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Abstract: Cellulose derivatives have many potential applications in the field of biomaterials and
composites, in addition to several ways of modification leading to them. Silanization in aqueous
media is one of the most promising routes to create multipurpose and organic–inorganic hybrid
materials. Silanization has been widely used for cellulosic and nano-structured celluloses, but was a
problem so far if to be applied to the common cellulose derivative “dialdehyde cellulose” (DAC),
i.e., highly periodate-oxidized celluloses. In this work, a straightforward silanization protocol for
dialdehyde cellulose is proposed, which can be readily modified with (3-aminopropyl)triethoxysilane.
After thermal treatment and freeze-drying, the resulting product showed condensation and
cross-linking, which was studied with infrared spectroscopy and 13C and 29Si solid-state nuclear
magnetic resonance (NMR) spectroscopy. The cross-linking involves both links of the hydroxyl
group of the oxidized cellulose with the silanol groups (Si-O-C) and imine-type bonds between the
amino group and keto functions of the DAC (-HC=N-). The modification was achieved in aqueous
medium under mild reaction conditions. Different treatments cause different levels of hydrolysis of
the organosilane compound, which resulted in diverse condensed silica networks in the modified
dialdehyde cellulose structure.

Keywords: biomaterials; cellulose; dialdehyde cellulose; organosilane chemistry; 29Si NMR; solid
state NMR; silanization

1. Introduction

The booming developments in the biopolymers field is evidently engaging cellulose and cellulose
derivatives in crescent number of applications and new materials, such as fillers or matrices in polymer
composites, aerogels, and separation media. Cellulosic components are simply central in the evolution
of novel bio-materials [1]. One particular modification that is especially promising in the area of
organic–inorganic hybrid materials is the silanization of cellulose—or polysaccharides in general—by
this way generating polysaccharide–silane/silica interfaces with differing amounts of covalent bonds
between the two bordering constituents. Silanization is widespread for enhancing the properties
of cellulose composites: the coupling with silane agents involve an improved interfacial adhesion
between fibers and matrix, better resistance to water leaching, hydrophobicity, thermostabilization,
and improved fiber strength [2–4]. Quite many applications of novel cellulosic materials modified by
silanes can be found in literature: hybrid substances formed by silica gel and dicarboxylic cellulose for
dye absorption [5], films made with cellulose acetate and silane with isocyanate moieties [6]; aerogels
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with cross-linked cellulose, acrylamide polymers, and methyltrichlorosilane for oil/water separation [7];
or composite aerogels with silica and cellulosic fibers for thermal insulation [8] are just a few examples.
The chemistry between cellulose derivatives and modified silica gels is used also in the field of chiral
separation, producing packing materials for liquid chromatography [9]. Modifications of cellulosic
materials are performed in wet state with different silanes [10,11].

A special cellulose derivative with great reverberation in research and applications is dialdehyde
cellulose (DAC), usually produced by oxidation of cellulosics (to different degrees) with sodium
periodate. Several applications of this type of oxidized cellulose are reported in the literature, such as
films for packaging [12], as nanoparticles for drug delivery systems [13], the formation of nanocrystal
aerogels with superabsorbent properties [14], or as self-healing nanocomposite hydrogels [15]. In this
work, we describe the direct modification of DAC according to a straightforward silanization
protocol, carried out in aqueous media and without severe thermal treatment. The chosen silane
is (3-aminopropyl)triethoxysilane (APTES). This reagent is cheap and readily available, which is an
important factor when it comes to up-scaling. APTES has been studied already in systems with
cellulosic fibers [16]. Its utilization has already been reported for strengthening the interfaces of hybrid
organic-inorganic coatings [17], in grafting reaction with tosylcellulose [18], for surface functionalization
of cellulose nanocrystals [19], and also with DAC as the stationary phase in chromatography [20].
In the latter case, silica gel was modified by APTES in toluene, and then utilized for the modification of
DAC in pyridine at high temperature during several hours which is considered neither practical and
general nor compatible with green chemistry principles. In our approach, the silanization of DAC
involves hydrolysis of APTES and self-condensation as well as condensation with the hydroxyl groups
of the cellulose derivative, most notably using aqueous media and employing mild reaction conditions
and short reaction times. The studies leading to the DAC modification protocol are described in the
present account.

