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Marburg virus, the prototype of the family Filoviridae, differs genetically, serologically, and morphologically from Ebola
viruses. To better define the genetic variation within the species, VP35 and glycoprotein (GP) genes of representative human
isolates from four known episodes of Marburg virus hemorrhagic fever were analyzed. The percentage nucleotide differ-
ences in the GP gene coding regions of Marburg viruses (01-21%) was nearly equal to the percentage amino acid changes
(0-23%), while the percentage nucleotide differences in VP35 coding regions (0.3-20.9%) were higher than the percentage
amino acid changes (0.9-6.1%), indicating a greater number of nonsynonymous changes occurring in the GP gene. The higher
variation in the GP gene and the corresponding protein, especially those changes in the variable middle region of the GP,
suggests that the variability may be the result of responses to natural host pressures. Analysis of the GP gene open reading
frame shows a nonrandom distribution of nonsynonymous mutations that may indicate positive Darwinian selection is
operating within the variable region. A heptad repeat region and an adjoining predicted fusion peptide are found in the
C-terminal third of Marburg virus GPs, as has been previously shown for Ebola virus, and are similar to those found in
transmembrane glycoproteins of retroviruses, paramyxoviruses, coronaviruses, and influenza viruses. Comparative analyses
showed that there are two lineages within the Marburg virus species of filoviruses. The most recent isolate from Kenya (1987)
represents a separate genetic lineage within the Marburg virus species (21-23% amino acid difference). However, this
lineage likely does not represent a separate Marburg subtype, as the extent of divergence is less than that separating Ebola

virus subtypes.

INTRODUCTION

Marburg (MBG) viruses are nonsegmented, negative-
strand RNA viruses, and together with Ebola (EBO) vi-
ruses constitute the family Filoviridae (Jahrling et al.,
1995). Filoviruses can cause an extremely severe form of
hemorrhagic fever in humans and/or nonhuman primates
and are classified as Biosafety Level 4 agents (Centers
for Disease Control and Prevention, 1993; Feldmann et
al., 1996; Peters et al., 1996). The natural hosts have not
been identified, and thus the factors that influence their
evolution and ecology in the wild, and lead to human and
nonhuman primate infections, are unknown.

Recent molecular studies have shown that these RNA
viruses are similar in their genome organization and
mechanisms of replication, but represent genetically dis-
tinct viruses (Feldmann et al., 1992, 1996; Sanchez et al.,
1993, 1996; Peters et al., 1996; Georges-Courbot et al.,
1997; Volchkov et al., 1997). These differences are in
agreement with studies that have shown a complete lack
of serologic cross-reactivity, contrasting structural pro-
tein profiles, and differences in virion morphology be-
tween MBG and EBO viruses (Kiley et al., 1988; Ksiazek
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et al,, 1992; Peters et al., 1993, 1996; Feldmann et al.,
1994, 1996; Geisbert et al., 1996). Isolates of MBG virus
have tended to be fairly homogeneous, whereas EBO
virus isolates appear more heterogeneous; four different
EBO virus subtypes have been identified thus far
(Sanchez et al., 1996). The heterogeneity of EBO viruses
has also been demonstrated at the genetic level through
sequence analysis of their glycoprotein (GP) genes
(Sanchez et al., 1996). The nucleotide sequence differ-
ences between EBO subtypes varies from 37 to 41%
(compared with a 55% difference between EBO and MBG
viruses). For both MBG and EBO viruses, the GP genes
are positioned fourth (3" to 5’) in a series of seven
linearly arranged genes and are the only genes to en-
code viral glycoproteins. The GP genes of EBO viruses
were shown to have an unusual organization and to
encode a nonstructural secreted glycoprotein (SGP) as
the primary gene product in a single frame and the
structural GP in two frames (expressed through tran-
scriptional editing) (Volchkov et al., 1995; Sanchez et al.,
1996). This unusual organization is absent in the GP
genes of previously analyzed MBG viruses (Will et al.,
1993; Bukreyev et al., 1995).

