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Abstract

Background: Transmission of Borrelia burgdorferi from its tick vector to a vertebrate host requires extensive
reprogramming of gene expression. Small regulatory RNAs (sRNA) have emerged in the last decade as important
regulators of bacterial gene expression. Despite the widespread observation of sSRNA-mediated gene regulation,
only one sRNA has been characterized in the Lyme disease spirochete B. burgdorferi. We employed an sRNA-
specific deep-sequencing approach to identify the small RNA transcriptome of B. burgdorferi at both 23 °C and
37 °C, which mimics in vitro the transmission from the tick vector to the mammalian host.

Results: We identified over 1000 sRNAs in B. burgdorferi revealing large amounts of antisense and intragenic
sRNAs, as well as characteristic intergenic and 5’ UTR-associated sRNAs. A large fraction of the novel sRNAs (43%)
are temperature-dependent and differentially expressed at the two temperatures, suggesting a role in gene
regulation for adaptation during transmission. In addition, many genes important for maintenance of Borrelia
during its enzootic cycle are associated with antisense RNAs or 5" UTR sRNAs. RNA-seq data were validated for

twenty-two of the sRNAs via Northern blot analyses.

Conclusions: Our study demonstrates that sRNAs are abundant and differentially expressed by environmental
conditions suggesting that gene regulation via sRNAs is a common mechanism utilized in B. burgdorferi. In

addition, the identification of antisense and intragenic sRNAs impacts the broadly used loss-of-function genetic
approach used to study gene function and increases the coding potential of a small genome. To facilitate access
to the analyzed RNA-seq data we have set-up a website at http.//www.cibiv.at/~niko/bbdb/ that includes a UCSC
browser track hub. By clicking on the respective link, researchers can interactively inspect the data in the UCSC

genome browser (Kent et al,, Genome Res 12:996-1006, 2002).
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Background

Lyme disease is the most common arthropod-borne dis-
ease in the United States of America and Europe, with
300,000 cases reported annually in the US [1]. Borrelia
burgdorferi, a causative agent of Lyme disease, oscillates
in nature between a tick vector and a vertebrate host
[2-4]. The enzootic life cycle of B. burgdorferi is main-
tained by uninfected tick larvae feeding on an infected
vertebrate, usually a small mammal. The infected larvae
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molt into nymphs and the spirochetes are transmitted to
and infect a vertebrate at the next blood meal [4]. The
infected nymphs are also the primary route of B. burg-
dorferi transmission to humans. B. burgdorferi must
survive in and transition between two vastly different
environments, the tick vector and the vertebrate host
[4, 5]. Like many other pathogenic bacteria, B. burgdorferi
senses and responds to environmental cues, such as a
change in temperature [6-9], by regulating the gene
expression of proteins necessary for survival [4, 5].
Bacterial gene expression is highly regulated at the
level of transcription, which is catalyzed by RNA poly-
merase (RNAP) and regulated by transcription factors.
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The RNAP sigma factor is responsible for promoter select-
ivity. Many bacteria synthesize several different sigma fac-
tors, with different promoter selectivity, thus directing
RNAP to a discrete set of genes, which results in the con-
trol of a set of genes needed for a certain response [10]. B.
burgdorferi has only three sigma factors (RpoD, RpoS
and RpoN), a relatively small number compared to
other bacteria, which can encode up to eighteen [10].
Moreover, transcription of rpoS is regulated by RpoN,
effectively decreasing the regulatory breadth of sigma
factors in B. burgdorferi [11]. Transcription is also regu-
lated via several characterized transcription factors in B.
burgdorferi [5, 12—14]. However, little is known about
post-transcriptional gene regulation in this spirochete.

Posttranscriptional gene regulation via a variety of
regulatory RNAs has emerged in the past decade as a
major mechanism of modulating gene expression [15-18].
The most extensively studied regulatory RNAs in bacteria
are the trams-encoded small RNAs (sRNAs) that are
predominately encoded in intergenic regions between two
annotated genes. Most trans-encoded sRNAs regulate
gene expression by imperfectly base pairing with a target
mRNA and affecting the translation and/or the stability of
the mRNA. The RNA chaperone Hfq is often required for
sRNA:mRNA base-pairing [19]. Cis-encoded antisense
RNAs (asRNAs), which are RNAs transcribed oppos-
ite to annotated genes, have been ubiquitously reported
[20-22]. asRNAs have complete complementarity to their
sense mMRNA counterpart and were originally identified
opposite to phage, toxin and transposon genes [23, 24].
asRNAs act in a manner similar to trans-encoded sRNAs
via binding their cognate mRNA and influencing its trans-
lation and/or stability [20, 21]. However, asRNAs can also
regulate their sense mRNAs transcription via transcrip-
tional interference [20, 21, 24, 25]. Riboswitches are
another cis-acting class of regulatory RNAs encoded in
long 5" UTRs of the mRNAs they regulate. Riboswitches
usually function as sensors of metabolic cues or
temperature changes [26—28]. The structure of the ribos-
witch is affected either by binding of a metabolite or
changes in temperature stimulating or inhibiting tran-
scription or translation of the gene. Non-coding RNAs
can also act as regulators by binding proteins and seques-
tering them or affecting their activity [29, 30]. Further-
more, intragenic SRNAs are a new class of sSRNAs that are
encoded within annotated genes [31]; relatively little is
known about their function. Finally, dual-function RNAs
encode both a regulatory RNA and a protein. Staphylococ-
cal RNAIII regulates the translation of several genes via
imperfect base pairing and encodes a small (25 amino
acid) hemolysin peptide [32, 33].

sRNAs are recognized as important regulators of
many adaptive and physiological gene expression changes
in pathogenic bacteria [34—-36]. However, despite the
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pervasive nature of regulatory RNAs, only one regulatory
RNA has been identified and characterized to date in B.
burgdorferi [37]. B. burgdorferi encodes two characterized
RNA-binding proteins, a unique Hfq protein (Hfqg,) (39),
which is required for murine infection via needle inocula-
tion, and a homolog of CsrA (CsrAgy), although there is
controversy regarding its function in infection of the
mammalian host [38—41]. CsrA normally acts in a con-
certed manner with two non-coding RNAs, which have
not been identified in B. burgdorferi. We hypothesized
that B. burgdorferi has a large sRNA network that is
required for transducing the enzootic life cycle and
pathogenesis. Here we specifically identified the SRNA
transcriptome of B. burgdorferi at 23 °C and 37 °C, tem-
peratures that mimic the tick vector and vertebrate host,
respectively, and we found a large SRNA network. This
study is the first transcriptome-wide analysis of SRNAs in
the Lyme disease spirochete.

