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Abstract

The study of life history variation is central to the evolutionary theory. In many ectothermic lineages, including lizards, life
history traits are plastic and relate to several sources of variation including body size, which is both a factor and a life history
trait likely to modulate reproductive parameters. Larger species within a lineage, for example tend to be more fecund and
have larger clutch size, but clutch size may also be influenced by climate, independently of body size. Thus, the study of
climatic effects on lizard fecundity is mandatory on the current scenario of global climatic change. We asked how body and
clutch size have responded to climate through time in a group of tropical lizards, the Tropidurinae, and how these two
variables relate to each other. We used both traditional and phylogenetic comparative methods. Body and clutch size are
variable within Tropidurinae, and both traits are influenced by phylogenetic position. Across the lineage, species which
evolved larger size produce more eggs and neither trait is influenced by temperature components. A climatic component of
precipitation, however, relates to larger female body size, and therefore seems to exert an indirect relationship on clutch
size. This effect of precipitation on body size is likely a correlate of primary production. A decrease in fecundity is expected
for Tropidurinae species on continental landmasses, which are predicted to undergo a decrease in summer rainfall.
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Introduction

Life history traits are central to evolutionary theory because

they relate to how evolution shapes growth and reproductive

patterns, two key aspects of fitness. Because life-history traits are

not necessarily independent, one important line of research focuses

on how these traits relate to each other, and what evolutionary or

phenotypic constraints may limit their expression [1]. Life history

traits appear to be extremely plastic in many lineages of

ectothermic vertebrates, including examples among amphibians

[2] and fish [3–5]. Within squamates, several lizard species appear

to display fix life history traits whereas others exhibit flexible

patterns [6] . Several sources of variation in life history traits have

been identified in the latter, including aspects of natural history

and the action of physical parameters [7,8]. Relevant natural

history factors include lineage, foraging mode [9–13] and body

size or body shape [9–13], which in turn may also be influenced by

the environment.

Body size is both a life history trait itself and a factor likely to

modulate diverse reproductive parameters. For example, lizard

clutch size relates allometrically to body size [8,12,14] and to

fecundity because, in species with variable clutch size, larger

females tend to produce more eggs [6,15]. In addition, clutch size

may also increase with female body size across species [6,15,16],

and several correlates of body size, including abdominal body

volume, appear to play a role in this relationship [16].

Nevertheless, lizard clutch size may also be influenced by climate,

independently of body size. Congeneric lizard species from

different climate regimes (for example along latitudinal gradients)

may differ in clutch size independently of differences in body size

among populations [17]. Elements of climate known to influence

lizard clutch size includes scope and pattern of climatic seasonality

[6], and more pronounced seasonality favor larger clutch sizes

[17–19].

Few studies focus on how climate influences life history in lizard

lineages exhibiting environment-specific reproductive traits. These

lineages may be particularly sensitive to climate change [20] and

thus influenced by current global climatic trends. Therefore, we

asked how body size and clutch size have responded to climate in a

group of tropical lizards, and how these two variables relate to

each other. To answer these questions we gathered climatic data

from historical databases and studied body and clutch size mainly

from preserved specimens catalogued in zoological collections. We

focused on the sub-family Tropidurinae, a lineage that is

morphologically and ecologically diversified, and that is distributed

along a variety of contrasting habitats. Species representing this

sub-family can be found in the Amazon Forest [21–24], the semi-

arid Caatingas [25,26] and the Cerrados (Brazilian Savannah)

[27], three habitats with very different climate. Additionally,

considerable information has been published on the ecology and

natural history of the Tropidurinae, and specimens abound in

Brazilian zoological collections. Furthermore, this lizard lineage

displays large variation in body size and clutch size [28,29]. We

report on the relationships between body size, climatic conditions

and clutch size in the Tropidurinae, using both published and new

data collected from preserved specimens from zoological collec-
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tions. We analyze the relationships between these variables using

both traditional and phylogenetic comparative methods and test

the hypothesis that larger species have larger clutch sizes, that

clutch size and body size may be influenced by climate, and that

size-independent effects of climate on clutch size can be detected.