The VP35 genes of these viruses may also serve as a
potential region of variability in MBG strains, since their
gene products have been previously reported to differ in
rates of migration in denaturing gels (Feldmann et al.,
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1994). The filovirus VP35 gene product is a structural
protein that is not membrane associated and probably
functions as a cofactor in the transcription complex. Its
position (second) in the genome makes it analogous to
the P proteins of paramyxoviruses and rhabdoviruses,
but its function has not been conclusively identified.
Analysis of this gene may supply additional information
about the evolution of MBG virus, since environmental
constraints on the biology of the VP35 protein are likely
to be distinct from those affecting the GP.

To better define the genetic variation within MBG vi-
ruses, we have analyzed representative strains from the
four known episodes of MBG virus hemorrhagic fever in
humans. We have examined the GP and VP35 genes of
these MBG virus isolates to expand on earlier phyloge-
netic analyses, which primarily focused on EBO viruses
(Sanchez et al., 1996; Georges-Courbot et al., 1997;
Volchkov et al., 1997). We present here the results of
these studies and a discussion of the evolution of filovi-
ruses.

MATERIAL AND METHODS

Viruses and passage histories

The MBG virus isolates used to generate sequence
information for this study are as follows: (1) an isolate
from the original 1967 outbreak from Marburg, Germany,
strain M/Germany/Marburg/1967/Ratayczak (RYC strain)
(Siegert et al., 1967; Feldmann et al., 1994), passaged
three times in Vero E6 cells (ATCC CRL 1586); (2) a 1975
isolate from a South African case, strain M/S. Africa/
Johannesburg/1975/0zolin (OZO strain) (Gear et al., 1975;
Kiley et al., 1988), passaged three times in Vero 76 cells
and four times in Vero E6 cells; (3) a 1987 isolate from
Kenya, strain M/Kenya/Kitum Cave/1987/Ravn (RAV
strain) (Johnson et al., 1997), passaged once in SW13
cells and three times in Vero E6 cells. Sequence infor-
mation for the M/Germany/Marburg/1967/Popp (POP
strain; passaged nine times in guinea pigs) and M/Ke-
nya/Nairobi/1980/Musoke strains (MUS strains; isolated,
plaque-purified three times, and passaged two to three
times thereafter in Vero E6 cells) of MBG virus, and the
E/Zaire/Yambuku/1976/057935/Mayinga  strain  (MAY
strain; isolated, plaque-picked three times, and pas-
saged two to four times thereafter in Vero E6 cells) of
EBO virus (Zaire species) were previously determined or
obtained from GenBank (Bukreyev et al., 1995; Feldmann
et al., 1992; Sanchez et al., 1993). Figure 1 shows the
geographical locations where infections by the above
viruses are believed to have originated.

Purification of viral RNA and RT-PCR

Virions were purified from clarified supernatant fluids
by pelleting through a 20% sucrose cushion (Feldmann et
al.,, 1994), and genomic RNA was extracted as described

Yambuku, Lake Kyoga,
Zaire ‘76  Uganda ‘67
(EBO) (POP & RYC)

" Mount Elgon,
Kenya ‘87
(RAV)
\ Nzoia,
Kenya ‘80
(MuUs)

- Zimbabwe ‘75
(0Z0)

* Marburg virus
* Ebola virus (Zaire)
T

FIG. 1 African locations where isolated strains of MBG viruses and
a Zaire species of EBO (used for phylogenetic analyses) are believed to
have originated. The first identified outbreak of MBG virus disease in
humans (1967) was traced to infected monkeys trapped near Lake
Kyoga, Uganda, which were shipped to Germany (POP and RYC strains)
and the former Yugoslavia (Siegert et al., 1967). The second outbreak
began when an Australian man became infected while traveling
through what is now Zimbabwe, and who was later treated in Johan-
nesburg, South Africa, where transmission led to two secondary cases
(Gear et al., 1975). The last two episodes occurred in Kenya in 1980 and
1987. The first of these is believed to have originated when a French-
man working in Nzoia became infected and was transported to Nairobi
for treatment, where he died and transmitted the disease to a Nigerian
physician (MUS strain) (Smith et al., 1982). The last episode (1987)
involved a 15-year-old Danish boy (RAV strain) who was staying in
Kisumu (located on the shore of Lake Victoria), but who visited and
explored Kitum Cave in Mount Elgon 9 days prior to disease onset
(Johnson et al., 1997). Yambuku, Zaire is the site where the first iden-
tified outbreak of human disease caused by the Zaire species of Ebola
virus occurred in 1976 (MAY strain).

