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It is widely recognized that noncoding genetic variants play important roles in many human diseases, but there are multiple

challenges that hinder the identification of functional disease-associated noncoding variants. The number of noncoding var-

iants can be many times that of coding variants; many of them are not functional but in linkage disequilibrium with the

functional ones; different variants can have epistatic effects; different variants can affect the same genes or pathways in dif-

ferent individuals; and some variants are related to each other not by affecting the same gene but by affecting the binding of

the same upstream regulator. To overcome these difficulties, we propose a novel analysis framework that considers conver-

gent impacts of different genetic variants on protein binding, which provides multiscale information about disease-associ-

ated perturbations of regulatory elements, genes, and pathways. Applying it to our whole-genome sequencing data of 918

short-segment Hirschsprung disease patients and matched controls, we identify various novel genes not detected by stan-

dard single-variant and region-based tests, functionally centering on neural crest migration and development. Our frame-

work also identifies upstream regulators whose binding is influenced by the noncoding variants. Using human neural crest

cells, we confirm cell stage–specific regulatory roles of three top novel regulatory elements on our list, respectively in the

RET, RASGEF1A, and PIK3C2B loci. In the PIK3C2B regulatory element, we further show that a noncoding variant found only in

the patients affects the binding of the gliogenesis regulator NFIA, with a corresponding up-regulation of multiple genes in

the same topologically associating domain.

[Supplemental material is available for this article.]

Hirschsprung (HSCR) disease is a rare, complex genetic disease
characterized by missing enteric ganglia in various portions of
the hindgut (Amiel et al. 2008). It is caused by failed migration,
proliferation, differentiation, or colonization of enteric neural
crest (NC) cells, which disrupts enteric nervous system (ENS)
development (Badner et al. 1990; Chakravarti et al. 2006).
Phenotypic severity of the disease is determined by the length of
colonic aganglionosis and can be classified into short-segment
HSCR (S-HSCR; 80% of cases), long-segment HSCR (L-HSCR;
15%–20% of cases), and total colonic aganglionosis (TCA; up to
5% of cases) (Udassin et al. 1981; Chakravarti et al. 2006).

HSCR is long recognized to be highly heritable (80%–97% for
S-HSCR and ∼100% for L-HSCR), while around 80% of HSCR cases
are sporadic (>95% for S-HSCR) (Badner et al. 1990; Tam et al.
2019). The incidence of HSCR varies across ethnic groups, from
1.4 to 2.8 in every 10,000 new births, with the highest incidence

rate in Asia (Chakravarti et al. 2006; Amiel et al. 2008; Tam
and Garcia-Barceló 2009). The genetic etiology of HSCR is multi-
factorial, involving rare and common, coding and noncoding var-
iants in genes playing different roles in ENS development. Among
the different subtypes of HSCR, S-HSCR is genetically most com-
plex. Whereas L-HSCR and TCA cases are mostly autosomal dom-
inant, the less severe S-HSCR subtype follows a complex, non-
Mendelian inheritance pattern and has a male-to-female ratio of
4:1 (Badner et al. 1990; Emison et al. 2005), with the reason behind
it not fully known.

Damaging rare variants at protein-coding sequences associat-
ed with HSCR have been found inmany genes involved in ENS de-
velopment. Among them, RET, encoding a receptor tyrosine
kinase, is responsible for ∼50% of familial cases and 10%–20% of
sporadic cases (Chakravarti et al. 2006). Other genes previously re-
ported include BACE2, DNMT3B, ECE1, EDN3, EDNRB, FAT3,
GDNF, GFRA1, KIFBP, L1CAM, NRG1, NRG3, NRTN, NTF3,
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NTRK3, PHOX2B, PROK1, PROKR1, PROKR2, PSPN, SEMA3A,
SEMA3C, SEMA3D, SOX10, TCF4, and ZEB2 (Amiel et al. 1996;
Garcia-Barcelo et al. 2009; Alves et al. 2013; Luzón-Toro et al.
2015; Tang et al. 2018; Tilghman et al. 2019), which together ac-
count for around 5% of all cases. These rare damaging variants of-
ten have incomplete penetrance and explain only a small portion
of the phenotypic variance.

In contrast, the most well-known common variant,
rs2435357, located in intron 1 ofRET and affecting SOX10binding
to a RET enhancer, explains 10–20 times of the phenotypic vari-
ance as compared to the rare damaging RET variants (Emison
et al. 2005, 2010; Chatterjee et al. 2016). Recently, some additional
noncoding variants have also been found associated with HSCR.
For example, two other variants in RET enhancers act synergisti-
cally with rs2435357 on HSCR risk (Chatterjee et al. 2016), while
variants in four noncoding elements around the RET and SEMA3
loci were found in 48.4% of cases and 17.1% of controls, with
the presence of five or more variants in these regions correspond-
ing to a high disease risk (Tilghman et al. 2019). However, despite
the ever-growing knowledge about HSCR, there is still a consider-
able portion of cases that cannot be explained by the cataloged
coding or noncoding variants.

The emerging studies of HSCR-associated common variants
in RET enhancers and other functional noncoding regions
(Emison et al. 2010; Chatterjee et al. 2016; Tilghman et al. 2019)
and the abundance of noncoding signals from genome-wide asso-
ciation studies of many human traits in general (Zhang and Lupski
2015) both suggest that noncoding regions would be a valuable
territory to explore in the quest to explain the missing heritability
in HSCR.

Existing methods for studying noncoding genetic variants
can be broadly classified into site-based and region-basedmethods
(Supplemental Materials). In general, both types of methods face
several major challenges, namely (1) there is a large number of
sites/regions to consider genome-wide, leading to low statistical
power due to multiple hypothesis testing correction, (2) many ge-
netic variants at noncoding regions do not have direct functional
effects, such as those in linkage disequilibrium with the actual
functional variants, (3) epistatic interactions can exist among ge-
netic variants, making it unsuitable to consider each variant sepa-
rately (Cheng et al. 2017), (4) genetic variants at different
regulatory elements of the same gene/pathway may result in the
same convergent effect, and therefore each of them may not
have high recurrence in the study subjects, and (5) the loci of dif-
ferent genetic variants could be related to each other not by their
genomic locations but by the upstream regulators that commonly
bind them, which are more nontrivial to determine.

In this study, we propose a new noncoding variant prioritiza-
tion framework, Multiscale Analysis of Regulatory Variants on the
Epigenomic Landscape (MARVEL), that addresses these five chal-
lenges. Applying our framework to the whole-genome sequencing
(WGS) data generated from an S-HSCR cohort (431 cases and 487
ethnically matched controls), we identify disease-associated en-
hancers, promoters, and genes based on epigenomic data generat-
ed from the human pluripotent stem cell (hPSC)-derived enteric
NC-like cells (hNC). This is by far the largest WGS data set of S-
HSCR with both cases and controls coming from a single popula-
tion. By aggregating lower-level (genomic variants and TF binding
motifs) information,marginally significant signals emerge asmore
significant associations at a higher level (enhancers, promoters,
and genes) that converge to specific functional pathways and up-
stream regulators.