Results/discussion

Transcriptome-wide identification of small RNAs

The main goal of this study was to identify small RNAs
in B. burgdorferi that are important for gene regulation
associated with the enzootic cycle of the spirochete [4, 5].
Temperature is one of the key environmental stimuli that
modulate gene expression in B. burgdorferi [6-8]. For
this reason, we shifted the temperature of B. burgdorferi
growing in liquid culture from 23 °C to 37 °C to mimic
transmission from the tick vector to the vertebrate host
and deep-sequenced the small RNA transcriptome from
these cultures.

Stranded ¢cDNA libraries were prepared from the ribo-
somal RNA-depleted size-selected (50-500 nt) RNA.
Three independent biological replicates were sequenced.
To obtain the most complete coverage of the B. burgdor-
feri genome and capture also lowly expressed sRNAs,
the first biological replicates (23 °C and 37 °C) were each
sequenced on a single lane of an Illumina HiSeq 2000
and mapped to the B. burgdorferi strain B31 reference
genome (replicate 0, rep0). This resulted in 170 and 190
million mapped 50 bp single-end (SE) reads, respectively,
which corresponds to very deep theoretical genomic cover-
ages of about 5600X and 6200X. Two additional replicates
(repl, rep2) were sequenced to lower coverage (27—44 mil-
lion mapped reads, 900-1400X, see Table 1) and were used
for validation and differential gene expression analysis.

For the accurate identification of B. burgdorferi sRNAs,
we extracted strand-specific coverage signals from our
deep sequencing datasets and developed a simple compu-
tational method to search these data for sRNAs-derived
coverage peaks (see Methods). This method identified
peaks stemming potentially from sRNAs in both deep data
sets (23 °C and 37 °C) that were then merged in order to
get a final set of genomic candidate intervals (sRNAs)
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Table 1 Sequencing and mapping statistics
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Temp # Raw reads # Mapped reads % Theoretical coverage Used for
rep0 23 °C 238,560,232 191,196,698 80% 6284 X SRNA search
37 °C 220,892,146 171,375,012 78% 5633 X
repl 23 °C 48,549,216 36,639,898 75% 1204 X Differential expression analysis
37 °C 44,318,061 31,718,243 72% 1043 X
rep2 23 °C 54,118,451 44,988,440 83% 1479 X
37°C 46,386,965 27,538,869 59% 905 X

All data was sequenced on an lllumina Hiseq2000. Reads are 50 bp single-end

based on the peak borders, see Methods. This strategy
and the depth of coverage of our data sets allowed us to
identify SRNAs expressed at low levels as well as sSRNAs
expressed in a temperature-dependent fashion. We ac-
knowledge, however, that our method may have missed
some very lowly expressed sSRNAs due to the thresholds
we configured for reducing the number of false positive
calls (e.g, a minimum peak height of 500 reads), see
Methods. As proof of principle, our method identified
known and annotated tRNAs, RNase P, tmRNA, 4.5S
RNA, 6S RNA (S. Samuels personal communication) and

DsrAg,;, For example, coverage maps illustrate the peaks
called for two phenylalanine tRNAs (Additional file 1:
Figure S1).

The resulting list of 5,600 genomic intervals identi-
fied by our peak caller were then manually curated by
multiple members of our research group by visual in-
spection of the normalized coverage data in the IGV
genome browser [42] resulting in 1,005 putative
sRNAs (Additional file 2: Table S1) that were classi-
fied based on their genomic context (Fig. 1la). 116 of
the called genomic intervals overlapped the 5" end of

compared to 23 °C
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Fig. 1 Genomic location, categorization and temperature-dependence of small RNAs. a sSRNAs were categorized according to their genomic
context as 5 UTR sRNAs (blue arrow), antisense (AS) RNAs (red arrow), intergenic (IG) RNAs (yellow arrows), or intragenic (intra) RNAs (green arrow).
Annotated coding features (ORFs) are represented as black arrows. The numbers of sRNAs identified in each category are in parenthesis next to the
category. b A bar chart illustrates the numbers of temperature-dependent and -independent sRNAs identified in each category. Gray bars are
temperature-independent sRNAs, blue bars are sSRNAs up-regulated at 23 °C compared to 37 °C and red bars are sSRNAs up-regulated at 37 °C
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an annotated open reading frame and were classified as a
5" UTR sRNAs. 156 of sSRNAs were transcribed between
annotated open reading frames (ORFs) and were classified
at intergenic sSRNAs (IG-sRNAs). 357 sRNAs were found
to be transcribed from the opposite strand to an annotated
open reading frame and were classified as cis-encoded anti-
sense RNAs (asRNA). 339 sRNAs were identified within
annotated ORFs and were classified as intragenic SRNA
(intraRNAs). The remaining 37 sRNAs were previously
known and annotated accordingly (tRNAs, 55 RNAs, ffx
(4.5S RNA), SsrA, DsrA and RNase P). For the
categorization of the SRNAs, we took a simplified approach
(the as-, intra- and 5" UTR RNAs only needed one base of
the interval to overlap with the open reading frame) and
acknowledge that, depending on the genomic context,
intraRNAs, IG RNAs and asRNAs may be 5 UTRs for
proximal genes; however, this cannot be determined from
our sRNA sequencing. In summary, our search strategy
successfully detected all 37 previously annotated sRNAs
and additionally identified 968 novel sRNAs. In addition,
an in silico analysis of the nucleotide context surrounding
the detected 5° ends of the sRNAs identified an adenine
and thymine rich -10 region correlating to the Pribnow
box providing additional evidence for the accuracy of our
approach (Additional file 3: Figure S7).