elsewhere (Sanchez and Kiley, 1987) or with a commer-
cial kit (RNaid Kit, BIO 101, Inc.). For examination of VP35
gene sequences, first-strand DNA synthesis was per-
formed using the primer 5'-GCCTAGATGATAACAGATAT
(plus-sense within NP gene and near polyadenylation
site) and random primers (hexamer) as previously de-
scribed (Sanchez et al., 1989). DNA produced in reverse
transcription (RT) reactions were diluted 1:50 in water
and used as template in polymerase chain reaction
(PCR) assays. For amplification of the entire VP35 genes,
either the primer 5'-CTGTCTCAGCTAAGGAGCTTCA or
5'-ATGATTCATATTATAAGGTAC (NP gene, plus-sense)
and primer 5'-GACGGTACCTTCCAGTAAAAGAACAC-
TACGA were used with appropriate internal primers in
PCR assays. Amplification was performed by mixing 10
wl of 10X reaction buffer (Boerhinger Mannheim), 8 .l of
2.5 mM dNTPs (Promega), 3.5 pl of each primer (100
ng/ml), 2 ul of DNA template, 1 pl Tag DNA polymerase
(Boehringer Mannheim), and water to a final volume of
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100 wl. Thermocycling was performed as follows: 40
cycles of denaturing at 94°C for 1 min (except for the first
cycle, where the time was increased to 5 min), annealing
at 50°C for 1 min, and then extension at 72°C for 15 to
3 min, followed by a final extension at 72°C for 5 min and
cooling to 4°C.

Due to the length of the GP open reading frame (ORF)
and the variation seen in the MBG strains, multiple
primer sets were required to generate overlapping PCR
products that spanned the coding region. As sequences
were generated, specific primers were synthesized to
amplify GP ORF regions. The primers 5" TGAAGAACAT-
TAATTGCTGGGTAA and 5'-CCTAATCATTACACATTTA-
ACGTT correspond to plus-sense and minus-sense se-
guences flanking the MBG ORF (close to the N-terminal
and C-terminal ends, respectively) and were used with
internal primers to amplify the ends of the ORF. The
primer 5’-CCGGTACC(T)35, which binds to poly(A), was
used with plus-sense primers to amplify sequences
within the ORF to the 3’-end of the GP mRNA. First-
strand cDNA synthesis reactions, using genomic or
MRNA preparations as template, were performed either
as previously described (Sanchez et al., 1989), or using a
commercial kit (SuperScript Il, Life Technologies, GIBCO
BRL). RT-PCR amplification assays used commercial kits
and reagents (Boehringer Mannheim and Promega).
Thermocycling was performed by denaturing at 94°C for
1 min (all cycles), and for the first 3 cycles annealing
occurred at 37°C for 30 s with extension at 72°C for 2
min, followed by 30 cycles of annealing at 45, 50, or 55°C
for 30 s and extension for 1 min at 72°C. Reactions were
cooled to 4°C at the end of thermocycling.

Sequence analysis

Virus sequences were determined by direct sequenc-
ing of RT-PCR products, using an automated nonisotopic
method (dye-terminator cycle sequencing; Perkin-
Elmer). PCR products were isolated from TAE-agarose
gels, using a commercial extraction kit (QIAEX II, Qiagen
Inc.), eluted into 50 .l of water, and used in sequencing
reactions. ABI 373 and 377 automated sequencers were
used to derive sequence information and generate se-
quence files. Computer-assisted nucleic acid and pre-
dicted amino acid sequence analyses were performed
as previously described (Sanchez et al., 1996). Phyloge-
netic analyses of nucleotide alignments were performed
using the PAUP software, Version 311 (developed by
D. L. Swofford), run on a Power Macintosh 8100/110

(Apple).