Results

A novel association framework for the noncoding genome

MARVEL is designed to address the five challenges listed above
(Fig. 1; Methods; Supplemental Materials). First, we use cell type–
specific epigenomic data to define a target set of active regulatory
elements in the relevant cell types, in order to limit the number of
statistical tests to be performed (Fig. 1A). Second, in these target el-
ements, we use sequence motifs as a proxy to evaluate the func-
tional potential of the genetic variants (Korhonen et al. 2017),
which helps prioritize the genetic variants and their correspond-
ing regulatory elements among those in linkage disequilibrium
(Fig. 1B). Third, for each target element, we consider all genetic var-
iants simultaneously to reconstruct the sample-specific sequence
for evaluating their joint functional effects (Fig. 1C). For instance,
if two genetic variants have opposite effects on the binding
strength of a TF according to its sequence motif, the net expected
effect would be smaller than the sum of their individual absolute
effects. Fourth, our framework considers multiple occurrences of
a motif in the same regulatory element (Fig. 1D) or different regu-
latory elements of the same gene (Fig. 1E) in a joint manner. As a
result, a genewould be considered significantly perturbedwhen its
regulatory elements have frequent motif-disrupting genetic vari-
ants even if in different subjects these regulatory elements contain
different sets of genetic variants (Corradin et al. 2014; Chatterjee
et al. 2016). The joint effect of multiple motifs is further captured
by first selecting an important combination of the motifs using a
feature selection procedure (Fig. 1F) followed by an association
test (Fig. 1G), which together identify motifs whose match scores
in these regulatory elements are significantly associated with the
target phenotype, adjusted for covariates such as age and sex of
the subjects. The identified phenotype-associated regulatory ele-
ments and genes are further investigated by additional analyses
such as gene set enrichment and single-cell expression analyses
(Fig. 1H). Fifth, by using sequence motifs as functional proxy, we
also identify the potential upstream regulators whose binding to
different target elements is frequently perturbed, which can be ei-
ther loss or gain of binding. By identifying those whose binding
motifs are commonly perturbed in the regulatory elements of dif-
ferent genes (Fig. 1I), we identify both the core regulators involved
in the phenotype (Boyle et al. 2017) and genes potentially in-
volved in the same pathways.

Using simulated data (Supplemental Materials), we verified
thatMARVEL is able to select the simulated informativemotifs asso-
ciated with the phenotype, including motifs whose match scores
are affected by genetic variants at different allele frequencies, effect
sizes, and correlations among eachother (Supplemental Fig. S1).We
also verified that, in the P-value and effect size distributions pro-
duced by MARVEL, the simulated disease-associated regions were
clearly separated from the background (Supplemental Fig. S2).

Novel noncoding regulatory elements and gene loci associated

with S-HSCR

We applied MARVEL to analyze our S-HSCR WGS data (Supple-
mentalMaterials). Briefly, target enhancers andpromoterswere de-
fined using chromatin accessibility and histone modification data
from hNC, which were, respectively, used in an enhancer-based
and a promoter-based analysis. A gene-based analysis was also per-
formed by considering at the same time all the promoters and en-
hancers that potentially regulate each gene, with the motif scores
of the different regulatory elements weighted according to their
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expected chromatin contact frequencies with the transcription
start site (TSS) inhPSCs (SupplementalMaterials; Supplemental Ta-
ble S4). This gene-based analysis allowed the detection of genes
with frequent perturbations by multiple low-recurrence genetic
variants at different regulatory elements. Association tests were

then performed based on the motif scores in each of these three
sets of target regions in turn, which contained 150,828 enhancers,
87,461 promoters, and 24,557 genes, respectively.

We defined all regions above the 95% confidence interval
of the null in the quantile-quantile plot as loosely associated

E FB

A

C

D
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Figure 1. Schematic overview ofMARVEL. (A) Epigenomic data of relevant cell types (hNC in the case of HSCR) are integrated with a gene annotation set
to identify the active regulatory elements relevant to the phenotype of interest. (B) In each regulatory element, the functional significance of genetic var-
iants is evaluated by their perturbation to TF sequence motifs. (C) Since the perturbation effects of multiple genetic variants may not add up linearly, they
are considered together to reconstruct the sample-specific sequences, based on which the overall change of TF motif match scores is determined. (D) For
motifs withmultiple appearanceswithin the same regulatory element, their match scores are aggregated to give a single score. (E) At a higher level, if a gene
involvesmultiple regulatory elements, the aggregatedmatch scores of amotif in the different elements can be further aggregated into a single score. This is
done in the gene-based analysis. (F,G) The aggregated match score matrix of all the motifs for a regulatory element/gene is used as the input of an asso-
ciation test, which selects a subset of the most informative motif features (F ) and compares a model involving both these selected features and the covar-
iates with a null model that involves only the covariates using likelihood ratio (LR) test (G). (H) The regulatory elements and genes identified to be
significantly associated with the phenotype can be further studied by other downstream analyses, such as gene set enrichment and single-cell expression
analyses. (I) TFs with recurrently perturbed match scores in different regulatory elements are collected to infer a network that highlights the phenotype-
associated perturbations.
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with S-HSCR, and all regions passing the FDR threshold of 0.1
(including a subset of the loosely associated regions) as sig-
nificantly associated (Fig. 2A; Supplemental Table S1).
Quantified by the area under the receiver operating characteristic
(AUROC) (Methods), the loosely associated regions had generally
larger effect sizes than background hNC enhancers, hNC pro-
moters, and genes (Fig. 2B). Comparing the three sets of target
regions, there were more enhancers and genes significantly asso-
ciated with S-HSCR as compared to promoters. Noncoding vari-
ant association methods that focus on the promoter regions
would have missed the many associated enhancers and aggregat-
ed regulatory regions of the genes. As a negative control, we re-
peated the procedures on a background set of enhancers that do
not overlap the hNC enhancers (Methods) and found none of
them either significantly or loosely associated with S-HSCR
(Supplemental Fig. S3).

As expected, all three analyses identified various regions near
the RET locus as significantly associated with S-HSCR (Table 1;
Supplemental Materials). Moreover, we also identified nine en-
hancers and four genes significantly associated with S-HSCR that
are not close to RET (Table 1).

Among the nine enhancers, the one on Chromosome 1 (Chr
1: 204,456,576–204,457,577) overlaps intron 10 of PIK3C2B.
PIK3C2B is a phosphoinositide 3-kinase (PI3K) family protein,
which is believed to have important roles in the signal integration
and transduction in hNC (Frank and Tsai 2009). Binding sites of
TWIST1 and NFIA are altered in this enhancer (Table 1), both
with altered match scores in six cases but not in any controls.
TWIST is an hNC specifier (Simoes-Costa and Bronner 2013) while
NFIA has been shown to regulate gliogenesis, which is also crucial
to a functional ENS (Kang et al. 2012; Glasgow et al. 2014; Tchieu
et al. 2019). Another significantly associated enhancer, on