RNA-seq results including normalized coverage tracks
and all identified SRNAs are available at http://www.cibiv.
at/~niko/bbdb/. The data can be downloaded or directly
viewed in the UCSC Genome Browser [43]. Note that the
normalization method used to generate the coverage tracks
for visualization differs from the method used by differen-
tial gene expression analysis programs (EdgeR and DESeq).
Therefore, visual inspection of sRNA coverage signals
cannot be used to determine statistically significant gene
expression changes.

Temperature-dependent sRNAs

We identified the sSRNA transcriptome at both 23 °C and
37 °C to elucidate sRNAs involved in temperature-
dependent gene regulation associated with the enzootic
cycle. Stranded sRNA transcriptomes from the two bio-
logical low-coverage replicates at both temperatures
were sequenced and annotated sRNAs from our peak-
finding algorithm were used to test for statistically sig-
nificant differential expression at the two temperatures
using EdgeR. This method identified 431 (43%) of the
sRNAs as temperature-dependent and differentially
regulated at the two temperatures: 128 sRNAs were up-
regulated at 23 °C, while 303 were up-regulated at 37 °C.
22 sRNAs were validated by Northern blot analyses
(Additional file 4: Table S2 and Additional file 5: Figure
S2, Additional file 6: Figure S3, Additional file 7: Figure
S4, Additional file 8: Figure S5 and Additional file 9:
Figure S6) and temperature-dependent and temperature-
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independent sRNAs were identified in all categories of
sRNAs (Fig. 1b).

Cis-encoded small RNAs

asRNAs are transcribed opposite to annotated ORFs and
have some portion completely complementary to the
corresponding sense mRNA. asRNAs vary in size from a
few hundred nucleotides to 6.5 kb [20, 21]. We identified
357 small asRNAs: 147 are temperature-dependent; 25
are up-regulated at 23 °C, while 122 are up-regulated at
37 °C (Fig. 1b). Overall, 296 out of 1569 annotated genes
have at least one asRNAs encoded opposite to them
and 53 of these have more than one associated
asRNA (Additional file 10: Table S3). asRNA-dependent
gene regulation occurs via base pairing with its cognate
sense mRNA and inhibiting or stimulating expression via
different mechanisms. Predominately, genes with asRNAs
associated with them are hypothetical ORFs with un-
known functions (Fig. 2a). Notably, asRNAs were identi-
fied opposite to key genes active in the maintenance of the
B. burgdorferi life cycle and cell division, such as: bb0420
(hkl), bb0827 (hrpA), bbb03 (resT), bbbl17 (guaB), and
bba66 [4, 13, 44-50]. HK1 is the histidine kinase in the
two-component system necessary for B. burgdorferi
survival in the tick [45]. There are two as-hkI RNAs,
which are both up-regulated at 37 °C. The hkI transcript
is expressed at low levels in vivo in both the flat tick, fed
tick and in B. burgdorferi grown in dialysis membrane
chambers (mimicking the mammalian host). However, the
levels were the highest in larvae fed to repletion and flat
ticks [45]. We hypothesize that the as-#kl RNAs play a
role in the fine-tuning of gene regulation of /kl. There
are also two as-resT RNAs, one is temperature independ-
ent and the other is up-regulated at 23 °C. ResT is the
telomere resolvase required for telomere resolution during
replication of the linear and circular genetic elements [51].
Finally, there are two asRNAs, both up-regulated at 37 °C,
encoded opposite to bba66, which is required for mouse
infection via tick transmission [44].

In 2002, microarray analysis identified 79 genes up-
regulated and 15 genes down-regulated at 37 °C com-
pared to 23 °C [52]; 17 of these 94 genes have asRNAs
associated with them. Eight of these asRNAs are
temperature-dependent in our data; two of the sense/as
RNA pairs are reciprocally regulated, while six are co-
regulated (Additional file 11: Table S4). These data hint
at a molecular mechanism for gene regulation by the
asRNAs. For example, bb0385 is down-regulated at 37 °C
compared to 23 °C in the microarray data [52], while the
as-bb0385 RNA (as-0385) is up-regulated at 37 °C com-
pared to 23 °C in our RNA-seq data. We hypothesize that
the asRNA, when up-regulated at 37 °C, binds to the
mRNA and inhibits transcription or initiates degradation
effectively lowering the levels of the mRNA. For the
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Fig. 2 Identification and confirmation of small asRNAs. a Genes with asRNAs encoded opposite to them are functionally categorized using the
following abbreviations: CD, cell division; CE, cell envelope; CM, cell motility; MT, metabolism; PD, protein degradation and folding; SR, stress
response; TL, translation; TP, transporter; TR, transcription; RM; RNA metabolism; DM, DNA metabolism; VM, vitamin metabolism and U, unknown.
asRNAs (SR0493 and SR0104) identified by sRNA-seq were confirmed via Northern blot analyses for as-bb0155 and as-bb0612. b and d The deep
sequencing results are displayed in a coverage map of an overlay of the two rep0 libraries sequenced deeply for sSRNA peak calling (Peak) and
the overlay of the two biological replicates rep1, rep2 at both 23 °C and 37 °C. The height at each position indicates the normalized number of
reads that mapped to that base. The — strand coverage is shown in blue. Note that the y-axis scale is different between the peak calling libraries
(peak) and the biological replicates used for differential expression analyses (indicated by the grey numbers in brackets). The genomic context is
illustrated below the coverage maps: black arrows indicate the annotated ORFs, the yellow box indicates the region called as a small asRNA by our
peak finder and the wavy line is the putative transcript determined by Northern blot. The red line represents the location of the oligonucleotide probes
used for the Northern blot. ¢ and e Northern blot analyses of total RNA fractionated on a denaturing polyacrylamide gel, blotted to a nylon membrane,
and hybridized with oligonucleotides. The predicted transcripts are denoted and marked with the appropriate band (» for sSRNA) in the Northern blot.
Two independent experiments were performed and representative data are shown

mRNAs and asRNAs that are up or down-regulated to-
gether, we propose that the asRNA stabilizes the mRNA
and/or stimulates transcription of the gene, or acts in
trans on a different mRNA.