Results

Climate
Data on environmental temperature and rain patterns were

simplified using a principal component analysis that produced two

main components, one clearly related to temperature (CC1) and

another strongly related to rain patterns (CC2, Table 1, see

Methods for details). The component CC1 (69.26% of total

variance) was mainly influenced by annual mean temperature

(AMT), mean minimum temperature (AMinT) and mean

maximum temperature (AMaxT), but was also influenced by

temperature records corresponding to the month in which gravid

females were collected. These variables included mean tempera-

ture (MT), mean minimum temperature (MMinT) and mean

maximum temperature (MMaxT). The component CC2 (23.23%

of total variance) was related mainly to annual precipitation (AP)

and monthly mean precipitation of records for gravid females

(MP). The principal component scores retained for these climatic

components, and corresponding to each one of the species

included in this study, are available as supplementary supporting

material.

Body size and clutch size along the Tropidurinae
Both clutch and body size were variable within the Tropidur-

inae. Clutch size ranged from 1 egg (Eurolophosaurus nanuzae, Plica

plica, P. umbra, Tropidurus guarani, T. semitaeniatus, T. itambere, T.

montanus, T. oreadicus and T. torquatus) to 16 eggs (Uranoscodon

superciliosus), and the size of gravid females ranged from 44.7 mm

(E. nanuzae) to 151.0 mm (P. plica) (a full list of clutch and body

size means and ranges for all species studied is available on

supporting material). Both traits were influence by systematic

position within the Tropidurinae lineage (significant phylogenetic

signal, see Table 2) under most models tested (clutch size

exhibited marginally non-significant phylogenetic signal under

constant branch lengths, P = 0.051, Table 2). Across the

Tropidurinae lineage, species which evolved a larger female

body size exhibited also larger clutch size (0.063,ß,0.067,

p,0.01, phylogenetic models, Table 3). The climatic components

did not influence clutch size among species (Table 3) but the

climatic component CC2, which is associated with rain patterns,

had a positive effect on body size across tropidurines (ß = 9.798,

p,0.01, Table 4).

Discussion

We found that body and clutch size in the Tropidurinae are

heavily influenced by phylogenetic position, and that clutch size is

a key component of fecundity. The dependence of body size on

phylogenetic position has been previously reported for various

lineages of animals [30], including lizards [30,31]. Previous studies

with tropidurines, however, did not report a significant effect of

phylogeny on body size, in contrast to our findings [32,33].

Because Kohlsdorf et al. [32] and Grizante et al. [33] analyzed

male lizards and we studied females, the body size of male

tropidurines may be more dependent on phylogenetic position

than the body size of females. Overall, males and female lizards

may differ in the degree of perceived phylogenetic niche

conservatism, a condition that is suggested - not demonstrated -

by phylogenetic signal [34] in the body size of gravid females.

Conversely, lack of phylogenetic signal suggests that phylogenetic

niche conservatism does not occur [34] in the body size of male

Tropidurinae. Different selective pressures, therefore, may exist

between sexes of tropidurine species, most of which are sexually

dimorphic and display larger males.

Our results hint at an allometric and evolutionary relationship

between body size and other life history traits [8,12,14], and

specifically suggest that body size is the main correlate of clutch

size among Tropidurinae lizards. Within tropidurines, at least in

Tropidurus spinulosus and T. torquatus, females with larger body size

produce eggs with larger mass and volume [27,35], so clutch size

seems associated with relative clutch mass (RCM) in this group of

lizards. Whereas larger tropidurines tend to exhibit bigger clutch

size, several species exhibit smaller clutch size than predicted by

the body size – clutch size regression model. Examples include the

Amazonian species Plica plica, P. umbra and Uracentron flaviceps,

which rely on vertical locomotion. Vitt [22] analyzing the specific

case of Plica plica, suggested that low clutch size and RCM are part

of a pool of adaptations enhancing this type of locomotion. This

finding is consistent with observations of clutch size in other

groups of lizards, such as Anolis and most geckos, taxa in which

natural selection favoring enhanced vertical locomotion may have

led to reduced clutch sizes [36]. In the same paper, Vitt suggested

Table 1. Scores of a Principal Component Analysis performed on climatic variables.