RESULTS

The entire VP35 gene and the coding region of the GP
gene sequences of the RYC, OZO, and RAV strains of
MBG virus were successfully amplified and sequenced.
Phylogenetic analyses were performed using the coding

regions of these genes, and the corresponding ORFs of
the MAY strain of EBO virus were included to provide an
outgroup. Figure 2 shows phylogenetic trees based on
these nucleotide sequences. Both trees show a similar
topology in that the EBO taxon is well separated from the
MBG taxa and that the most recent MBG virus isolate
(RAV) appears distinct from the other four MBG strains
and is extremely well supported by bootstrap values
(Felsenstein, 1993). Relationships within the POP, RYC,
MUS, and OZO clade in the VP35 tree are not fully
resolved, as evidenced by poor bootstrap support for the
node connecting MUS and OZO. A clearer relationship of
these viruses is seen when GP ORF sequences are
analyzed, with the 1980 MUS strain showing a greater
similarity to the 1967 viruses than does the 1975 OZO
strain. The same phylogenetic profile (as described
above) is seen when amino acid sequences are used in
maximum parsimony analysis (trees not shown), except
that branch lengths are shorter.

To the right of the trees in Fig. 2 are shown matrices of
percentage identity at the nucleotide (above diagonal)
and amino acid level (below diagonal) for each gene
ORF. For the VP35 gene, the nucleotide differences be-
tween the RAV and the other MBG virus strains is ~20—
21%, while the differences within the POP/RYC/MUS/
0OZO grouping are at most only 6% However,
corresponding comparisons using amino acid se-
guences show a decrease to ~6 and 3%, respectively.
Compared with EBO, both the nucleotide and the amino
acid sequences of the MBG strains differed by ~52-53%
and ~65%, respectively. Comparisons of GP ORF se-
guences showed a similar percentage nucleotide differ-
ence between RAV and the other MBG viruses (~21-
22%), but the differences in amino acid sequences did
not decrease and instead stayed at the same approxi-
mate level as nucleotide differences (~22-23%). Within
the POP/RYC/MUS/OZO group, a difference of ~6-9% is
seen at the amino acid level. In comparison with EBO,
the MBG strains differed in the GP ORF nucleotide and
predicted amino acid sequences by ~54-55% (compa-
rable to VP35 ORF) and ~69% (4% greater than the VP35
amino acid sequence), respectively. These data indicate
that within the MBG strains and between MBG and EBO,
there is a greater variation in amino acid sequence for
the GP than for the VP35.

Alignments of the predicted VP35 and GP amino acid
sequences of the MBG and EBO viruses (used in phylo-
genetic analyses) were performed (Fig. 3). The VP35
alignment shows only three sites where there is variation
in two or more MBG strains, and amino acid changes are
primarily found from residues 27 to 184 (alignment num-
bers 46-204). In contrast, the middle of the GP alignment
shows the greatest variation and is flanked by long
conserved regions; the N-terminal region (signal se-
guence), however, does show a fair amount of diver-
gence. The central variable region shows two marked
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FIG. 2. Phylogeny of MBG viruses based on coding region nucleotide sequences. Phylogenetic analyses were performed using the VP35 and GP
gene ORFs of MBG virus strains (990 and 2046 bases in length, respectively), together with those of an EBO virus (MAY strain; 1023 and 2030 bases)
included as an outgroup. (A and B) Phylogenetic trees generated from VP35 and GP ORF sequences, respectively. Maximum parsimony (PAUP)
analyses using a weighting of 4:1 (transversion:transition) were used to generate trees (shown are the most parsimonious trees). Bars indicate
numbers of steps per unit length, and bootstrap values (percentage confidence values derived from 1000 replicates) are shown at branch points. Next
to the trees are matrices showing the percentage identity when nucleotide (above diagonal) and predicted amino acid (below diagonal) sequences
are aligned. VP35 and GP sequences for the RYC, OZO, and RAV strains of MBG have been deposited in GenBank (Accession Nos. AF005732,
AF005730, AF005731, AF005735, AF005733, and AF005734, respectively). The sequences for the POP and MUS strains of MBG and those of EBO were
derived from GenBank submissions 229337, 212132, and L11365, respectively.