RNA-seq data were validated by Northern blot ana-
lyses of five of the asRNAs (Additional file 4: Table S2
and Additional file 5: Figure S2). We identified asRNAs
encoded opposite to all regions of their corresponding
mRNAs; for example, the bb0612 (clpX) gene has an
asRNA transcribed opposite to its 5" end and the hypo-
thetical open reading frame bb0155 has an antisense
RNA encoded opposite to it’s 3" end. Northern blot ana-
lyses validate the RNA-seq data and demonstrate that
both as-0155 and as-0612 RNA steady-state levels are
higher at 37 °C compared to 23 °C (Fig. 2b—d).

Stable small RNAs originating from 5" and 3" UTRs
have been reported in several different pathogenic
bacteria [18, 31, 53-59]. Cis-acting transcriptional ribos-
witches in 5° UTRs terminate transcription in the
absence or presence of metabolites and regulate gene
expression of the associated mRNA. Early termination of
transcription results in small RNA byproducts, which
can act as trans-encoded sRNAs regulating gene expres-
sion of another mRNA. We identified 116 sRNAs associ-
ated with the 5° UTR’s of annotated ORFs, suggesting
they may act as riboswitches and/or trans-encoded
sRNAs. Riboswitches often control expression of genes
for transport or synthesis of key metabolic compounds
and genes involved in physiological changes, virulence
and stress responses. The majority of the genes with 5’
UTR sRNAs associated with them are hypothetical ORFs
of unknown function and genes associated with metab-
olism and RNA and DNA metabolism (Fig. 3a). Of note,
the transcriptional regulator BosR [14] has a 5" UTR up-
regulated at 37 °C. 44 of the 5" UTR sRNAs were differ-
entially regulated by temperature, suggesting these RNA
elements may act as a type of transcriptional thermosen-
sor, riboswitches that respond to temperature changes,
rather than a ligand. To validate the RNA-sequencing

data, we performed Northern blot analyses on two of
the 5° UTR sRNAs (Additional file 2: Table S1 and
Additional file 6: Figure S3) Northern blot analysis of
the 5° UTR sRNA associated with bba57 confirms
the presence of an sRNA at 37 °C and mRNA at both
23 °C and 37 °C (Fig. 3b and c). We hypothesize that
this SRNA may act in-trans to regulate a different
mRNA or could be a transcriptional RNA thermom-
eter. RNA thermometers are highly structured RNAs
in the 5° UTR of mRNAs that usually mask the
ribosome-binding site at low temperatures inhibiting
translation. At higher temperatures the structure
melts and the ribosome-binding site is accessible
allowing for efficient translation [60, 61]. To our
knowledge no transcriptional RNA thermometers have
been described. We strictly categorized 5° UTR
sRNAs, requiring the intervals we call in this category
to overlap with the 5 end of an annotated ORF.
However, some of the intergenic, intragenic or anti-
sense sRNAs may be associated with the 5" UTRs of
downstream genes and still function as riboswitches.

Intragenic small RNAs

Intragenic small RNAs (intraRNAs) are a relatively new
class of sRNAs encoded from within protein coding re-
gions. We identified 339 intraRNAs encoded within 287
annotated genes. 243 genes have one intraRNA encoded
within them, while 44 genes have more than intraRNA
associated with them. Intragenic RNAs have been identified
via genome-wide transcriptional start site identification or
co-immunoprecipitations with Hfq in several different
bacteria. The genome size of Helicobacter pylori is similar
to B. burgdorferi and 439 internal transcriptional start sites
were identified globally. Our data identified 143
temperature-dependent intraRNAs: 86 were up-regulated
at 37 °C, while 57 were up-regulated at 23 °C (Fig. 1b). Sev-
eral genes important for maintenance of B. burgdorferi in
its enzootic cycle also encode intraRNAs including [4]:
bb0382 (bmpA), bb0365, bb0419 and bb0420 (rrpl and
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Fig. 3 Identification and verification of 5" UTR small RNAs. a Genes with small RNAs encoded in their 5" UTRs are functionally categorized using
the following abbreviations: CD, cell division; CE, cell envelope; CM, cell motility; MT, metabolism; PD, protein degradation and folding; SR, stress
response; TL, translation; TR, transcription; RM; RNA metabolism; DM, DNA metabolism; VM, vitamin metabolism and U, unknown. b A 5" UTR small
RNA (SR0902) was confirmed via Northern blot analyses for bba57. The deep sequencing results are displayed in a coverage map as described in the
Fig. 2 legend, except the yellow box indicates the region called as a small 5" UTR RNA by our peak finder. ¢ Northern blot analyses of total RNA
fractionated on a denaturing polyacrylamide gel, blotted to a nylon membrane, and hybridized with oligonucleotides. The predicted transcripts are
denoted and marked with the appropriate band (* for sSRNA and A for mRNA) in the Northern blot. Two independent experiments were performed
and representative data are shown

hkl, respectively), bb603, bbbl8 (guaA), bbkl7, bbk32,
bbal6 (ospB), bba64, and bba66. For instance, we identified
a temperature-independent intraRNA encoded at the 3’
end of the hypothetical open reading frame bbg07 and con-
firmed it via a Northern blot (Fig. 4). bbq07 potentially
encodes two small ORFs; one is a truncated version of the
bbq07 ORF with a canonical AUG start codon, while the
other would utilize an alternative start codon UUG and
encode a different ORF. Both putative proteins would be
small peptides, 27 and 33 amino acids, respectively. Rela-
tively little is known about the function of intraRNAs and

they could encode non-coding regulatory RNAs or mRNAs
for small peptides. Most intraRNAs have been identified
through genome-wide transcriptional start site analyses or
co-immunoprecipitation with Hfq and few have been func-
tionally characterized [31, 55, 59, 62]. However, the only
characterized sRNA in B. burgdorferi, DsrAg, is an intra-
genic RNA encoded from within bb0577 that post-
transcriptionally regulates the alternative sigma factor RpoS
[37]. Recently, a small RNA processed from the 3" UTR of
an mRNA in Salmonella was shown to act in trans to regu-
late another mRNA [54]. The identification of intraRNAs
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Fig. 4 |dentification and confirmation of small intragenic RNAs. The intraRNA (SR0921) was confirmed via Northern blot analyses for intra-bbq07.
a The deep sequencing results are displayed in a coverage map as described in Fig. 2, except the yellow box indicates the region called as a
small intraRNA by our peak finder. Putative ORFs are indicated by black lines with the canonical start codon (AUG) illustrated by a green box, the
non-canonical start codon illustrated by the green box with a black outline, and stop codons indicated by a red box. b Northern blot analyses of
total RNA fractionated on a denaturing polyacrylamide gel, blotted to a nylon membrane, and hybridized with oligonucleotides. The predicted
transcripts are denoted and marked with the appropriate band (* for sSRNA) in the Northern blot. Two independent experiments were performed

greatly increases the coding potential of the relatively small
genome of B. burgdorferi.