Component

climatic variable 1 2

Annual precipitation (AP) 0.429 0.864*

Annual mean temperature (AMT) 0.980* 0.125

Annual mean minimum temperature (AMinT) 0.926* 0.226

Annual mean maximum temperature (AMaxT) 0.943* 20.007

Mean temperature of months with gravid females (MT) 0.982* 0.097

Mean minimum temperature of months with gravid females (MMinT) 0.879* 0.340

Mean maximum temperature of months with gravid females (MMaxT) 0.943* 20.140

Mean precipitation of months with gravid females (MP) 20.157 0.949*

Eigenvalue (%variation explained) 5.711 (69.26%) 1.689 (23.23%)

Note. Variables contributing most to each component are indicated by*.
doi:10.1371/journal.pone.0020040.t001
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also that the physical burden of a large clutch would not represent

a disadvantage in other sit-and-wait species that do not use vertical

locomotion [22], which are characterized by larger RCM [19].

These considerations receive independent support by the finding

that gravid lizard females exhibit reduced endurance [37] and

speed [38].

Some authors have suggested that smaller clutch sizes than

predicted by regression models may occur in species associated

with rock crevices, such as Tropidurus semitaeniatus [26,39,40].

Perhaps this is the case also for T. mucujensis and T. erythrocephalus,

but given the small sample sizes available for these two species this

hypothesis needs to be confirmed. Finally, the tropidurines

encompass other species with clutch sizes that are also small, yet

consistent with their body sizes (e.g., clutch size explained by the

regression model). So, whereas habitat may play an important role

in the evolution of lizard clutch size, it is not necessarily a factor in

the evolution of small clutch sizes among tropidurines. For

example, species such as Eurolophosaurus nanuzae exhibits small

clutch sizes [28], yet it fits the predictions of a model based on

body size. Thus, habitat type may be less important than formerly

thought as a direct factor modulating clutch size and body size

needs to be taken into account when analyzing environmental

influences on clutch size across species within a lizard lineage.

Small clutch sizes may be a derived character for tropidurines,

as has been suggested by Vitt et al. [24] and reinforced by Kiefer

et al. [41]. Nevertheless, an ancestral reconstruction of clutch and

body size for the Tropidurinae made with the data we have

available (Figure 1) does not necessarily support this idea. We state

this fully aware of the limitations of ancestral reconstruction

techniques, especially when rates of evolutionary change are high

(check [42] for a review) as seems the case for Tropidurinae

lizards. Within this constraint, we noted that although small clutch

size may have originated independently several times within the

subfamily, the alternative view would take a similar amount of

steps. Given this ambiguity, it is difficult to produce conclusive

statements regarding whether smaller or larger clutches are

ancestral or derived in this lineage (Figure 1).

Our data suggest that patterns of precipitation may exert an

indirect effect on clutch size in the Tropidurines, perhaps via

effects on primary production, but we do not know the underlying

mechanisms or specific cause-effect relationships involved in this

trend. Rain patterns, usually an overlooked component of climate,

may influence lizard life history variation. For example, female

body size covaries with precipitation in Anolis mariarum (Poly-

chrotidae), presumably through effects on growth-rates [43]. In

both Aspidoscelis tigris (Teiidae) [44] and Sceloporus merriami [45,46]

growth rates correlate with precipitation. In addition, rain patterns

may influence reproductive traits in populations of the same lizard

species. A comprehensive study with Sceloporus merriami shows that

during wet years more arthropod preys are available and

consumed, individual growth rates are higher and reproducing

females are bigger. So, females exhibit greater size-specific

fecundity in rainy than in dry years [45,46]. These studies support

a link between growth rates (and thus body size) and habitat

production via climate effects that may also apply to some lineages

of tropical lizards, for example the tropidurines.