Chromosome 17 (Chr 17: 8,915,658–8,916,659), is also close to
two other PI3K family genes, PIK3R5 and PIK3R6. The two enhanc-
ers on Chromosomes 18 and 16 (Chr 18: 73,918,014–73,919,015
and Chr 16: 86,954,235–86,955,236) are within/close to F-box
genes (FBXO15 and FBXO31, respectively). F-box proteins bind
to CUL1 to form SCF (SKP-CUL1-F-box protein) E3 Ubiquitin
Ligase complexes, which mediate ubiquitination of proteins that
regulate the cell cycle and diverse neuronal activities (Liao et al.
2004; Frank and Tsai 2009). In particular, FBXO31 has been shown
to regulate neural morphogenesis and migration (Vadhvani et al.
2013). Another enhancer on Chromosome 17 (Chr 17: 958,411–
959,412) is close to ABR, which encodes a protein that is able to
promote RHO activity and reduce CDC42 activity (Vaughan
et al. 2011), both of which are important for actin regulation
and cell polarization during migration (Vaughan et al. 2011;
Cohen et al. 2018). The enhancer on Chromosome 9 (Chr 9:
100,937,755–100,938,756) is close to PLPPR1, which encodes a
member of the plasticity-related gene (PRG) family. Members of
the PRG family mediate lipid phosphate phosphatase activity in
neurons and are known to be involved in neuronal plasticity
(Savaskan et al. 2004; Trimbuch et al. 2009), potentially also in-
volved in ENS development (Schäfer et al. 2009). The enhancer
on Chromosome 11 (Chr 11: 120,020,704–120,021,705) is close
to TRIM29, a gene that regulates epithelial-to-mesenchymal tran-
sition (EMT),which is an important process shared by bothNCmi-
gration and cancer metastasis (Sun et al. 2019). Finally, the genes
closest to the enhancer on Chromosome 22 (Chr 22:
37,128,477–37,129,478) are not clearly related to HSCR, which
could represent new findings. In general, many of the top S-
HSCR-associated enhancers identified byMARVEL cannot be iden-
tified by commonly used single-variant and region-based associa-
tion (Supplemental Materials; Supplemental Fig. S4).

B

A

Figure 2. Association test results. (A) Q-Q plots of association P-values in the enhancer-based, promoter-based, and gene-based tests. In each plot, the
yellow shaded area shows the 95% confidence interval. The dotted red line marks the demarcation point of the loosely associated regions, above which all
the regions are outside the 95% confidence interval. The solid red line marks the threshold for significantly associated regions, abovewhich all regions have
an FDRQ-value < 0.1. The significantly associated regions are a subset of the loosely associated regions. (B) Comparison of the AUROC value distributions of
the models of the loosely associated regions with those of the models of the background regions and the covariate-only model.
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The four significantly associated genes not close to theRET lo-
cus come from two loci, respectively, on Chromosomes 9 and 15,
with no loosely associated enhancers or promoters near them.
Each of these genes was thus found to be significantly associated
with S-HSCR due to weak association signals that distribute across
multiple regulatory elements of it. Indeed, a significantly larger
fraction of enhancers within 1 Mbp from the TSSs of these genes
have P-values smaller than 0.1 as compared to the set of all en-
hancers (P=0.025, Fisher’s exact test). One of the genes in these
loci is ODF2, which encodes the cenexin protein. Previous studies
have demonstrated that, in various mammalian cell lines, cenexin
controls centrosome positioning during directional cell migration
(Hung et al. 2016). Since the centrosome acts as a steeringmachine
for cell movement and stabilizes the migration direction (Ueda
et al. 1997; Hung et al. 2016), ODF2might help stabilize the direc-
tion of NC migration.

Loosely associated signals aggregate into functional pathways

Having found that genetic variants weakly associated with S-HSCR
at different regulatory elements aggregated to give stronger signals
at the gene level, we next investigated whether association signals
could be further aggregated into functional pathways. We per-
formed this investigation by taking the 417 genes loosely associat-

ed with S-HSCR from our enhancer-based, promoter-based, and
gene-based analyses and connected those with functional interac-
tions in Reactome (Supplemental Materials; Wu and Haw 2017). A
total of 69 genes were connected, by 94 functional interactions.
This number of functional interactions was significantly larger
than those of random gene sets of the same size (P=0.032), sug-
gesting that these S-HSCR genes were indeed functionally related.

To annotate the functions of these S-HSCR genes, we expand-
ed this gene set by adding known HSCR genes and genes impor-
tant in ENS development or NC migration (Methods) and found
that the resulting genes formed five main clusters according to
their functional interactions (Fig. 3A). These five clusters are, re-
spectively, related to (1) chemotaxis and cell-cell signaling, (2)
cell adhesion, migration, and interaction with extracellular ma-
trix, (3) PI3K-PKC-MAPK signaling, (4) E3 Ubiquitin Ligase com-
plexes, and (5) transcriptional regulatory factors. They are highly
related to NC migration and its development (Fig. 3B), and
many genes loosely associated with S-HSCRwere involved in these
functional clusters (Supplemental Table S2).

Chemotaxis signaling is used to direct NC to target tissue
(positive signaling) and works against the negative signals from
the neural tube or somite to promote NC delamination andmigra-
tion (Szabó andMayor 2018). Additionally, cell polarization is crit-
ical during the directional migration of NC. Under the regulation

Table 1. Significant S-HSCR-associated enhancers, promoters, and genes

Region P-value(s) Altered motifs of TFs expressed in hNC

Direction of binding change associated with increased disease risk: Gain Loss

Significantly associated enhancers (and three corresponding nearest genes of each)
23 enhancers near RET 7.42 ×10−8a–2.35 ×10−6

Chr 18: 73,918,014–73,919,015
(FBXO15, TIMM21, CYB5A)

9.10 × 10−6 CPEB1, NFATC1, NFIC, ZNF322 LEF1, SP3, TBX1, WT1

Chr 1: 204,456,576–204,457,577
(PIK3C2B, PPP1R15B, MDM4)

9.77 × 10−6 EGR2, HOXC6, TWIST1, ZFP82,
ZNF528

EGR1, HAND1, NFIA, ZNF816

Chr 16: 86,954,235–86,955,236
(C16orf95, FOXL1, FBXO31)

1.06 ×10−5 ETS2, NFAT5, PITX2 FLI1, SP2, TAF1, ZEB1, ZNF317,
ZNF418

Chr 22: 37,128,477–37,129,478
(IL2RB, TMPRSS6, C1QTNF6)

1.33 × 10−5 EGR2, HAND1, KLF16, ZNF263 NHLH1, ZNF322

Chr 9: 100,937,755–100,938,756
(PLPPR1, MURC, BAAT)

1.51 × 10−5 FOXH1, TBX15, ZNF816 AR, ETV7, TGIF2LX, ZNF335

Chr 9: 100,937,771–100,938,772 (PLPPR1,
MURC, BAAT)

1.51 × 10−5 FOXH1, TBX15, ZNF816 AR, ETV7, TGIF2LX, ZNF335

Chr 11: 120,020,704–120,021,705 (TRIM29,
OAF, POU2F3)

1.59 × 10−5 ARID5B, SOX9, TGIF1, ZNF816 IRF2, NKX6-1, TEAD2, ZNF394

Chr 17: 8,915,658–8,916,659 (PIK3R5, PIK3R6,
NTN1)