2. Results and Discussion

Periodate oxidation of cellulose, if reaching sufficiently high oxidation degrees of about 60%
and above, provides a water-soluble material [21]. During the oxidation and solubilization process
a great variety of masked aldehyde structures is formed, mainly aldehyde hydrates, hemiacetals,
and hemialdals with intra- and intermolecular bonds [12,22,23]. The determination of the molecular
weight of DAC, because of inter-chain crosslinking, is rather complicated and requires special
approaches and precautions which have been addressed previously [23] and cannot be discussed here.
The degree of oxidation was 59% for the thermally treated DAC and 62% for the freeze-dried DAC in
our experiments, which corresponds to 7.4 mmol/g and 7.8 mmol/g of aldehyde groups, respectively.
The acidic pH during the periodate oxidation promotes the formation and stability of hemiacetal
structures [24], which are detected in the Fourier-transform infrared (FTIR) spectrum of the oxidized
cellulose [25] (band at 876 cm−1 in Figure 1). Also, the influence of periodate oxidation on cellulose
structure and morphology, according to the cellulose allomorphs, has been studied [26]. Since the
acidic environment at the same time catalyzes hydrolysis of APTES [27], the organosilane was directly
added to the DAC solution without a previous hydrolysis step, which is usually performed when this
silane is used with cellulose. It has been reported that cellulose and other cellulose derivatives bind
covalently with silanes after thermal treatment [3,18,28,29], although it was by no means clear that the
behavior would be similar between DAC and APTES, since the chemistry of DAC—and its reactive
moieties—is rather different from that of celluloses. Nevertheless, hydroxyl groups present in DAC in
high number because of the solubilization process can be expected to be available for cross-linking and
condensation with the silanol groups. A similar reactivity of DAC hydroxyl groups and the hydroxyl
groups of polysaccharides with regard to hydrogen bond network formation has already been noted in
the literature, e.g., for polyvinyl alcohol [30]. So far, modification of DAC with APTES took only imine
formation [20] into account, but not a possible reaction between the hydrolyzed organosilane and
DAC (hemiacetal/aldehyde hydrate/hemialdal) hydroxyl groups. While solubilized DAC is a film-like
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materials after thermal drying and foam-like after lyophilization (freeze-drying), the morphology
changes upon derivatization and silanized DAC is a powder.
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Figure 1. Fourier-transform infrared (FTIR) spectra of dialdehyde cellulose (DAC) (left) and
(3-aminopropyl)triethoxysilane (APTES) (right). The labelled bands, from left to right, correspond to:
carbonyl stretching (1732 cm−1), C-O stretching (1016 cm−1), and hemiacetal bond stretching (876 cm−1)
in the DAC spectrum; C-H methyl group asymmetrical stretching (2972 cm−1), C-H methyl group
deformation (1390 cm−1), Si-O stretching (1072 cm−1), skeletal vibration (952 cm−1), and C-H bending
(762 cm−1) in the APTES spectrum.

Covalent bonding between cellulose and organosilane can be studied with 29Si NMR: if the
spectra do not change anymore over time after an initial period, further self-condensation of the silane
structures is blocked by the covalent bonding with the cellulose molecules [28]. In this work we apply
this approach to the reaction between APTES and DAC to study presence and type of covalent binding
between the cellulose and the silane networks.

Figure 2 shows the cross-polarization/magic angle spinning (CP/MAS) 29Si NMR spectra of
the DAC-APTES condensation product after thermal treatment, revealing peaks of the two main
condensation structures of the silane, namely T2 and T3 [6], with chemical shifts δ at −60.1 ppm and
−68.5 ppm, respectively, in the one-day-old sample and δ −60.3 ppm and −68.4 ppm, respectively,
for the same sample after two years. A minor contribution of the T1 structure is visible at −50 ppm
as a shoulder in both spectra. It was evident that the spectra did not change significantly within the
two years of sample storage. Therefore, the silane structure formation is completed already in the
first sample and stays constant afterwards, and the silane moieties are almost completely crosslinked
in a tridimensional structure after the thermal treatment, involving the covalent bond with DAC.
The 29Si-CP/MAS NMR spectra did not change over time, because of the bonding between the silanol
group and the hydroxyl group in DAC: if those bond had not occurred, hydrolyzed APTES would
have continued to be engaged in self-condensation and have formed more highly condensed structure
over time, which would have significantly changed the spectra (increase of T3).