We did not estimate primary production or food availability, so

the above proposed relationship is speculative for the Tropidur-

Table 2. Parameters of phylogenetic signal for body size (snout-vent length = SVL) and clutch size.

trait branches MSEtree MSEstar K P ln likelihood tree ln likelihood star

SVL Constant 311.17 354.46 1.4194 0.021* 289.5589 290.9266

Pagel 255.60 354.46 0.8479 0.004* 287.4935 290.9266

clutch size Constant 2.6336 2.7859 1.0611 0.051 239.4532 240.0433

Pagel 2.2850 2.7859 0.6885 0.005* 237.9623 240.0433

Note. Significant values are indicated by*.
doi:10.1371/journal.pone.0020040.t002

Table 3. Comparisons of regression models testing the effects of body size (snout-vent length = SVL), climatic component 1 (CC1)
and climatic component 2 (CC2) on clutch size.

slope F1,16

branch
length model SVL CC1 CC2 Y SVL CC1 CC2 AIC AICc Ln L d

none OLS 0.05 20.309 0.014 0.008 4.249 0.62 0.001 79.74 84.03 234.87

all equal 1 PGLS{1 0.067* 20.246 0.118 0.626 17.82 1.02 0.203 68.57 72.86 229.29

RegOU{ 0.067* 20.239 0.130 0.666 18.77 1.01 0.257 70.24 76.70 229.12 1.105

Pagel PGLS{ 1 0.063* 20.163 0.177 0.752 13.64 0.53 0.471 69.90 74.19 229.95

RegOU 0.063* 20.177 0.161 0.770 13.18 0.58 0.372 71.55 78.01 229.77 0.871

Note. Akaike Information Criterion (AIC; smaller is better) is computed as (2 * ln maximum likelihood) (2 * no. parameters). d is the restricted maximum likelihood
estimate of the Ornstein-Uhlenbeck (OU) transformation parameter. Three linear regression models are compared: ordinary (nonphylogenetic) least squares (OLS),
phylogenetic generalized least squares (PGLS), and regression in which the residual variation is modeled as an OU process (RegOU) along the specified phylogenetic
tree.
*P,0.01.
{Model with best fit by smaller-is-better AIC criterion.
1Model with best fit by smaller-is-better AICc criterion.
doi:10.1371/journal.pone.0020040.t003
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inae but provides a likely explanation for a cause-effect

relationship between clutch size and climate in this taxon. When

rainfall is high, plant primary production is enhanced and provides

primary consumers and its food webs with more food [47,48]. For

example, the body size of tenebrionid beetles is larger on habitats

with higher rainfall regimes and therefore enhanced productivity

[49]. Indeed, several groups of animals, from mammals to insects,

exhibit larger body size in areas with higher precipitation

[47250]. Our study indicates that tropical lizards may conform

to this pattern, and in at least one species (Tropidurus itambere) the

Table 4. Comparisons of regression models testing the effects of climatic component 1 (CC1) and climatic component 2 (CC2) on
body size (snout-vent length = SVL).

slope F1,17

branch length model CC1 CC2 y CC1 CC2 AIC AICc Ln L d

none OLS{1 7.003 9.798* 474.87 3.882 7.6 171.121 173.787 281.56

all equal 1 PGLS 4.451 5.597 89.429 1.564 2.2 176.782 179.449 284.39

RegOU{ 7.003 9.798* 474.87 3.882 7.6 173.121 177.406 281.56 2.60E217

Pagel PGLS 1.238 0.481 37.957 0.150 0.02 175.343 178.01 283.67

RegOU{ 7.003 9.798* 474.87 3.882 7.6 173.121 177.406 281.56 2.60E217

Note. Akaike Information Criterion (AIC; smaller is better) is computed as (2 * ln maximum likelihood) (2 * no. parameters). d is the restricted maximum likelihood
estimate of the Ornstein-Uhlenbeck (OU) transformation parameter. Three linear regression models are compared: ordinary (nonphylogenetic) least squares (OLS),
phylogenetic generalized least squares (PGLS), and regression in which the residual variation is modeled as an OU process (RegOU) along the specified phylogenetic
tree.
*P,0.01.
{Model with best fit by smaller-is-better AIC criterion.
1Model with best fit by smaller-is-better AICc criterion.
doi:10.1371/journal.pone.0020040.t004