1.79 × 10−5 NR2F1, POU2F2, SP3, UBP1,
ZNF148

ETV3, NR2F6, ZNF317

Chr 17: 958,411–959,412
(NXN, TIMM22, ABR) 1.9 × 10−5 EVX1, FOXG1, PITX2, ZNF770 FOXD2, PAX5, ZNF667

Significantly associated promoters
Three promoters near RET 1.24 ×10−7a– 2.48 ×10−7

Significantly associated genes
16 genes near RET 4.07 ×10−7a– 6.05 ×10−6

ODF2
(Chr 9: 128,455,155–128,501,292)

9.27 × 10−6 E2F4, MYOD1. ZBTB4, ZNF274 NR1I3, SMAD3, TGIF2, ZFP64

URM1
(Chr 9: 128,371,319–128,392,016)

4.35 × 10−5 E2F4, ELK3, MYOD1, ZBTB4,
ZNF274

NR1I3, SMAD3, ZFP64

LINS1
(Chr 15: 100,559,369–100,603,230)

5.89 × 10−5 FOXC1, FOXF1, ZNF394 HAND1, MECP2, MTF1,
ZSCAN31

ASB7
(Chr 15: 100,602,534–100,651,705)

6.81 × 10−5 FOXC1, FOXF1, ZNF394 HAND1, MECP2, MTF1,
ZSCAN31

For significant S-HSCR-associated enhancers, promoters, and genes, regions near RET are collapsed into one entry. For the enhancer list, the nearest
genes of each enhancer were identified based on the distance between the center position of the enhancer and the TSSs of genes. Expressed TFs are
defined based on our hNC RNA-seq data, with a cutoff threshold of FPKM (fragments per kilobase of exons per million reads) = 1.
aThe smallest P-values possible from the permutation tests.
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Figure 3. Functional landscape of S-HSCR-associated genes. (A) Functional interactions among genes loosely associated with S-HSCR, known HSCR
genes, and genes important in ENS functions or NC migration. Each node corresponds to a gene and each edge corresponds to a functional interaction
cataloged in Reactome. Genes of particular interest are shown in bigger nodes, labeled with their names. (B) Schematic illustration of some biological pro-
cesses and genes involved in NCmigration (Szabó andMayor 2018). Colors of gene names follow their functional categories in panel A. (NT) Neural tube,
(SO) somites. (C ) Spatiotemporal expression profiles of mouse trunk NCs. Each row corresponds to the stage-specific expression pattern of a mouse ho-
molog of a human gene shown in panel A. Genes identified by MARVEL as loosely associated with S-HSCR are shown in red. Each column corresponds to a
single cell with the predicted stage label taken from the original publication (Soldatov et al. 2019). Both the rows and the columns were clustered using
hierarchical clustering with Pearson’s correlation as the similarity measure, and the columns are divided into five partitions according to the clustering
results.
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of the RAC1-RHO1 gradient, actin is selectively polymerized on
one side of the cell, extending the cell along the migration direc-
tion (Cohen et al. 2018; Szabó and Mayor 2018). Similarly, in rat
axonal growth cones, under the regulation of CDC42/RAC1,
SHTN1 is involved in the connection between F-actin and the
cell adhesion molecule L1CAM (Kubo et al. 2015). The extracellu-
lar matrix (ECM) serves as the road of NC migration (Szabó and
Mayor 2018), and collagens are basic structures in the ECM re-
quired for successful NCmigration (Nagy et al. 2018). Cell-ECM in-
teractions such as focal adhesion through integrins and vinculins
provide both structural support and signaling sensor for migrating
NC. In a previous study, mutations of vinculin in HSCR patients
were shown to affect its function in focal adhesion (Lai et al. 2017).

Signals from cell-ECM interactions, cell-cell interactions, and
chemotaxis are integrated inside NC through several signaling
pathways including the PI3K, MAPK/ERK, and PKC pathways
(Dinsmore and Soriano 2018). Through these pathways, signals
from the environment are transformed into regulatory signals,
controlling the activation and deactivation of genes.

An additional layer of regulation of these cellular signals was
found at the protein level. For instance, E3 ubiquitin ligase is re-
quired by GLI3, a known HSCR-associated TF, to switch between
its activator and repressor forms (Hsia et al. 2015), by which GLI
regulates the differentiation and patterning of enteric NC (Liu
et al. 2015).

Besides known HSCR TFs, we also found several novel TFs
loosely associated with S-HSCR, such as MYC and ZBTB17
(Supplemental Table S2), which are known to regulate the size of
the pool of premigratory NC (Kerosuo and Bronner 2016), and
RARG, which is important in the retinoic acid signaling pathway,
a pathway crucial for enteric NC migration (Uribe et al. 2018).

Overall, our results reveal an unprecedentedly broad linkage
between noncoding genetic variants associated with S-HSCR and
NC genes and clearly demonstrate that these genetic variants dis-
tribute across many different regulatory elements and genes that
converge to key functional pathways.

As an additional way to explore the functions of the genes
loosely associated with S-HSCR, we examined the spatiotemporal
expression of their mouse homologs using a trunk NC single-cell
RNA-seq (scRNA-seq) data set (Supplemental Materials; Soldatov
et al. 2019). Some of the knownHSCR genes and loosely associated
genes display stage-specific expression (Fig. 3C; Supplemental
Materials).

Upstream regulators of S-HSCR-associated genes

Onemajor advantage of our framework is its ability to identify not
only the disease-associated regulatory elements or genes but also
their upstream transcriptional regulators whose binding sites are
altered by the genetic variants. We developed a permutation test
to identify TF bindingmotifs whose match scores are significantly
more altered in the enhancers loosely associated with S-HSCR
found in our enhancer-based analysis than the background set of
all enhancers (Methods). This analysis identified 48 TFs that we
will refer to as “recurrent TFs” (Supplemental Table S3). Among
the top 100 promoters with the strongest association P-values
with S-HSCR, 73 of them also had at least one of these recurrent
TFs’ motifs selected by our procedure as a key motif, suggesting
that, in NCs, these recurrent TFs regulate gene expression through
both promoters and enhancers.

The recurrent TFs form an extensive network by way of phys-
ical protein-protein interactions (PPIs), with MYC and SMAD pro-

teins acting as interaction hubs (Fig. 4A). The premigratory NC
pool size regulators ZBTB17 and MYC and the retinoic acid recep-
tor RARG discussed above in the functional pathway analysis are
also contained in this network, showing that both the expression
of these genes themselves and their downstream targets could be
perturbed in S-HSCR. Some other interactions in this network
are also known to have important functional roles. For example,
MYC interacts with SMAD to activate expression of Snail, which
are essential TFs that regulate EMT of NC (Smith et al. 2009;
Kerosuo and Bronner 2016). The E2F proteins have been shown
to regulate neuronal migration (McClellan et al. 2007). There are
also reported HSCR genes in the network, such as GLI3 (Liu et al.
2015).

Using the same mouse trunk NC scRNA-seq data described
above, we found that the recurrent TFs with the strongest across-
cell expression variance are Tfap2b and Plagl1 (Fig. 4B). TFAP2B
(human homolog of Tfap2b) is a known migratory NC marker
(Rabadán et al. 2013). Plagl1 is up-regulated in neural tube and
in the delaminatory stage, which potentially regulates the compo-
sition of the ECM (Varrault et al. 2017) and thus potentially affects
the migration environment of NC. One gene that has a similar ex-
pression pattern as Plagl1 is Zic2, which regulates the production
of NC (Elms et al. 2003).