boxes (totaling ~200 residues) where most of the diver-
gence in MBG sequences is located. The N-terminal-
most box corresponds to a similar variable region found
in the GPs of EBO virus species (EBO residues ~300-
500) (Sanchez et al., 1996). Cysteine residues conserved
in all the filoviruses are present in both proteins. Three
are found in the VP35, while the GP alignment contains
5 in the N-terminal third and 7 in the C-terminal third. The
highly conserved C-terminal ~180 residues contain a
sequence very similar to an immunosuppressive motif
that has been described for the P15 glycoprotein of
oncogenic retroviruses (Volchkov et al., 1992; Will et al.,
1993). This conserved sequence also partially overlaps
an alpha-helical heptad repeat region (4-3 hydrophobic
amino acids) (Chambers et al., 1990; Gallaher, 1996).
Immediately N-terminal to this helical region in all these
viruses are predicted fusion peptides (Gallaher, 1996).
The GP alignment also shows that potential glycosyla-
tion sites are partly conserved. There are 14 predicted

N-linked glycosylation sites that are found in all MBG
strains, over half of which are located in the two variable
boxes, and six sites are found in all MBG strains except
for RAV, again located in the variable boxes. Nine sites
are either unique to RAV or found in RAV and some of the
other MBG strains, with all but one located in the variable
boxes. These findings show that the central variable
region is the area where N-linked glycosylation seems to
be focused.

To more closely examine the evolutionary processes
that are driving MBG GP gene evolution, the synonymous
and nonsynonymous nucleotide substitutions in the GP
alignment were mapped at each codon (Fig. 4). Stop
codons were excluded from the analysis. Synonymous
substitutions were found to be distributed throughout the
GP gene though this pattern deviated from a random
binomial (Poisson) distribution due to the presence of
seven codons (humbers 107, 282, 358, 424, 448, 590, 611)
exhibiting three or more synonymous substitutions
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FIG. 3. Alignment of predicted (A) VP35 and (B) GP amino acid sequences. Dots indicate gaps inserted in the alignment. A consensus sequence
(plurality = 4 or more) is shown in the bottom lanes, with dashes indicating no consensus reached. Cysteine residues conserved in all sequences
are identified by asterisks under the consensus sequence, and predicted N-linked glycosylation sites (N-X-T/S) for all of the MBG virus strains are
double underlined. N-linked sites found in all MBG virus strains except for RAV are italicized and in boldface font, while those found in RAV and not
in all the other MBG strains are shown underlined. Two regions of the GP alignment that show a higher degree of variability are enclosed in boxes.
Near the C-terminus are a set of two heptad repeats (for EBO there is one uninterrupted repeat), marked by dashes and flanked by brackets, that
overlap a highly conserved immunosuppressive motif. Imnmediately N-terminal to this region is a predicted fusion peptide sequence (boldface text in

consensus with “+" underneath).

(0.01 < P < 0.025, x*> = 7.47, df = 2). The distribution of
nonsynonymous substitutions exhibited a much different
pattern with a strong deviation from a random binomial
distribution (P < 0.001, x*> = 79.52, df = 2). The majority
of nonsynonymous distributions clustered at the 5 end
of the GP gene ORF (codons 2 through 32) and in the
middle of the GP gene between codons 201 and 501 The
ratio of nonsynonymous to synonymous substitutions at
16 codons in this middle region exhibited a ratio =3, with
four exhibiting a ratio =4 (codons 267, 364, 370, 414). All
of these 16 codons were found to reside in the two most
divergent regions of the GP identified by the amino acid
alignment. Thus, the GP gene of MBG viruses exhibits a
strongly nonrandom distribution of nonsynonymous
changes and a number of sites are showing evidence of
selection for amino acid changes over silent substitu-
tions.