Intergenic sRNAs

The most well-studied class of sSRNAs are encoded inter-
genically (IG-sRNA) and act in trans by base pairing im-
perfectly with an mRNA, encoded from another genomic
region, and regulating its expression. Currently the num-
ber of IG-sRNAs is approximately 300 in both E. coli and
Salmonella enterica. Moreover, in Yersinia pseudotubercu-
losis the sRNA transcriptome identified 150 novel inter-
genic sRNAs. Here, we identified 156 intergenic sRNAs;
42 are up-regulated at 37 °C and 38 are up-regulated at
23 °C (Fig. 1b). Considering the small genome size of B.
burgdorferi, 156 1G-sRNAs seems on par with other well-
studied bacteria. Northern blot analyses validate 13 IG-
sRNAs (Additional file 4: Table S2, Additional file 8: Fig-
ure S5 and Additional file 9: Figure S6). The sRNA
encoded between bbb13 and bbbi4 is not differentially
expressed at 23 °C or 37 °C in the RNA-seq data and
has similar steady-state levels at both temperatures
(Fig. 5a and b). In contrast, the IG-sRNA encoded be-
tween bba34 and bba36 is up-regulated at 37 °C in the
RNA-seq data and has higher steady-state levels at 37 °
C in the Northern blot analyses (Fig. 5¢ and d). Like
other intergenically encoded sRNAs, we hypothesize
that many of the IG-sRNAs regulate their target
mRNAs via a variety of mechanisms requiring imper-
fect base pairing between the sRNA and the target
mRNA. However, these sSRNAs could also code for pep-
tides. For example, the sSRNA encoded between bbb13
and bbb14 has a putative small ORF (28 amino acids)
(Fig. 5a).

Small open reading frames

sRNAs are considered primarily non-coding and func-
tion as riboregulators. However, there are several reports
of dual-function sRNAs that act as a riboregulator and
code for a small peptide. The sSRNA RNAIII in Staphylo-
coccus aureus codes for a regulatory RNA and a 26
amino acid peptide [32, 33]. In addition, small ORFs are
emerging as important components of cells in both
bacteria and eukaryotes [63, 64]. We examined the
coding-potential of all of the 1005 sRNAs we identified,
searching for any ORFs at least 25 amino acids in length
using canonical start codons. 988 of the sRNAs puta-
tively encode at least one 25 amino acid ORF. Although
this is not an accurate indicator of protein-coding
sRNAs, it does demonstrate the capacity of B. burgdor-
feri sSRNAs to code for small peptides.

Conclusion

sRNAs are now universally considered to be major regula-
tors of gene expression in pathogenic bacteria [18]. How-
ever, almost nothing was known about sRNAs in the
Lyme disease spirochete, B. burgdorferi [37, 39]. Here we
report a large temperature-dependent and -independent
sRNA transcriptome in B. burgdorferi. The identification
of massive antisense and intragenic sRNAs impacts the
broadly used genetic approach to studying gene function
in B. burgdorferi. There are now profound implications for
mutagenesis experiments: deletion of a gene could include
the loss of an intraRNA and/or asRNA with pleiotropic
consequences. The abundance of sRNAs in the B. burg-
dorferi and their association with genes required for main-
tenance of its enzootic cycle suggest post-transcriptional
gene regulation plays a significant role in pathogenesis.
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Methods

Bacterial strains

Low passage B. burgdorferi strain B31-5A4 was grown at
23 °C and shifted to either 23 °C or 37 °C in BSK-H
medium (Sigma) and grown to a low cell density 2 to
5x 10" cells/mL. Infectious B. burgdorferi strain B31-
5A4 is a clone of the B31 strain used in Revel et al.
Linear plasmid 5 was the only plasmid missing from the
B31-5A4 strain used in this study.

RNA isolation and library preparation

Total RNA was isolated using a hot phenol protocol.
Total RNA was treated with DNase I (Roche) following
the manufacturer’s protocol. RNA integrity was mea-
sured using the Agilent 2100 Bioanalyzer. RNA with an
RNA Integrity Number (RIN) above 9.0 was used for
c¢DNA library construction. Directional (strand-specific)
RNA-seq cDNA libraries were constructed with a
ligation based protocol as previously described with an
initial size-selection instead of fragmentation [22, 65].
Briefly, ribosome-depleted (Ribo-Zero RNA removal kit
for gram negative bacteria; Epicentre) total RNA was
size fractionated on an 8% TBE-UREA gel. RNA was
eluted from gel slices correlating to 50 to 500 nucleo-
tides. RNA was treated sequentially with tobacco acid