Enhancers significantly associated with S-HSCR confer cell stage–

specific expression of RET

To delineate the potential biological roles of our newly identified
S-HSCR-associated enhancers in disease susceptibility and patho-
genesis, we employed hPSCs to model the development of the hu-
man ENS. We started with the most well-characterized HSCR-
associated common SNP, rs2435357, where the risk allele T de-
creases the expression of RET and contributes to disease prevalence
(Tang et al. 2016). As mentioned above, this SNP resides in an en-
hancer within intron 1 of RET that was found to be significantly
associated with S-HSCR in our enhancer-based analysis (Table 1).
It overlaps an hNC-specific ATAC-seq peak (Fig. 5A), suggesting
that it may be implicated in the cell stage–specific expression of
RET. To test this hypothesis, we introduced the risk allele T into
a control hPSC line using a CRISPR-Cas9-mediated homology-di-
rected repair (HDR) system with a specific single guide RNA
(sgRNA) targeting the rs2435357(C/C) locus and single-stranded
oligonucleotides (ssODNs) (Ran et al. 2013; Paquet et al. 2016;
Kwart et al. 2017) containing the T allele (Fig. 5B). The control
andmutant (UE-rs2435357) hPSC lines were then used to generate
neural crest (hNC: SOX10+) and were subsequently directed to the
neuronal lineage to make the early enteric neuronal progenitors
(hNP: TUJ1+, ELAVL4+), recapitulating the two key developmental
stages during the formation of the ENS as previously described (Fig.
5C; Fattahi et al. 2016; Lai et al. 2017). The single base (C>T) con-
version alone did not affect hNC induction and the derivation of
hNPs from hPSCs. We found that RET is highly expressed in the
hNPs, while its expression remains at a low level in hNCs before
committing to neuronal lineage, suggesting that the cell stage–spe-
cific enhancers are likely involved to mediate the dynamic expres-
sion of RET during the development of the ENS. In concordance
with this observation, the C>T conversion in rs2435357 signifi-
cantly reduced RET expression in hNPs derived from the UE-
rs2435357 hPSC line, but it did not affect RET expression in
hPSCs when compared to the isogenic control line (Fig. 5D). Our
data suggest that the risk allele T in rs2435357 reduces RET
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expression in the early enteric neural progenitors (hNPs), contrib-
uting to HSCR pathogenesis.

Next, we studied a novel enhancer (Chr 10: 43,253,960–
43,254,961) significantly associated with S-HSCR within intron 1
of RASGEF1A that is located around 180 kbp downstream from
the TSS of RET (Table 1). This putative enhancer is close to the
TSS of RET in the three-dimensional (3D) genome architecture in
neural progenitor cells based on previously published Hi-C data
(Fig. 5E; Dixon et al. 2015). ATAC-seq data also revealed that there
was an hNC-specific peak in this region, implying that this en-
hancermay also be implicated in ENS development (Fig. 5F). To in-
vestigate the potential effect of this novel enhancer in controlling
RET expression, we generated a knockout (KO) mutant hPSC line
(RASGEF1A-int1-KO) using a CRISPR-Cas9 system (Ran et al.
2013) with a pair of specific sgRNAs flanking the target region of
intron 1 of RASGEF1A. Single hPSC colonies were isolated and gen-
otyped to confirm the deletion of the target region (Fig. 5G). After
neural induction and neuronal differentiation, we found that the
differentiation potential of RASGEF1A-int1-KO hPSCs to make
hNCs and hNPs was highly comparable to that of the control.
Comparable numbers of SOX10-, TUJ1-, and HU-expressing cells
were found in the control and the RASGEF1A-int1-KO groups
(Fig. 5H). However, the deletion significantly reduced RET expres-
sion in hNPs, but not in hPSCs (Fig. 5I), implying that intron 1 of

RASGEF1A contains a long-range regulator of RET in the early en-
teric progenitors.

Disruption of NFIA binding in a novel S-HSCR-associated

regulatory element in intron 10 of PIK3C2B interferes with the

expression of PIK3C2B, PPP1R15B, and SOX13

We further experimentally studied the functional potential of an-
other S-HSCR-associated regulatory element located in intron 10 of
PIK3C2B (Chr 1: 204,456,576–204,457,577). This regulatory ele-
ment was of particular interest because (1) it contained a strong
hNC-associated ATAC-seq peak (Fig. 6A), (2) an A>T variant in
this locus (rs551359143) was identified in six of our S-HSCR pa-
tients but not in any control subjects, and (3) the A>T conversion
was predicted to disrupt the bindingmotif ofNFIA (Table 1), which
is a TF with a key role in regulating the differentiation of neural
stem cells (Fig. 6A; Sanosaka et al. 2009; Piper et al. 2010; Kang
et al. 2012; Tchieu et al. 2019). We generated another mutant
hPSC line in which 171 bp of the intron 10 of PIK3C2B flanking
the putative NFIA binding motif were deleted using a CRISPR-
Cas9 system. The deletion of the target region was confirmed by
genotyping in the PIK3C2B-int10-KO hPSC clone (Fig. 6B). The
mutant hPSC clonewas used tomake hNCs and hNPs as described
above. Similar to the other enhancers discussed above, the deletion

