particular variable class will differ depending on the risk
category, with the combination and weighting of factors derived
empirically. Each variable class for a risk category is illustrated
by the colored bars, with differing bar heights indicating
the degree of risk association or protection. As a concrete
example, in Figure 3A, this individual shows a moderately
high genetic risk for chronic stress (Genetic—G). However,
their genetic risk may be offset by positive lifestyle factors
including a fulfilling job, an excellent social support system,
and no reported sleep disturbance (Lifestyle/Medical—L/M).
As a result, while they show mildly elevated markers of
inflammation (Biomarkers—B), they report overall high levels
of life satisfaction and low levels of daily stress (Phenotype—P).
Despite the genetic risk, then, this individual may have an overall
chronic stress score that is at or below the midpoint between risk
and protection.

Elevated risk category scores can then be considered in
combination with one another (Figure 3B) to derive brain
driver composite scores (Figure 3C). Note that some risk
category scores may be relevant to more than one Brain Driver.
For example, cardiovascular risk may contribute to both the
Inflammation and Blood Flow composite scores, while chronic
stress may contribute most heavily to the Inflammation brain
driver. In the example illustrated here, this individual has
strongly elevated risk for cardiovascular risk (a family history
of heart disease, uncontrolled hypertension, poor diet and low
physical activity) coupled with a moderately increased risk
for glucose dysregulation (obesity, high resting glucose levels),
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FIGURE 3 | A conceptualization of the Precision Aging model in practice, showing the workflow from assessments of individual risk categories (A) to identifying
significant risks (B) which are combined in a composite score that reflects risk for each brain driver. (C) Both the brain driver composite scores and the contributing
risk categories lead to the choice of optimal treatments to ameliorate risk factors and to address the at-risk brain driver directly.

making this individual at highest risk for the Blood Flow
brain driver.

The information presented in this fashion has several
advantages. First, it allows an individual to easily digest a
summary of complex information that will highlight areas of
highest concern. The chart should be used to guide the user and
their primary care physician towards interventions that improve
a profile by targeting underlying risk factor contributions as

well as more specific interventions targeted to specific Brain
Drivers. This latter type of interventionwill becomemore feasible
as direct biomarkers of brain drivers become more available.
Second, the chart system would provide the individual with
a way to dynamically explore outcomes. For example, as an
individual incorporates lifestyle changes that move them towards
normal body weight or bring their blood pressure to within
normal limits, they could see the immediate impact of these
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changes on their risk category scores and the downstream impact
they would have on Brain Driver scores. Lifestyle changes are
notoriously difficult to implement and even more difficult to
sustain, and such positive feedback may be both motivating and
empowering for individuals.

MOVING THE FIELD FORWARD

In the previous sections, we discussed some of the areas of
research that will be necessary to address if we are to make
progress toward our stated goal of maintaining brain health
across the full extent of the adult lifespan. In order to put
the Precision Aging model into practice, we need a better
understanding of how risk factors relate to one another to form
categories of risk, how multiple specific factors accumulate risk
within a given risk category, and which categories of risk account
for the greatest amount of variance in ARCI and cognitive
decline. For most categories of risk, we do not yet have a clear
understanding of how they are linked to brain drivers that set
the stage for accelerated age-related brain injury and cognitive
dysfunction. Additionally, risk categories must be combined with
personalized genetic, lifestyle and demographic profiles to create
individualized intervention strategies that combine preventative
and therapeutic approaches. In order to evaluate the molecular
state of the brain and assess the impact of interventions, there
is a critical need for novel biomarkers that reflect specific
brain drivers known to be associated with ARCI. Ideally, these
biomarkers would be easily attainable (i.e., through circulating
blood) and inexpensive so that they can be used in large scale
studies of cognitive aging and become accessible as a tool
for primary medical care. Several additional important points
regarding a research agenda are briefly discussed below.

Big Data and the Complexity of Aging
Clearly, the aging process is incredibly complicated. To capture
that complexity, large data sets are required that include multiple
layers of evaluation, both cross sectional and longitudinal, in
order to identify categories of interrelated risk factors, how
risk factors are moderated by genes, and how they interact
with demographic factors including sex, race, socioeconomic
status, geographic location, education, and others. Big data
sets also require analytic methods for reducing complexity by
identifying those combinations of factors that account for the
largest amounts of variance in trajectories of cognitive aging, and
those factors that are most predictive of future cognitive decline.
Ideally, such data sets would include measurements obtained in
the context of an individual’s daily life while they engage in tasks
that are meaningful, by using the internet, mobile devices, and
sensors to capture cognition, activity, sleep, and other aspects
of functional capacity. One way to address the enormous scale
of data required for such an enterprise is to share information
across large-scale longitudinal studies and existing biobanks that
are funded through federal agencies.

The ultimate goal of big data analytic methods is to
reduce complexity to its simplest form. In the end, instead
of requiring the assessment of hundreds of different risk
factors, creating a profile of brain health may require only

a handful of key predictors that will lead to effective
interventions to prevent or ameliorate ARCI. If that is
the case, a pared-down version of the Precision Aging
model could be readily implemented on a smart phone or
web-based assessment for use by a primary care physician
or an individual. That endpoint is likely only achievable,
however, through the analysis of large-scale, multifaceted and
complex data sets.

The Impact of Interventions on Brain
Drivers
One important implication of the Precision Aging model is that
interventions, to be most effective, should ameliorate the impact
of brain drivers, rather than solely focusing on reducing or
removing a specific risk factor. However, just as we do not have a
clear understanding of the link between risk categories and brain
drivers, we have a limited understanding of the mechanisms
by which interventions impact the brain. As discussed earlier,
interventions that may not appear similar on the surface
may, in fact, provide the same benefit to the brain because
they share a common underlying mechanism. Understanding
treatments from this perspective—specifically, their impact on
brain drivers—will allow us to tailor the ideal intervention (or
combination of preventative and therapeutic interventions) to an
individual based not only on their profile of risk but also on their
own preferences. One person may find meditation boring and
difficult to practice, but they may enjoy engaging in meaningful
social interaction such as volunteering for a local school, both of
which may have the same long-term impact on brain health by
decreasing chronic stress. A treatment regimen is only as good as
a person’s willingness to adhere to it.

The ideal treatment regimen should combine preventative
interventions that focus directly on decreasing specific risk
factors with therapeutic interventions that ameliorate the brain
injury that has already taken place. For example, a smoking
cessation program is important to prevent continued exposure
to noxious chemicals, while pharmacological interventions may
be required to reverse the damage that has already occurred.
Additionally, providing individualized interventions in the
home, rather than solely in the clinic, and providing people
with continuous feedback and follow-up, will be key to ensuring
that interventions will be effective and reach a sufficiently large
segment of the population.

SUMMARY

Our hope is that the Precision Aging model can lead to novel
advances in the measurement, prevention, and treatment of
ARCI by creating individualized risk profiles that are linked
to a customized intervention plan. Ultimately, our approach
could lead to a diagnostic system that enables primary health
care providers to identify and implement precision solutions for
sustaining cognitive health. By working tomatch cognitive health
with lifespan, such a system would decrease hospitalization time,
extend independent living, improve productivity and quality of
life, and decrease the risk for AD.
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