Given in Scheme 1, the condensation reaction of silanes and DAC occurred between the DAC′s
different hydroxyl groups and the silanol groups during the thermal treatment, which withdraws the
water, this way shifting the equilibrium.
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Scheme I. Proposed reaction for the direct silanization of DAC with APTES, with the structures 
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groups. After thermal treatment or simple freeze-drying treatment this bonding type is 
complemented by imine formation between the amino groups of APTES and the DAC′s (masked) 
aldehyde functions. 

Scheme 1. Proposed reaction for the direct silanization of DAC with APTES, with the structures
schematically presenting the binary cross-linking of DAC and APTES both by Si-O-C and imine bonds.
In mildly acidic medium, the silanol groups of APTES bind covalently onto DAC′s hydroxyl groups.
After thermal treatment or simple freeze-drying treatment this bonding type is complemented by imine
formation between the amino groups of APTES and the DAC′s (masked) aldehyde functions.
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Please, note once more that the structures in Scheme 1 are just examples of possible structures for
the masked aldehyde groups [23].
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Figure 2. 29Si cross-polarization/magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR)
spectra of DAC-APTES reaction product after thermal treatment: the spectrum after 1 day (bottom),
and spectrum of the same sample after 2 years (top), with the schematic representations of the structures
T1, T2, and T3. R=H, C (from DAC); R′=C (from (CH2)3-NH2 side chain in APTES).

In addition to the formation of Si-O-C structures by hydroxyl group condensation, a Schiff-base
reaction of (masked) aldehydes with the amino group of APTES can occur. The aldehyde function
can be present either in its free form or in its masked forms, which react the same way because of
the underlying dynamic equilibria. We started from the hypothesis that the thermal treatment was
mainly supporting the condensation of APTES′ amino group with the DAC structures (besides further
promoting condensation among the hydrolyzed silanes). The corresponding nucleophilic substitution
reactions in the mild media present would initially produce hemiaminal structures, which would
need more drastic media for the subsequent water elimination leading to the double bond structure of
imines. We thus suspected elevated temperatures to be a suitable means for that, and indeed, imine
bond formation was evident under these conditions. Surprisingly, the same happened also when we
used the alternative approach of freeze-drying to remove water from the reaction mixture. Also, this
much milder approach was obviously sufficient to move the equilibrium toward condensation product
formation. Both thermal treatment and freeze-drying were effective enough in removing the reaction
water, the second technique being clearly more energy-efficient and much milder. The final product
(Scheme 1, bottom), involves both imine moieties as well as the Si-O-C structures among silanes
and DAC.

The 29Si-CP/MAS NMR of the freeze-dried DAC-APTES in Figure 3 shows the cross-linked
structures of the silane networks, but with different proportions with respect to Figure 2. While in
Figure 2 (thermally treated sample), T3 was most prominent and T1 present only in small amounts,
Figure 3 (freeze-dried sample) shows a more equal contribution of the three condensed structures
with an order of T2 > T1 > T3, meaning that the condensation degree (Si-O-Si) was generally smaller
here. In Figure 2, signals of the different silane structures were detected at δ = −49.8, −59.5, −68.6 ppm
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in the sample after one day, and at δ = −50.1, −59.5, −67.8 ppm in the sample after two months′

storage. The integral ratios of the three peaks did not change over time, showing the stability of the
cross-linking even without thermal treatment. This result is different from cellulose reacting with
silanization agents [16,28], where the condensation is slowly progressing and changing over much
longer times.

Molecules 2020, 25, x 6 of 12 

 

The integral ratios of the three peaks did not change over time, showing the stability of the cross-
linking even without thermal treatment. This result is different from cellulose reacting with 
silanization agents [16,28], where the condensation is slowly progressing and changing over much 
longer times. 

 
Figure 3. 29Si CP/MAS NMR spectra of the DAC-APTES freeze-dried sample, after one day (lower 
spectrum) and after two months (upper spectrum), with the labels of the different condensed silica 
structures. The peak at –46.9 ppm in the one-day sample (lower spectrum) is attributable to residual, 
non-reacted starting material that was not removed by washing. The peak of the pure APTES (in the 
absence of the DAC matrix) appears at δ –45 ppm. 