B

A

Figure 4. Analysis of the recurrent TFs. (A) PPIs among the recurrent TFs (red) and several other proteins frequently interacting with them (gray). Direct
interactions among the recurrent TFs are shown in red, while direct interactions involving the other proteins are shown in gray. Recurrent TFs that have no
interactions with other proteins in this figure are excluded. (B) Spatiotemporal expression of recurrent TFs with stage-specific expression profiles in mouse
trunk NCs. The heat map was produced in the same way as in Figure 3C, with the same order of columns.
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Figure 5. Functional impacts of a HSCR-associated SNP (rs2435357) and the deletion of a novel S-HSCR enhancer on RET expression. (A) ATAC-seq and
ChIP-seq profiles of hPSC and hNC in intron 1 of RET show that rs2435357 is residing in a hNC-specific ATAC-seq peak. (B) Location of rs2435357 in the RET
gene locus and in the sgRNA used for CRISPR-Cas9-mediated HDR for editing the C allele to the HSCR-associated risk allele T. The electrographs of Sanger
sequencing show the successful introduction of the risk allele at rs2435357 in the UE-rs2435357 hPSC line. (C) Differentiation strategy to generate human
neural crest (hNC) and neuronal progenitor (hNP). HU is encoded by the ELAVL4 gene. Immunostaining of SOX10 and TUJ1 in hNC and hNP of the control
and the mutant (UE-rs2435357) lines. Scale bars: (hNC) 100 μm; (hNP) 200 μm. RT-qPCR analysis showing the comparable ELAVL4 expression level in hNP
in the control (n =5) and the mutant (UE-rs2435357) (n=3) lines. t-test, (ns) not significant. (D) RT-qPCR analysis showing RET expression in the hPSC and
hNP stages of the control (n=5) and themutant (UE-rs2435357) (n =3). t-test, (ns) not significant. (E) Hi-C data from neural progenitor cells show that the
enhancer in intron 1 of RASGEF1A (marked in yellow on the right) has physical interaction with the promoter of RET (marked in yellow on the left) at 10-kbp
bin size. (F) ATAC-seq and ChIP-seq data from hPSC and hNC at the RASGEF1A intron 1 locus. (G) The design of sgRNAs used for the CRISPR-Cas9 system for
deleting the DNA fragment in RASGEF1A intron 1. Genotyping reveals the specific deletion of RASGEF1A intron 1 in the UE-RASGEF1A-int1-KO hPSC line.
(WT) Wild type, (KO) knockout. (H) Immunostaining of SOX10, TUJ1, and HU in hNC and hNP of the control and the mutant (RASGEF1A-int1-KO) lines,
respectively. Scale bars: (hNC) 100 μm; (hNP) 200 μm. (I) RT-qPCR reveals the expression level of RET in the hPSC and hNP stages of the control (n=4–5)
and the mutant (RASGEF1A-int1-KO) (n=6–7). t-test, (ns) not significant.
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Figure 6. Characterization of a novel S-HSCR-associated regulatory element in intron 10 of PIK3C2B. (A) Overview of ATAC-seq and ChIP-seq profiles
showing the putative hNC-specific regulatory element in PIK3C2B intron 10. The red shaded region indicates the location of the regulatory element
and the line shows the A> T variant (rs551359143) found exclusively in the S-HSCR cases that disrupts the NFIA binding motif. The motif is not drawn
to the same scale as the genomic signal tracks, withmagnified characters. (B) Design of sgRNAs used for the CRISPR-Cas9 system for deleting the regulatory
element. Genotyping reveals the specific deletion of the 171-bp fragment in intron 10 of PIK3C2B in the PIK3C2B-int10-KO hPSC line. (WT)Wild type, (KO)
knockout. (C) Immunostaining shows that both the control and mutant (PIK3C2B-int1-KO) lines have comparable capability to make hNCs and hNPs.
Scale bars: (hNC) 100 μm; (hNP) 200 μm. (D) RT-qPCR shows the changes in the expression of PIK3CB in different cell stages in the control and mutant
lines. t-test, (ns) not significant. n =3–4 per group. (E) Design of the constructs used for the luciferase assay. The bar chart shows the relative luciferase
activities when the cells were transfected with different sets of constructs as indicated. Three independent assays were performed, each in triplicate.
One-way ANOVA. (F) Gel mobility shift assays were performed with biotin-labeled probes containing the PIK3C2B intron 10 regulatory element with or
without the A> T conversion and the nuclear extract from NFIA-overexpressing cells, in the presence of unlabeled probes or anti-NFIA antibody (0.1
µg). (G) Significant contacts (FDR<0.05) in the promoter capture Hi-C data from GM12878 cells at the PIK3C2B locus. The putative regulatory element
in intron 10 of PIK3C2B is marked in yellow. Contacts between the regulatory element and the TSSs of SOX13, PPP1R15B, and PIK3C2B are shown in purple
curves, while contacts between the regulatory element and other promoters are shown in gray curves. Contacts that extend too far are trimmed. (H) RT-
qPCR analysis shows the changes in the expression of PPP1R15B and SOX13 in the control and the mutant lines at different cell stages. t-test, (ns) not sig-
nificant. n=3–4 per group.
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of the fragment did not affect the differentiation potential of the
hPSCs to make hNCs and hNPs (Fig. 6C). In terms of gene expres-
sion, our quantitative RT-PCR (RT-qPCR) revealed a sequential
down-regulation of PIK3C2B along the enteric neuronal progenitor
differentiation (hPSC-to-hNC-hNP). When the 171-bp fragment
was deleted, the expression of PIK3C2B in hNCs and hNPs was sig-
nificantly increased as compared to the isogenic control, implying
that this 171-bp fragment probably serves as a negative regulatory
element to mediate the sequential down-regulation of PIK3C2B
along the differentiation path and the loss of it led to aberrant ex-
pression of PIK3C2B gene in hNCs and hNPs (Fig. 6D).We then fur-
ther demonstrated the involvement of NFIA in mediating PIK3C2B
expression using a luciferase assay. Our data showed that NFIA
mainly acts as a repressor and the luciferase activity was signifi-
cantly up-regulated when the NFIA binding motif was disrupted
by introducing the A>T substitution (Fig. 6E). A direct binding of
NFIA onto the intron 10 of PIK3C2B was demonstrated using a gel
shift and supershift assay, in which NFIA binding was consistently
abolished by the A>T conversion (Fig. 6F). All these results indicate
that PIK3C2Bwas negatively regulated by NFIA and the HSCR-asso-
ciatedA>T variationwould disrupt NFIAbinding, leading to the in-
creased expression of PIK3C2B.

Long-range chromatin interactions form topologically associ-
ating domains (TADs) and the genes within a TAD are likely to be
regulated by common enhancers (Chatterjee et al. 2016; Laugsch
et al. 2019). A previous promoter captureHi-C experiment suggests
that chromatin loops can be formed between PIK3C2B intron 10
and the TSSs of PPP1R15B and SOX13 in GM12878 cells (Fig. 6G;
Mifsud et al. 2015). This suggests that the gene expression of
PPP1R15B and SOX13may also be influenced by the S-HSCR-asso-
ciated A>T variant in intron 10 of PIK3C2B. RT-qPCR revealed
that the expression levels of PPP1R15B and SOX13, similar to
that of PIK3C2B, were not affected in the hPSC stage but up-regu-
lated in the hNC and hNP stages after the deletion of the 171-bp
fragment (Fig. 6H). This result suggests that PIK3C2B intron 10
contains an element that can regulate the expression of genes
within the same TAD and the usage of this regulatory element
may be dynamic during the development of ENS. During neuronal
differentiation, this element likely exerts negative control over
gene expression, as the deletion of it consistently increased gene
expression. In comparison, in the control line, all the genes regu-
lated by this element were down-regulatedwhen the cells differen-
tiated into neuronal lineages, suggesting that up-regulation of
these genes associated with the A>T variant may impose dis-
ease-causing risks during the later stage of enteric NC cell
development.

Discussion

In this work, we have proposed a novel framework, MARVEL, for
identifying noncoding genetic variants of potential functional sig-
nificance. It was designed to overcome various issues in the study
of noncoding variants. Our application of MARVEL to the analysis
ofWGS data of S-HSCRhas clearly demonstrated the advantages of
these designs. Starting from 37 million noncoding variants ob-
served in the cases and controls, the epigenomic data reduced
the number of genomic regions to study to the scale of tens of
thousands (of genes and promoters) to hundreds of thousands
(of enhancers), and the statistical procedures further selected no
more than 10 key motifs from each of these regions among 771
of them. As a result, we were able to obtain some results other
than those in the dominating RET locus at fairly strong signifi-

cance levels, which would be impossible in the traditional ap-
proach of testing the disease association of each genetic variant
separately since most noncoding variants are rare or have small ef-
fect sizes.

Comparing the enhancer-based and promoter-based analy-
ses, we obtainedmore significant results from the former, showing
that it is important to move beyond the immediate TSS-proximal
regions when analyzing the noncoding variants. The designs of
MARVEL made it possible to study genetic variants in distal en-
hancers in a computationally and statistically feasible manner.