Figure 1. Topology of phylogenetic analysis and ancestral reconstruction of female body size and clutch size in the Tropidurinae.
Topology used for phylogenetic analysis (based on [58]), together with parsimony reconstructions of ancestral body and clutch size in gravid females
within Tropidurinae lizards.
doi:10.1371/journal.pone.0020040.g001
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number of reproductive females correlates with amount of rainfall

[51]. These considerations are relevant for lizard conservation in

the context of climate change. Most scenarios project reductions of

rainfall in regions such as eastern Amazonia and Northeast Brazil

[52]. According to our data, and independently of the mechanisms

involved, the realization of such scenarios apparently would be

paralleled by reduced reproductive output in Tropidurines, and

perhaps in other lizard lineages. Conversely, Southern Brazil is

likely to experience an increase in rainfall [52], which preliminary

may suggest opposite effects. However, given that rain patterns

may change as well (e.g. more extreme rainfall events [52])

conclusive statements are yet impossible. Finally, fecundity bears a

relationship with yearly number of clutches and most Tropidur-

inae species are able to produce more than a clutch per year [53],

but we are unaware of studies addressing how this latter variable

bears dependence on precipitation patterns. In theory, yearly

number of clutches could increase as rainfall decreases, as to

compensate a reduction in clutch size. However, in the absence of

studies supporting this possibility, we propose that a decrease in

body size does decrease effective fecundity. The effects of changing

rain profiles on the fecundity of lizards needs better understanding.

Materials and Methods

Body and Clutch Size
Body and clutch size were measured on lizards at three

Brazilian herpetological collections: Museu de Zoologia da

Universidade de São Paulo (MZUSP) - SP, Museu Paraense

Emilio Goeldi (MPEG) - PA and Coleção Herpetológica da

Universidade de Brası́lia (CHUNB) - DF (SP, PA and DF refer to

Brazilian Federative Units). Snout-vent lenght (SVL) was used as

body size estimation and was measured with digital calipers to the

nearest 0.01 mm. Clutch size was estimated from the number of

eggs or vitellogenic follicles found on dissected gravid females. All

measurements were performed by RB. Additional data on body

size and clutch size were obtained from the literature [22-24,26-

28,35,41,51,54258], so that the final database comprised 21

Tropidurinae species out of the 50 species recognized by Frost

et al. [59]. The sample size for each species studied is available as

supporting material (see Table S1). Since often only few gravid

females were available for a given species, data from different

populations of the same species were pooled, so that species

average values were entered in the analysis (see [60] for a similar

approach).

Climatic data
Climatic data were extracted from a historical database of daily

records (196122009) available upon request from Instituto

Nacional de Meteorologia (INMET), Brazil. We developed a

criterion for choosing which climatic station better represented

each locality using data from 42 climatic stations spread over a

latitudinal gradient of more than 2800 km. On this data we

performed a principal component analysis (PCA), using SPSS

16.0.1 for Mac OSX, and the principal components scores were

regressed against latitude and altitude in a multiple regression

analysis. Therewith, we predicted that climatic change of 100 m in

altitude is equivalent to 100 km over the latitudinal gradient

studied in Brazil. We considered the differences in altitude and

latitude between the localities and the climatic stations available

and calculated which would represent less change using our

regression model.

For each locality/climatic station we chose among the climatic

variables available those we judged best to characterize differences

in local climate. We calculated yearly averages of the climatic

variables AP, AMT, AMinT and AMaxT (see Results for full text

on these acronyms). In additon, we produced another dataset

containing monthly climatic data and therefore allowed for

collecting data on the specific months with presence of gravid

females: MP, MT, MMinT and MMaxT. These additional

variables helped to investigate local differences in climate when

females are more likely to be gravid. Climatic values representing a

species were pooled in the same manner described above for

populations. We reduced the climatic variables using PCA, so that

they would not display multicolinearity. Components with

eigenvalues .1 were retained and their scores were used in

subsequent analysis.