pyrophosphatase (Epicenter) and calf intestinal phos-
phatase (New England Biolabs) per the manufacturer’s
protocols to remove 5’ tri- and monophosphates. A 3’
RNA adaptor, based on the Illumina multiplexing
adaptor sequence (Oligonucleotide sequences © 2007—
2014 Illumina, Inc. All rights reserved) blocked at the 3’
end with an inverted dT (5'-GAUCGGAAGA GCA-
CACGUCU [idT]-3"), was phosphorylated at the 5" end
using T4 PNK (New England Biolabs) per the manufac-
turer’s protocol. The 3" multiplex RNA adaptor was
ligated to the 3’ ends of the RNA using T4 RNA ligase I
(New England Biolabs). RNA was incubated at 20 °C for
6 h in 1X T4 RNA ligase reaction buffer with 1 mM
ATP, 20 uM 3" RNA adaptor, 1 pul DMSO, 5 U of T4
RNA ligase I, and 40 U of RNasin (Promega) in a 10 pl
reaction. RNA was gel purified and size-selected (75—
550 nt) and purified over a denaturing 8% polyacryl-
amide/8 M urea/TBE gel. Gel slices were incubated in
RNA elution buffer (10 mM Tris—HCI, pH 7.5, 2 mM
EDTA, 0.1% SDS, 0.3 M NaOAc) with vigorous shaking
at 4 °C overnight. The supernatant was subsequently
ethanol precipitated using glycogen as a carrier mol-
ecule. The RNAs were phosphorylated at the 5 ends
using T4 PNK (New England Biolabs) per the manufac-
turer’s protocol to allow for subsequent ligation of the 5’
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RNA adaptor. The Illumina small RNA 5" adaptor (5'-
GUUCAGAGUU CUACAGUCCG ACGAUC-3") was
ligated to the libraries using T4 RNA ligase I (New
England Biolabs). The ligated RNAs were size-selected
(100-600 nt) and gel-purified over a denaturing 8%
polyacrylamide/8 M urea/TBE gel (as described above).
The di-tagged RNA libraries were reverse-transcribed
with SuperScript’ll reverse transcriptase (Invitrogen)
using random nonamers per the manufacturer’s proto-
col. cDNA was amplified in PCR performed using Phu-
sion® High-Fidelity Polymerase (New England Biolabs).
c¢DNA was amplified with Illumina-compatible PCR
primers by 18 cycles of PCR. The products were ana-
lyzed on an Agilent 2100 Bioanalyzer.

Deep-seq analyses

Three independent biological replicates were sequenced
on an Illumina HiSeq2000 (single-end, read length:
50 bp) to different genomic coverages (Table 1). The
high-coverage replicate (rep0) was used for the identifi-
cation of B. burgdorferi sRNAs, the two low-coverage
replicates (repl, rep2) were used to identify sSRNAs that
are differentially expressed at the two probed tempera-
tures. Sequencing adapters were removed from the data
using cutadapt v1.2.1 [66]. The resulting reads were
mapped to the B. burgdorferi B31 genome (GenBank Ids:
AEO000783, AE001583, AE000793, AE001582, AE000785,
AE000794, AE000786, AE000784, AE000789, AE000788,
AE000787, AE000790, AE001584, AE000791, AE000792,
AE001575, AE001576, AE001577, AE001578, AE001579,
AE001580, and AE001581) using NextGenMap v 0.4.5
with default parameters and minimum identity set to
90%. Finally, multi-mapped reads were removed and
strand-specific coverage data was extracted using bed-
tools v2.25 [67]. We developed a simple peak-calling
algorithm for identifying potential SRNA peaks in these
coverage signals. Briefly, the strand-specific coverage
signal is read and smoothed using a moving Gaussian
kernel. Then, peaks are called with a wavelet-transform
based approach that uses a simple mirrored sawtooth
kernel for the detection of potential peak boundaries.
Peaks were called only if they complied to predefined
minimum/maximum dimensions, based on our size se-
lection (peak width: 45-500 bp, minimum peak height:
500 reads). Additionally, peaks were filtered based on
their shape as we expected sRNA-derived peaks to
present a sharp rise at the 5" end and an overall “boxy”
shape (i.e., a minimum height/width ratio), as seen with
the positive control tRNAs (Additional file 1: Figure S1).
SRNA libraries were generated from non-fragmented,
size-selected RNAs and sequenced from a single end;
therefore, we expected and observed a strong 5" end bias
in the sRNA coverage, which we took advantage of to
determine the 5 end of the SRNA. However, coverage of
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the entire sRNA is unlikely and due to capturing the
degradation products of RNAs, thus making it difficult
to accurately and consistently determine the 3" end of
the sRNAs. Our peak-calling algorithm, together with
manual curation accurately identified intervals that cor-
relate to sSRNAs and their 5’ ends, but not their 3" ends
(Additional file 3: Figure S7). In this manner, peaks were
called in both deep data sets (rep0, 23 °C and 37 °C) and
corresponding genomic intervals were merged between
data sets and between intervals if they overlapped more
than 80%.

The resulting list of 5,600 genomic candidate intervals
(sRNAs) was then subjected to differential expression
(DE) analysis. We extracted count tables for these inter-
vals from the two low-coverage replicates (repl, rep2)
and calculated DE with edgeR and DEseq [68, 69]. 5 in-
tervals could not be tested due to too-low coverage in
(one of) the replicates. Results were then filtered by
adjusted P-value < 0.05 (P-values were adjusted using Ben-
jamini and Hochberg’s algorithm to control the false dis-
covery rate). For further analyses we continued with only
the edgeR data. We do, however, provide the adjusted
DEseq P-values in the final result table for completeness.

Finally, all genomic intervals were manually assessed
and curated by multiple members of our research group
by visual inspection of the normalized coverage data in
the IGV [70] genome browser. Besides obvious false
positive calls and likely degradation products (Additional
file 12: Figure S8), we also removed all peaks associated
with annotated open reading frames that were 600
nucleotides or shorter from the list of SRNAs.