The gene-based analysis led to findings in Chromosomes 9
and 15 not obtained from the enhancer-based or promoter-based
analysis. We have found that around these gene loci there were
more enhancers withmarginally significant associations than oth-
er gene loci, suggesting that it was the aggregation of weak signals
frommultiple regulatory elements that helped identify these gene
loci as significantly associated with S-HSCR. The importance of
this aggregation idea was further demonstrated in the functional
pathway analysis, in which some of the 417 genes loosely associat-
ed with S-HSCR were grouped into functional clusters that are
highly related to NC migration.

Our analysis of upstream regulators has identified 48 recur-
rent TFs, and they form an extensive network through PPIs.
Notably, some of these TFs also have their corresponding genes
identified in the association tests, showing that the disruptions
of both the expression of these TFs themselves and their binding
at other genes’ regulatory regions are associatedwith S-HSCR, illus-
trating twomain mechanisms by which genetic variants can exert
their functional effects.

Making use of the CRISPR-Cas9 genome editing platform, we
were able to generate various hPSC lineswith isogenic background,
such that any phenotypical differences observed should be solely
due to the effects of the risk variants. This platform allowed us to
study the functional impacts for the risk variants in the human ge-
nome, in contrast to previous studies that made use of other ani-
mal systems for enhancer studies, which usually focused on the
highly conserved regions of the genome instead of the disease-as-
sociated variants.

The motif analysis in our newmodel is also capable of identi-
fying the upstream transcription factors that regulate the HSCR-as-
sociated regulatory elements. For instance, we have found that
NFIAmay act as a negative regulator when binding to the regulato-
ry element of intron 10 of PIK3C2B during neural differentiation.
This finding is consistent with a previous report that suggests NFIA
represses Hes1 during neural progenitor differentiation in mouse
forebrain (Piper et al. 2010). A recent study from Qi et al. (2020)
has found that the conditional knockout of Nfia in mouse neural
crest cells (i.e., Wnt1-Cre; Nfiaf/f) would only disrupt the develop-
ment of NPY2R-expressing neurons but not other neurons such
as TH-expressing neurons in vivo (Qi et al. 2020). This suggests
that NFIA is responsible for controlling the development of a spe-
cific neuronal subtype and may be involved in the later stage of
neuronal development. Inhibition of PIK3C2B has been shown
to improve function and prolong survival in myotubular myopa-
thy through regulating the phosphoinositide (PIP) metabolism
(Sabha et al. 2016). As the dysregulation of PIP metabolism may
lead to neurodegenerative disease (Burke 2018), the up-regulation
of PIK3C2B caused by the A>T SNP in intron 10 of PIK3C2B may
affect the survival of enteric neurons.

Similar to PIK3C2B, up-regulation of PPP1R15B may induce
cellular stress and affect cell survival through inducing protein
misfolding conditions as seen in Huntington’s disease
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(Krzyzosiak et al. 2018). On the other hand, it has been demon-
strated that SOX13 can functionally replace SOX5 and SOX6 in
governing oligodendrocyte development in mouse spinal cord
(Baroti et al. 2016), suggesting that itmodulates cell differentiation
into glial lineages instead of neuronal lineages. Therefore, ectopic
SOX13 expressionmay affect the cell fate determination of the en-
teric NC cells. Given that many of these genes may affect various
stages of the ENS development, further studies are therefore re-
quired to unveil the functions of these differentially regulated
genes in the development of ENS.

Overall, our work has produced a large number of novel reg-
ulatory elements, genes, and upstream regulators associated with
S-HSCR for follow-up investigations. Due to the buffering of differ-
ent regulatory elements and different genes, single perturbations
may have little observable effects on cell differentiation, and as a
result their roles in disease susceptibility and pathogenesis are
subtle. In order to have a more complete understanding of the
functional importance of the candidate regulatory elements,
genes, and TFs identified in this study, it would be useful to per-
form large-scale genome editing assays to systematically perturb
them individually and in combination and determine how they
may interfere in various steps of ENS development.

Methods

Statistical procedures of the MARVEL framework

Here, we describe the statistical procedures used by the MARVEL
framework. Additional details of the framework can be found in
Supplemental Materials.

Identification of important motifs and phenotype-associated target regions

Suppose there are n subjects with their phenotype information
recorded in the binary vector y, where yi=1 if subject i is a case
and yi=0 if subject i is a control. For each target region, the stan-
dardized score profiles are represented by an n×mmatrixX, where
m is the number of motifs. Covariates of the n subjects are given in
an n × v matrix C, where v is the number of covariates.

Based on X and y, generalized linear model-based least angle
regression (GLM-LARS) (Tibshirani et al. 2004) is performed to se-
lect a subset of motifs whosematch scores in this target region can
best explain the phenotypes. We use glmpath (Park and Hastie
2007) (https://cran.r-project.org/web/packages/glmpath/index
.html) to perform GLM-LARS with parameter settings min.
lambda= 1e-2, max.steps = 10, and max.vars = 10 such that up to
10 motifs can be selected and the computations are efficient.

To quantify howwell the target region’s genetic variations are
associated with the phenotype based on the scores of the selected
motifs, we construct two logistic regression models

H0:g(y) = Cb0,
H1:g(y) = (X′|C)b1,

where g(u) = log
u

1− u
is the logit function,X

′
is a reduced version

ofX retaining only the columns corresponding to the selectedmo-
tifs, (X

′
|C) is a matrix that concatenates the columns of X

′
and C,

and β0 and β1 are coefficients. The likelihood ratio between these
two models is then used as a test statistic

LR = −2 ln
Likelihood(H1)
Likelihood(H0)

.

The statistical significance of a target region is evaluated by
comparing its LR with those from a permutation set, which in-

volves all the target regions with 100 random permutations of y.
For example, when we applied this procedure to perform associa-
tion tests for the enhancers in the S-HSCR study, since there
were 150,828 enhancers in total, each of these LR values were com-
pared against the 15,082,800 values from the permutations to
compute a P-value. The P-values of all the target regions are then
corrected for multiple hypothesis testing using the Benjamini–
Hochberg method (Benjamini and Hochberg 1995).

Estimation of effect size

We use AUROC to estimate the effect size of each target region.
Specifically, after constructing themodel g(y) = (X

′
|C)β1 for a target

region, for each subject, this model is applied to compute a score
that indicates how likely this subject has the phenotype. These
phenotype scores together with the actual phenotype labels of
the subjects are then used to produce the receiver operating char-
acteristic, and the area under the curve is used as an estimate of the
effect size.

Analysis of recurrent TFs

To identify the recurrent TFs, all motifs selected by GLM-LARS
from the full set of 200 enhancers loosely associated with S-
HSCR were collected. Ten thousand random sets of 200 enhancers
were then formed by sampling from all enhancers, and GLM-LARS
was applied to each of these sets. For eachmotif, its totalmodel co-
efficients across all enhancers in a set were used as a test statistic,
and a P-value was computed by comparing the test statistic ob-
tained from the loosely associated enhancers with those from
the randomenhancer sets, to see if the former is significantly larger
than the latter. These raw P-values were then corrected by the
Benjamini–Hochberg method to control the FDR at 0.05.