DISCUSSION

A phylogeny profile of the family Filoviridae has been
derived from GP gene coding sequences (Sanchez et al.,
1996). This phylogeny showed that EBO and MBG vi-
ruses represent very divergent lineages of filoviruses.
Within Ebola viruses there are four separate monophy-
letic lineages that differ from one another by approxi-

mately 37-40% at the nucleotide level. However, within
individual lineages, the variation in nucleotide sequence
has been shown to be less than 2%, indicating a remark-
able degree of stability over a 20-year period (Sanchez et
al., 1996; Georges-Courbot et al., 1997; Volchkov et al.,
1997; A. Sanchez, unpublished data). Our analyses of
MBG virus VP35 and GP gene sequences indicate a
somewhat different pattern for these filoviruses. The
most recent isolate, the RAV strain (1987), represents a
separate lineage of MBG virus, while the strains that
preceded it constitute another lineage. Phylogenetic
analyses using either VP35 or GP sequences clearly
demonstrate this distinction, but the phylogenetic rela-
tionship of the 1967 (POP & RYC), 1975 (OZO0), and 1980
(MUS) isolates was resolved for GP sequences only. It is
interesting to note that the Zimbabwe isolate (0ZO) is
genetically closer to the Uganda (RYC & POP) and one
Kenya strain (MUS) than is the most recent Kenyan iso-
late (RAV). This geographical discordance (~600-700 vs
100 km) may be explained if the natural host is a migra-
tory species with a large range. Alternatively, this geo-
graphical inconsistency may merely reflect a divergence
of the RAV strain following coevolution with a distinct
natural host.

Differences in the nucleotide sequence of the GP gene
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ORFs of MBG viruses (01-21%) were comparable to the
percentage amino acid changes (0-23%). In contrast, the
nucleotide differences in VP35 ORFs (0.3-20.9%) were
higher than amino acid changes (0.9-6.1%), which indi-
cates that the number of nonsynonymous changes is
greater in the GP gene than in the VP35 gene. This
finding may indicate that the variation in the GP genes of
MBG viruses are changes that have been selected for
and have not occurred as purely random events. The
greater variation in the MBG GP gene versus the VP35
gene is not inconsistent with the variation seen between
glycoprotein and P genes of other nonsegmented nega-
tive-strand RNA viruses. It was previously shown that

there is more variation in the GP gene of the POP and
MUS strains of MBG virus compared with other genes
(Bukreyev et al., 1995). In addition, alignments of MBG or
EBO GP amino acid sequences show that the middle
portion of this molecule can be very divergent and is the
primary site for N- and O-linked glycosylation (Sanchez
etal., 1993). It is possible that this variable region reflects
the adaptation of filoviruses as they responded to natural
host selective pressures. During this time, GP may have
been under greater selective pressure than other virus
proteins, possibly from phenotypic changes in cell re-
ceptors or the immune system of the natural host.
According to the theory of positive Darwinian selec-
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FIG. 4. Distribution of synonymous (A) and nonsynonymous (B) substitutions in the codons of MBG GP genes (minus stop codons). Bars above plots
indicate those sequences encoding the variable regions identified in the GP amino acid alignment (Fig. 3B).

tion, nonsynonymous substitutions that cause adaptive
amino acid changes are preferred over silent synony-
mous substitutions (Endo et al., 1996). In the immunoex-
posed proteins of viral pathogens, the pressures of the
host immune system are thought to drive positive selec-
tion of epitopes. The resulting antigenic polymorphism
provides a mechanism for evading the immune re-
sponse. Viral proteins thought to be evolving by positive
Darwinian selection under immune pressure include the
hemagglutinin gene of influenza and the env gene of
human immunodeficiency virus (Fitch et al, 1991;
Yamaguchi and Gojobori, 1997). The strongly nonrandom
distribution of nonsynonymous changes in the MBG GP
gene and presence of codons exhibiting high ratios of
nonsynonymous/synonymous substitutions strongly sug-
gest that the GP is undergoing positive Darwinian selec-
tion. Mapping of epitopes within the MBG GP that are
recognized by the vertebrate immune response will be
necessary to confirm or refute this hypothesis.