Analysis
A traditional way to study evolutionary correlations between

traits is to make interspecific comparisons, which are best analyzed

under a phylogenetic perspective. The main reason is that

phylogenetic approaches account for common ancestry, which is

responsible for shared similarities exhibited by closely related

species. Accordingly, for data analysis we built a topology (Figure 1)

based on Frost et al. [59], which incorporates molecular and

morphological data to enhanced previous phylogenetic hypothesis

for the Tropidurinae sub-family [61,62]. Estimates of branch

length, such as divergence time, genetic distance or any other

metric proportional to the expected variance for the evolution of

each analyzed trait, are unavailable. Consequently, we tested four

different types of arbitrary branch lengths following the diagnostics

proposed by Garland et al. [63]: all equal 1 (Constant), Grafen

[64], Pagel [65] and Nee (cited in [66]). Only Constant and Pagel

arbitrary branch lengths passed the diagnoses criteria and were

therefore both used in our subsequent analysis. We used Mesquite

v2.74 [67] with PDAP:PDTREE v1.15 [68] module for Mac OSX

to manipulate trees and branch lengths as well as to examine

diagnostic plots of independent contrasts.

We tested (1) the effects of body size and climatic components

on clutch size; and (2) the effects of climatic components on body

size by using linear regression models implemented via Regres-

sionv2.m in MATLAB 7.6 (R2008a) for Mac OSX. Three types of

models were examined: (a) ordinary least squares (OLS), which is a

traditional non-phylogenetic regression that assumes a star

phylogeny in which all species are equally unrelated, (b)

phylogenetic generalized least squares (PGLS), which is function-

ally equivalent to Felsenstein’s [69] phylogenetically independent

contrast method [70] and assumes that residual variation between

species is correlated through an evolutionary process along the

specified phylogenetic tree similar to a Brownian-motion (topology

and branch lengths); (c) and a phylogenetic regression under an

Ornstein-Uhlenbeck process (RegOU), similar to PGLS with the

difference that it allows transformation of branch lengths under a

stabilizing selection evolutionary model while estimates simulta-

neously the strength of phylogenetic signal in the residual variation

and the regression coefficients using the parameter d [71]. The

parameter d returns a measure of phylogenetic signal — no

phylogenetic signal when d = 0, existent and significant phyloge-

netic signal when d is significantly greater than zero [30,71]. These

three models form a continuum between assuming a star

phylogeny with no hierarchical structure (OLS), a phylogeny that

was specified by the user (PGLS) and a phylogeny that can exhibit

intermediate values between the star and the specified hierarchical

phylogeny (RegOU). We also performed the randomization test

for phylogenetic signal of Blomberg et al. [30]. Generally, whether

conventional or phylogenetical statistics should be used to interpret

the results depends on whether the analyzed traits exhibit

phylogenetic signal. We report results from both approaches

Life-History Evolution on Tropidurinae Lizards
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(traditional and phylogenetic) together with the Akaike Informa-

tion Criterion (AIC), a heuristic indicator of model support, in

which AIC = (-2 * ln maximum likelihood) + (2 * nu of

parameters). Because sample size was not large, we also computed

the AICc [72], which in all cases gave results consistent with AIC.

We followed Burnham and Anderson [72] and considered that the

best-fit model is that with the lowest AIC. As a rule of thumb,

models with AIC within 2 units of the best-fit model were

considered to have substantial support. All variables included in

the best-fitting models were statistically significant (P , 0.05) via

partial-F tests. The MS-DOS computer program PDDIST [63]

was used to build the phylogenetic variance-covariance matrix

used in the analysis [71].

Supporting Information

Table S1 List of studied species, means and ranges for clutch

size (CS) and snout vent lenght (SVL) and scores for the climatic

components CC1 and CC2 used in the analysis.

(PDF)
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