Analysis of repetitive regions
The B. burgdorferi genome consists of a linear chromo-
some and up to 21 or more linear (Ip) as well as circular
(cp) plasmids. A considerable fraction of the plasmid
DNA is highly repetitive, particularly some regions on
the cp32s, Ip56, 1p21 and Ip5 are nearly sequence-
identical [71], which makes unambiguous read mapping
in these regions difficult or impossible. This constituted
two major problems for our analysis: first, we observed
artificial coverage peaks around the borders to such re-
petitive regions that were wrongly classified as sSRNA
peaks by our method, resulting in false-positive calls.
Secondly, we were aware that this would also lead to
false negative (i.e., missed) peaks in repetitive regions (as
we removed all multi-mapped reads from our datasets).
For this reason, we conducted an additional analysis
that guided our manual curation of sRNA candidate re-
gions. First, we remapped all multi-mapped reads (i.e.,
reads with mapping quality zero (MQO), mapping accur-
ately to more than one place in the genome) from our
alignments using NextGenMap, this time configuring
the mapper to additionally output up to 100 alignments
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that share the maximum alignment score per read (i.e., a
read that was sequenced from a genomic region that has
three perfect copies in the genome would be represented
with three entries in the resulting BAM file). Then, we
calculated the read coverage signals from these data as
we did before, but this time each alignment contributed
to the coverage at a particular genomic position only
with a weight 1/X0, where X0 is the number of optimal
alignments for this read in the dataset. In other words, a
read that aligned to three different (repetitive) regions
with the same maximum score would contribute with a
“weight” of 1/3 to the each of them, thereby equally div-
iding its contribution among all possible (optimal) map-
ping locations in the genome. The resulting coverage
tracks were converted to the BigWig [72] format and
loaded into IGV along with our standard tracks for use
in our manual curation. A peak was considered a false
positive (due to MQO reads) if it had reads surrounding
it in the MQO coverage map. For example, an intragenic
peak was called in the bbs02 gene on cp32-3, but manual
inspection of the MQO reads shows good coverage of
the proximal area around the peak, suggesting it is a
false positive peak due to repetitive sequence surround-
ing it (Additional file 13: Figure S9). In addition, we
likely missed sRNAs in these repetitive regions as well.
For example, manual inspection of the MQO reads on
cp32-1 revealed a putative antisense RNA opposite
the bbp17 gene. The uniquely mapped coverage maps
do not have any reads mapped to this genomic region
because it is repetitive with the other cp32 plasmids,
but the MQO coverage map suggests at least one of
these cp32 derived sequences are transcribed (Additional
file 14: Figure S10).

Northern blots

For Northern blot analysis 15 pg of DNase I (Roche)
treated RNA was separated under denaturing conditions
either by a 6-8% TBE-Urea (8 M) polyacrylamide gels in
1X TBE (for small transcripts) or a 1% formaldehyde/
MOPS agarose gels in 1X MOPS (for larger transcripts).
RNA was initially denatured in 2X RNA load dye
(Fermentas) and heated to 65 °C for 15 min before loading
on a gel. RNA was transferred to HybondXL membranes
either by electroblotting at 12 V for 1 h in 0.5X TBE (poly-
acrylamide TBE-Urea gels) or capillary action (formalde-
hyde-agarose gels). The membranes were UV cross-linked
and probed with DNA oligonucleotide probes (Additional
file 15: Table S5). DNA oligonucleotide probes were
end-labeled with gamma-32P [ATP] and T4 PNK (New
England Biolabs) per the manufacturer’s protocol.

Nucleotide context analysis
To validate the accuracy of our 5° end peak-calling method
on a genome-wide scale we analyzed the nucleotide
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composition around all identified 5" ends. We calculated
averaged nucleotide fractions in genomic windows
centered at the most 5" positions of identified sSRNAs and
plotted the results in Additional file 3: Figure S7. Overall,
these data demonstrate an adenine and thymine (A and T)
rich sequence at the —10 region correlating to the Pribnow
box and an enrichment in thymine exactly 35 nucleotides
upstream of the putative transcriptional start sites (TSS)
across all novel sRNA categories described in this paper
(as, IG, Intra, 5" UTR), suggesting indeed these 5’ ends are
accurate. Moreover, we didn’t detect these sequence
elements associated with the annotated group of sRNAs,
which are primarily tRNAs. tRNAs are processed from pri-
mary transcripts to their active and stable form and should
not have a Pribnow box at the —10 region. The same plots
were generated for all other SRNA subcategories used in
this manuscript (as, IG, Intra, 5° UTR), as well as for all
sRNAs on the two different strands individually, and the
respective signals were similar to the overall signal (the
-35 T-peak being slightly less prominent for intra-RNAs).
We have also generated respective plots for randomly
chosen positions in the genome as a control, which
showed, as expected, no major deviations from the
genomic average (data can be found at http://www.cibiv.at/
~niko/bbdb/). Together, these data provide additional in
silico evidence for the ability of our method to accurately
detect 5” ends of small RNAs on a genome-wide scale.

Additional files

N

Additional file 1: Figure S1. Peak calling proof of principle. The deep-
sequencing results are displayed in a coverage map for two phenylalanine
tRNAs. An overlay of the rep0 libraries sequenced deeply for sSRNA peak
calling (Peak) and the two biological replicates rep1, rep2 at both

23 °C and 37 °C are shown. The height at each position indicates
the normalized number of reads that mapped to that base. The + strand
coverage is shown in green. Note that the y-axis scale is different between
the peak calling libraries (peak) and the biological replicates used for
differential expression analyses (23 °C and 37 °C). The genomic context is
illustrated below the coverage maps; black arrows indicate the annotated
tRNA genes, the yellow boxes indicates the regions called as a small IG-
RNAs by our peak finder (SR0159 and SR0160). (PDF 1169 kb)

Additional file 2: Table S1. Annotated list of sRNAs found in this study.
The table contains information about the genomic locations of all
manually curated sRNAs and data from temperature differential
expression analysis (log-fold change and adjusted P-values for edgeR and
DEseq). Previously annotated RNAs contain the respective name and/or
function in the Notes column. Please note that SsrA, ffs and RNaseP were
annotated based on their respective entries in the BSRD database where
they were previously predicted by sequence similarity. (XLSX 234 kb)

Additional file 3: Figure S7. Nucleotide composition around the 5’
ends of detected small RNAs. The plots illustrate the averaged nucleotide
fractions in genomic windows centered at the most 5" position (position
zero in the plots) of identified SRNAs. Panels A, C and E on the left show
the data for all 1,005 sRNAs identified in this study. Panels B, D and F
show the data for only the 37 previously annotated small RNAs, the
majority (31) of which are tRNAs. Nucleotide distributions were calculated
from the reference genome in a strand-specific manner. Panels A and B
plot the sums of A+ T and G+ C fractions in a genomic window of 100
nucleotides up- and downstream of the putative 5" ends. The horizontal
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grey lines were placed at the genomic averages for these measures
(71.8% A +T, 282% G+ C) and reveal that the genomic sequences up-
stream of the TSS are slightly more AT-rich, while the downstream (tran-
scribed) regions are slightly more GC-rich compared to the genome-wide
average (A). This effect is strongly pronounced for the annotated sRNAs
(B). Panels C and D plot the contributions of the individual bases and
panels E and F are zoomed-in versions of C and D (40 bp upstream to