Processes in tissue culture or experimentally infected
animals that lead to changes in virus phenotypes,
whether through pressures from immune responses or
some other selective mechanism, may be different from
those acting in the natural host. There are differences
between the POP strain of MBG virus, which was derived
from a virus stock that had been passaged nine times in
guinea pigs (Bukreyev et al., 1995) and the RYC strain
that we sequenced (both derived from the 1967 outbreak
in Marburg, Germany). It is likely that passaging in
guinea pigs has led to the selection of a modified strain,
which is phenotypically altered in the VP35 protein (three
amino acid changes) from the initial virus, but has not led
to a change in the GP amino acid sequence.

Depending on the area of the predicted amino acid
sequences of the GPs of different filoviruses compared,
they can appear either very conserved or extremely vari-
able. The C- and N-terminal regions tend to be generally
hydrophobic and contain long regions of conserved res-
idues, whose functions include a signal sequence for
directing the protein into the endoplasmic reticulum, and
a transmembrane sequence to help anchor the molecule
in the virion envelope. These regions are also likely to
function in the formation of virion spike structures, since
they contain most of the highly conserved cysteine res-
idues. The central, hydrophilic, and variable region of the
GP is a platform for the addition of glycans and is pre-
sumed to project outward from the virion. The predicted
amount of N- and O-linked carbohydrate is considerable,
accounting for a third to half of the molecular weight, and
likely has a role in the resistance of the virion to neutral-
ization by specific antibody. The positioning of a pre-
dicted fusion peptide adjoining heptad repeats N-termi-
nal to the transmembrane anchor in filovirus GPs, initially
shown for Ebola virus by Gallaher (1996), is similar to
motifs seen in the transmembrane glycoproteins of ret-
roviruses, paramyxoviruses, coronaviruses, and influ-
enza viruses (Chambers et al., 1990; Lambert et al., 1996;
Chan et al., 1997). The structural similarity of MBG and
EBO GPs argues for a common mechanism by which
filovirus GPs form trimers (Feldmann et al., 1991) and
mediate virus entry into host cells. This shared mecha-
nism of glycoprotein structure and function, especially
with respect to filoviruses and oncogenic retroviruses
(Volchkov et al,, 1992; Sanchez et al., 1996; Gallaher,
1996), points to either a common ancestral gene se-
guence or convergent evolution.
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The current taxonomy of the family Filoviridae
places MBG and EBO viruses into a single genus,
Filovirus. However, it is apparent from our phyloge-
netic analyses, together with prior studies that de-
scribed important differences in the biology of these
viruses (Kiley et al., 1988; Feldmann et al., 1992, 1994;
Sanchez et al., 1993, 1996; Volchkov et al., 1995), that
EBO and MBG viruses can readily be classified into
separate genera. In our opinion, the four EBO sub-
types should be considered as separate species, and
MBG strains should all be placed in a single species.
An earlier study of the RAV strain of MBG virus sug-
gested that this virus represented a new subtype,
comparable to that seen with EBO subtypes (Johnson
et al., 1997). Our GP gene finding that RAV differed
~21-23% from that of the other MBG strains (at both
nucleotide and amino acid level) is slightly more than
half that found between EBO species. We believe that
this level of difference is insufficient to consider RAV
as a separate MBG species, but is sufficient to be
regarded as a subspecies or variant. To better char-
acterize the MBG lineage, it will be necessary to
analyze additional novel isolates. However, as with
EBO, identification of such viruses has relied on rare
outbreaks in human and nonhuman primates, although
this obstacle should be greatly reduced when the
natural reservoir is eventually determined.
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