The presence of non-reacted APTES, which was concluded from 29Si NMR (see caption of Figure 
3), can also be seen in the FTIR spectra of the samples (Figure 4). In the freeze-dried sample after one 
day, three typical bands of neat APTES are visible at 2974 cm−1 (methyl group, asymmetrical 
stretching), at 1388 cm−1 (methyl group, deformation), and at 952 cm−1 (skeletal vibration), identical 
with those of pure APTES in Figure 1 [31]. It is known that APTES is moisture-sensitive and degrades 
nearly completely within 28 days [32]; this explains why the peak intensities decreased and 
eventually disappeared. 

Figure 3. 29Si CP/MAS NMR spectra of the DAC-APTES freeze-dried sample, after one day (lower
spectrum) and after two months (upper spectrum), with the labels of the different condensed silica
structures. The peak at –46.9 ppm in the one-day sample (lower spectrum) is attributable to residual,
non-reacted starting material that was not removed by washing. The peak of the pure APTES (in the
absence of the DAC matrix) appears at δ –45 ppm.

The presence of non-reacted APTES, which was concluded from 29Si NMR (see caption of
Figure 3), can also be seen in the FTIR spectra of the samples (Figure 4). In the freeze-dried sample
after one day, three typical bands of neat APTES are visible at 2974 cm−1 (methyl group, asymmetrical
stretching), at 1388 cm−1 (methyl group, deformation), and at 952 cm−1 (skeletal vibration), identical
with those of pure APTES in Figure 1 [31]. It is known that APTES is moisture-sensitive and
degrades nearly completely within 28 days [32]; this explains why the peak intensities decreased and
eventually disappeared.



Molecules 2020, 25, 2458 7 of 12Molecules 2020, 25, x 7 of 12 

 

 

Figure 4. FTIR spectra of modified DAC with APTES for both processes, i.e., thermal treatment and 
freeze-drying treatment. The insets are showing the bands of unreacted APTES, which disappear in 
the freeze-dried samples after two months because of the instability of neat APTES. 

The DAC-APTES structures show the same bands in the FTIR spectra both for thermal and 
freeze-drying after-treatment. The bands of the O-Si-O network are at 1644 and 1042 cm−1: the latter 
is rather close to one of the C-O bands of DAC at 1016 cm−1, so both partly superimpose. In the 
thermally treated samples a double peak was detected, with the second peak at 1070 cm−1, ascribable 
to siloxane (Si-O-Si) bonds [33]. The strong intensity of this peak can be explained with the higher 
condensation degree of the silica network, which corresponds well with the results of the 29Si NMR. 
The band at 898 cm−1 in the freeze-dried samples is in the range of the free silanol group stretching 
vibration and partly overlapped with the hemiacetal band in DAC. It shifted to 914 cm−1 in case of 
the thermal treated sample, with the hemiacetal contribution being reduced after thermal treatment. 
The bands at 762 and 684 cm−1 correspond to the C-H deformation in the aliphatic chain and Si-C 
vibration [34], whereas the band at 1590 cm−1 is attributed to the imine bond C=N vibration [35]. 

In the 13C-CP/MAS NMR spectra of the freeze-dried samples, shown in Figure 5A, the trace of 
non-reacted APTES is clearly visible, the sharp signals at δ = 58.4 ppm and 18.5 ppm (Ca and Cb in 
the APTES structure of Scheme I) being identical to those of pure APTES, shown in Figure 5B. Since 
there were no changes in the condensed structures over time as seen by29Si NMR, the decrease of 
these signals is caused by slow decomposition by atmospheric humidity. The peaks of the aliphatic 
chain in these APTES hydrolysates/condensates are slightly shifted relative to pure APTES. The 
hydrolysis—and the corresponding shift of the resonances—started already after about one hour of 
the reaction [16], and arrived at the ultimate shift values of δ 10.6–10.3 ppm (Cα) and at δ 21.5–21.2 
(Cβ) ppm after one day (not changes up to two months). The Cγ peak is broadened and resulted in a 
shoulder at around 42 ppm. The peaks at around 15.2 ppm in the freeze-dried sample after one day 
and 14.9 ppm in the freeze-dried sample after two months storage arise from the APTES side chains 
in condensed oligomers. The 13C resonances for the DAC carbons, except C2/C3, are still present in 
the spectra, with chemical shifts almost identical to non-modified DAC, shown in Figure 5C. Only 

Figure 4. FTIR spectra of modified DAC with APTES for both processes, i.e., thermal treatment and
freeze-drying treatment. The insets are showing the bands of unreacted APTES, which disappear in the
freeze-dried samples after two months because of the instability of neat APTES.