The PPIs among the recurrent TFs were obtained from
STRING (v11) (Szklarczyk et al. 2017). We included only the inter-
actions based onmanual curation or experimental evidencewith a
combined score >0.4.

Functional studies

Cell culture

A control hPSC line (UE02302) was established andmaintained as
previously described (Lau et al. 2019). Neural crest induction was
performed according to a previously described protocol (Lai et al.
2017). In brief, hPSCs were plated on Matrigel-coated plates in a
density of 5 ×104 cells cm−2 in ES cell medium containing
10 ng/mL fibroblast growth factor 2 (FGF2, Peprotech). The differ-
entiation was started by replacing ES cell medium with KSR medi-
um and gradually switched to N2 medium from day 4 to day 10.
For hNC differentiation, the cells were treated with LDN193189,
SB431542, CHIR99021, and retinoic acid.

For neuronal differentiation of hNCs to hNPs, hNC cells
(2.5 × 104) were seeded as droplets on polyornithine/laminin/fi-
bronectin-coated surface in N2 medium containing 10 ng/mL
FGF2 and 3 μM CHIR99021. For the RET-associated study,
p75NTR and HNK-1 double-positive hNC cells were sorted by a
BD FACSAria III Cell Sorter; 5 × 104 sorted cells were seeded as drop-
lets on a polyornithine/laminin/fibronectin-coated surface.
Neuronal differentiation was initiated by replacing the medium
with N2 medium containing BDNF, GDNF, NT-3, NGF, dibutyryl
cAMP, and ascorbic acid for 9 d. Detailed procedures are described
in Supplemental Materials.
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Plasmid constructions

Human codon-optimized high fidelity Cas9 nuclease construct
(Ran et al. 2013) was obtained from Addgene (48138). Oligos for
sgRNA cloning are listed in Supplemental Table S5. For the lucifer-
ase assay, PIK3C2B intron 10 fragment was cloned into a NanoLuc
luciferase reporter construct (pNL3.2[NlucP/minP]) (Promega
N1041) to generate the PIK3C2B-pNL construct, while NFIA ORF
was cloned into the pFLAG-CMV plasmid to generate an NFIA-
FLAG expression construct. The A>T variant was introduced to
the PIK3C2B-pNL construct by site-directed mutagenesis using a
QuikChange Lightning Site-Directed Mutagenesis kit (Agilent).
The cloning primers and mutagenesis primers are listed in
Supplemental Table S5, and detailed procedures are described in
Supplemental Materials.

Generation of new hPSC lines using the CRISPR-Cas9 system

For the generation of the mutant (UE-rs2435357) hPSC line, UE
control hPSCs were transfected with sgRNA construct, ssODNs
and pSpCas9(BB)-2A-GFP construct by the Human Stem Cell
Nucleofector kit 2 (Lonza). For the generation of UE-RASGEF1A-
int1-KO and PIK3C2B-int10-KO hPSC lines, UE control hPSCs
were transfected with a pair of pSpCas9(BB)-2A-GFP constructs
containing the specific sgRNAs using the P3 Primary Cell 4D-
Nuclecfector X kit (Lonza). hPSCs expressing GFP were sorted as
single cells and expanded for 2 wk. The single colonies were geno-
typed to confirm the site-specific conversion or the deletion of the
target regions. Detailed methods are described in Supplemental
Materials.

RT-qPCR

Total RNA from hPSCs, hNCs, and hNPs was extracted by an
RNeasy Mini kit (Qiagen) and reverse-transcribed to cDNA using
HiScript II Q RT SuperMix (Vazyme). The expression levels of the
target genes were quantitated using real-time quantitative RT-
PCR or droplet digital PCR (ddPCR). For real-time quantitative
RT-PCR, target genes were amplified with Luna Universal Probe
qPCR Master Mix (New England Biolabs) using a specific
TaqMan Gene Expression Assay by ViiA 7 Real-Time PCR System
(Thermo Fisher Scientific). ddPCRwas used tomeasure RET expres-
sion in hNPs. In brief, cDNA samples were mixed with ddPCR
Supermix for Probes (Bio-Rad 186-3010) and specific TaqMan
probes and then subjected to droplet generation following the
manufacturer’s protocol. The reaction droplets were then subject-
ed to thermal cycling, and the end-point fluorescence signals were
measured by a QX200 Droplet Reader (Bio-Rad). Detailed proce-
dures are described in Supplemental Materials.

Gel shift assay

The NFIA-FLAG expression construct was transfected to HeLa cells
by FuGENE HD Transfection Reagent (Promega), and the nuclear
extracts containing NFIA protein were then extracted using a nu-
clear and cytoplasmic extraction kit (Thermo Fisher Scientific).
ssODNs derived from the intron 10 of PIK3C2Bwere biotin-labeled
using a Biotin 3′-End DNA Labeling kit (Thermo Fisher Scientific)
and then annealed with reverse complementary ssODNs to gener-
ate biotin-labeled probes. A gel shift assay was performed by mix-
ing the nuclear extracts with biotin-labeled probes according to
the manufacturer’s protocol (LightShift Chemiluminescent
EMSA kit; Thermo Fisher Scientific). For supershift assays, 0.1 µg
anti-NFIA (Sigma-Aldrich HPA006111) was added to the mixture
in the final step before incubation. Detailedmethods are described
in Supplemental Materials.

Luciferase assay

Control firefly luciferase construct (pGL3-control), NanoLuc lucif-
erase constructs (pNL3.2[NlucP/minP] or PIK3C2B-pNL or
PIK3C2B-A>T-pNL), and NFIA expression construct (NFIA-
FLAG) were cotransfected into SH-SY5Y cells using jetPRIME trans-
fection reagent (Polyplus Transfection) according to the manufac-
turer’s protocol. Luciferase activities were detected with a Nano-
Glo Dual-Luciferase Reporter Assay System (Promega) by the
VICTOR Nivo Microplate Reader (PerkinElmer). Detailed proce-
dures are described in Supplemental Materials.

Immunostaining

hNC cells and hNP-D9 cells were fixed in 4% PFA for 20 min at
room temperature. Fixed cells were blockedwith blocking solution
(1% BSA, 0.1% Triton X-100 in PBS) at room temperature for 1
h. The blocked cells were then incubated with primary antibodies
(mouse anti-SOX10 [1:500, R&D Systems MAB2864], rabbit anti-
TUJ1 [1:1000, Abcam ab18207] and mouse anti-HU [1:1000,
Thermo Fisher Scientific A-21271]) at 4°C overnight. After wash-
ing, the sections were incubated with respective secondary anti-
bodies conjugated with Alexa Fluor 488/594 (Thermo Fisher
Scientific 1:500) at room temperature for 2 h. The stained cells
were mounted with ProLong Diamond Antifade Mountant with
DAPI (Thermo Fisher Scientific). Fluorescence images were ac-
quired by a Carl Zeiss LSM780 or LSM800 confocal microscope.

Chromatin interaction data

Hi-C data of NPC were obtained from the NCBI Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) with acces-
sion number GSE52457.

Data access

All raw and processed sequencing data generated in this studyhave
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE154972. The source code of MARVEL is provided as
Supplemental Code S1 and on GitHub (https://github.com/
fuxialexander/marvel).
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