5 bp downstream of the 5’ end). Dotted vertical grey lines highlight the
genomic positions —10 and —35 relative to the 5’ end. Panels C and E show
a Pribnow-box like element about 10 bases upstream of the 5" end of the
SRNAs, that is absent from the (mostly) tRNA-derived sequences (D and F).
tRNAs are processed from primary transcripts to their active and stable form
and should not have an Pribnow box at the —10 region. Furthermore,
panels C and E reveal a strong T-peak at position —35 that may play a role
in transcription initiation. Again, this feature is not detectable for the tRNA
sequences. (PDF 19 kb)

Additional file 4: Table S2. Northern blot validation of sSRNAs. The
table summarizes the sRNAs that were confirmed via Northern blot
analysis. The sRNAs location, category, sizes and associated genes are
indicated. (XLSX 43 kb)

Additional file 5: Figure S2. Northern blot validation of asRNAs.
Northern blot analyses of total RNA fractionated on a denaturing
polyacrylamide gel, blotted to a nylon membrane, and hybridized with
oligonucleotides specific for the asRNAs. The genomic context is
illustrated above the Northern blots; the genes and RNAs are not drawn
to scale. (PDF 982 kb)

Additional file 6: Figure S3. Northern blot validation of 5" UTR sRNAs.
Northern blot analyses of total RNA fractionated on a denaturing
polyacrylamide gel, blotted to a nylon membrane, and hybridized with
oligonucleotides specific for 5" UTR RNAs. The genomic context is
illustrated above the Northern blot; the genes and RNAs are not drawn
to scale. (PDF 883 kb)

Additional file 7: Figure S4. Northern blot validation of intraRNAs.
Northern blot analyses of total RNA fractionated on a denaturing
polyacrylamide gel, blotted to a nylon membrane, and hybridized with
oligonucleotides specific for intraRNAs. The genomic context is illustrated
above the Northern blots; the genes and RNAs are not drawn to scale.
(PDF 936 kb)

Additional file 8: Figure S5. Northern blot validation of IG-sSRNAs.
Northern blot analyses of total RNA fractionated on a denaturing poly-
acrylamide gel, blotted to a nylon membrane, and hybridized with oligo-
nucleotides specific for IG-sRNAs. The genomic context

is illustrated above the Northern blots; the genes and RNAs are not
drawn to scale. (PDF 1096 kb)

Additional file 9: Figure S6 Northern blot validation of IG-sRNAs.
Northern blot analyses of total RNA fractionated on a denaturing
polyacrylamide gel, blotted to a nylon membrane, and hybridized
with oligonucleotides specific for IG-sRNAs. The genomic context is il-
lustrated above the Northern blots; the genes and RNAs are not
drawn to scale. (PDF 1029 kb)

Additional file 10: Table S3. Genes with antisense and 5" UTR sRNAs.
The table contains information about all of the genes with antisense and
5" UTR sRNAs associated with them. Gene ontology terms (GO terms) for
biological processes (BP) are also given for each gene. The column titled,
“Norgard FoldChange” contains the fold-change of that particular gene
as reported by Revel et al. [52] via microarray after a temperature shift.
(XLSX 221 kb)

Additional file 11: Table S4. Transcriptome data comparison.
Comparison of genes reported as temperature-dependent in a DNA
microarray [52] and asRNAs we identified opposite to them. (XLSX 11 kb)

Additional file 12: Figure S8. Manual curation of peaks. Intragenic
RNA peaks called in genes bb03177 and bb0312 were manually curated
based on the coverage patterns. The deep-sequencing results are dis-
played as described in the caption of Additional file 4: Figure S2. The -
strand coverage is shown in blue. Note that the y-axis scale is different
between the peak calling libraries (peak) and the biological replicates
used for differential expression analyses (23 °C and 37 °C). The genomic

context is illustrated below the coverage maps: black arrows indicate
the annotated genes; the yellow box indicates the region called as a
small intraRNA by our peak caller. The peaks appear to be broad and
similar in height across the gene, suggesting they are degradation
products of the mRNA, not stable sRNAs. (PDF 2229 kb)

Additional file 13: Figure S9. Manual curation of peaks based on MQO
reads. The intragenic peak called in the bbs02 gene was manually curated
based on the MQO reads. The deep-sequencing results are displayed in a
coverage maps for the bbs02 gene. An overlay of the uniquely mapped
rep0 libraries sequenced deeply for sRNA peak calling (Peak), the two
biological replicates at both 23 °C and 37 °C (rep1, rep2) and the
MQO reads from the deeply sequenced rep0 libraries are shown. The
height at each position indicates the number of reads that mapped
to that base. The + strand is shown in green. Note that the y-axis
scale is different between the peak calling libraries (peak) and the
biological replicates used for differential expression analyses (23 °C
and 37 °C) and the MQO tracks. The genomic context is illustrated
below the coverage maps: black arrows indicate the annotated genes; the
yellow box indicates the region called as a small intra-RNA by our peak
finder. (PDF 1120 kb)

Additional file 14: Figure $S10. MQO reads reveal a cp32-derived
asRNA. The MQO reads reveal an asRNA peak encoded opposite the
bbp17 gene. The deep-sequencing results are displayed in a coverage
maps for the bbp17 gene. An overlay of the uniquely mapped rep0
libraries sequenced deeply for SRNA peak calling (Peak), the two biological
replicates (rep1, rep2) at both 23 °C and 37 °C and the MQO reads from the
deeply sequenced repO libraries are shown. The height at each position
indicates the number of reads that mapped to that base. The - strand is
shown in blue. Note that the y-axis scale is different between the peak
calling libraries (peak) and the biological replicates used for differential
expression analyses (23 °C and 37 °C) and the MQO tracks. The genomic
context is illustrated below the coverage maps: black arrows indicate
the annotated genes. (PDF 904 kb)

Additional file 15: Table S5. Oligonucleotides used in this study.
Sequences and names of all oligonucleotides used in this study. (DOCX 15 kb)
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3" UTR: 3" untranslated region; 5" UTR: 5" untranslated region;
asRNA: Antisense small RNA; IG-RNA: Intergenic small RNA;
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