The DAC-APTES structures show the same bands in the FTIR spectra both for thermal and
freeze-drying after-treatment. The bands of the O-Si-O network are at 1644 and 1042 cm−1: the latter is
rather close to one of the C-O bands of DAC at 1016 cm−1, so both partly superimpose. In the thermally
treated samples a double peak was detected, with the second peak at 1070 cm−1, ascribable to siloxane
(Si-O-Si) bonds [33]. The strong intensity of this peak can be explained with the higher condensation
degree of the silica network, which corresponds well with the results of the 29Si NMR. The band at
898 cm−1 in the freeze-dried samples is in the range of the free silanol group stretching vibration and
partly overlapped with the hemiacetal band in DAC. It shifted to 914 cm−1 in case of the thermal
treated sample, with the hemiacetal contribution being reduced after thermal treatment. The bands at
762 and 684 cm−1 correspond to the C-H deformation in the aliphatic chain and Si-C vibration [34],
whereas the band at 1590 cm−1 is attributed to the imine bond C=N vibration [35].

In the 13C-CP/MAS NMR spectra of the freeze-dried samples, shown in Figure 5A, the trace of
non-reacted APTES is clearly visible, the sharp signals at δ = 58.4 ppm and 18.5 ppm (Ca and Cb in the
APTES structure of Scheme 1) being identical to those of pure APTES, shown in Figure 5B. Since there
were no changes in the condensed structures over time as seen by29Si NMR, the decrease of these signals
is caused by slow decomposition by atmospheric humidity. The peaks of the aliphatic chain in these
APTES hydrolysates/condensates are slightly shifted relative to pure APTES. The hydrolysis—and
the corresponding shift of the resonances—started already after about one hour of the reaction [16],
and arrived at the ultimate shift values of δ 10.6–10.3 ppm (Cα) and at δ 21.5–21.2 (Cβ) ppm after
one day (not changes up to two months). The Cγ peak is broadened and resulted in a shoulder at
around 42 ppm. The peaks at around 15.2 ppm in the freeze-dried sample after one day and 14.9 ppm
in the freeze-dried sample after two months storage arise from the APTES side chains in condensed
oligomers. The 13C resonances for the DAC carbons, except C2/C3, are still present in the spectra, with
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chemical shifts almost identical to non-modified DAC, shown in Figure 5C. Only the small peak of
free (non-masked) aldehyde carbons C2/C3 (δ = 201.2 ppm) was not detected any longer, whereas a
new signal at δ 170 ppm, characteristic for imine carbons, appeared [35]. The peak corresponding to
the carbon in the C-O-Si bridge is located in the region between 60 and 50 ppm, but the overlap of
resonances made an unambiguous assignment impossible.
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stars are indicating chloroform and ethanol solvent impurities. (C) 13C CP/MAS NMR spectrum of
non-modified DAC, freeze-dried after solubilization, δ: 201.2, 99.1, 95.3, 91.0, 89.2, 71.1, 60.0 ppm.

The same characteristic signals and chemical shifts as for the freeze-dried samples can be seen in the
spectrum of the thermally treated sample (Figure 6). The resonances from residual non-reacted APTES
are absent, because it is fully condensed into the silanes network and with DAC. Furthermore, there is a
decrease of the C1 and C4 intensities from DAC demonstrating a more pronounced condensation, and a
significant increase in imine-type structures which point to the same conclusion. For both treatment
options, thermally induced and freeze-drying, the NMR analyses confirmed the direct silanization of
DAC with presence of both DAC-silanol Si-O-C interlinks and imine bonds. Differences in the degree
of condensation arise from the different processes of drying, with the severity being higher in the case
of the thermal option.
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3. Materials and Methods

Microcrystalline cellulose (Avicel PH101), sodium metaperiodate (ACS reagent, ≥ 99.8%), acetic
acid (glacial, ≥ 99%), and (3-aminopropyl)triethoxysilane (APTES, 99%) were purchased from
Sigma-Aldrich (Schnelldorf, Germany).

3.1. Cellulose Oxidation and Solubilization

Microcrystalline cellulose was suspended in an aqueous solution (deionized water) of sodium
metaperiodate with a 1.25 molar ratio between the oxidant and cellulose (anhydroglucose unit).
The suspension was stirred for 24 h in the dark at 35 ◦C. The product was separated by centrifugation
(5000 rpm for 20 min, Hettich Rotina 380, Westphalia, Germany) and washed. The never-dried DAC
was suspended in water (5% of solid content) and heated to 100 ◦C for 90 min for solubilization [36].
The pH was adjusted to 3.5 with acetic acid. Determination of the aldehyde content was performed
with the oxime titration method, as reported in the literature [37].

3.2. Silanization Protocol

An aliquot of APTES was added to the DAC solution under stirring at 250 rpm at r.t., with a molar
ratio of aldehyde: organosilane of 2.5. After 1 h, the precipitated product was collected and washed
by centrifugation (5000 rpm for 15 min, 700 mL of water in total per sample). For the freeze-drying
treatment, the sample was frozen at −80 ◦C and then lyophilized (Christ Beta 1–8 LD Plus, Martin
Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany). For the thermal treatment,
the sample was placed in an oven at 105 ◦C for 1 h (Memmert UNB 400, Schwabach, Germany).
The samples were stored in vials in a ventilated cupboard.

3.3. Solid-State NMR and FTIR Measurements

All solid state NMR experiments were performed on a Bruker Avance III HD 400 spectrometer
(Rheinstetten, Germany), resonance frequency of 1H at 400.13 MHz, 13C at 100.61 MHz, and 29Si at
79.54 MHz, respectively, equipped with a 4 mm dual broadband CP/MAS probe. 13C spectra were
acquired by using the total sideband suppression (TOSS) sequence at ambient temperature with a
spinning rate of 5 kHz, a cross-polarization (CP) contact time of 2 ms, a recycle delay of 2 s, SPINAL−64
1H decoupling and an acquisition time of 49 ms whereas the spectral width was set to 250 ppm. 13C
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chemical shifts were referenced externally against the carbonyl signal of glycine at δ = 176.03 ppm.
29Si NMR spectra were acquired with the normal CP pulse sequence using a spectral width of 300 ppm
and a contact time of 2 ms. Chemical shifts were referenced externally against DSS with δ = 0 ppm.

The samples were analyzed with a PerkinElmer Frontier FTIR Single-Range spectrometer in ATR
mode (PerkinElmer Frontier, Waltham, MA, United States).

4. Conclusions

In this work we presented a straightforward protocol, which meets common green chemistry
principles, for the direct silanization of DAC, one of the most recently developed and studied cellulose
derivatives. We describe the direct silanization of DAC with APTES, through thermal treatment and
freeze-drying, both with imine formation and hydroxyl group condensation. The grafting and covalent
binding between the organic and inorganic counterparts was proven and the structures characterized
by 29Si solid-state nuclear magnetic resonance, together with infrared spectroscopy (Fourier-transform
Infrared, FTIR). Interestingly, condensation occurred not only after thermal treatment (as it does
in the case of cellulose), but also after a simple freeze-drying process. The condensation of the
hemiacetal/aldehyde hydrate/hemialdal groups from DAC and the silanol groups in the hydrolyzed
APTES occurred simultaneously with imine link formation between the masked aldehyde structures
of DAC in APTES′ amino group. The resulting material was characterized by NMR techniques: the
absence of changes in the spectra over time confirmed the proposed cross-linking and its stability.
The constancy of the spectra indicated that formation of the crosslinked network was completed after
one day and did not proceed further or change afterwards. Apparently, the reaction centers were
consumed or became inaccessible because of the decreased internal mobility of the structure. In any
case, this relatively fast process in the DAC case is different from the slow, continuously changing
process in the case of celluloses as the co-reactant of silanes.

The modification was achieved in aqueous media and with mild reaction conditions, even by
an energy-saving and byproduct-reducing freeze-drying process instead of a thermal treatment. 13C
CP/MAS NMR confirms different grades of hydrolysis and condensation severity, depending on the
drying process. In all cases, the imine bond is confirmed. The product showed a larger silane network
for the specimens after thermal treatment. FTIR spectra confirmed all conclusions derived from NMR.
The resulting condensed hybrid product, combining an organic and inorganic phase, represent a class
of important biomaterials with diverse applications reaching from materials science over separation
science and chromatography to medicine.
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