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Abstract: Differentiation between transient osteoporosis (TOH) and avascular necrosis (AVN) of
the hip is a longstanding challenge in musculoskeletal radiology. The purpose of this study was to
utilize MRI-based radiomics and machine learning (ML) for accurate differentiation between the two
entities. A total of 109 hips with TOH and 104 hips with AVN were retrospectively included. Femoral
heads and necks with segmented radiomics features were extracted. Three ML classifiers (XGboost,
CatBoost and SVM) using 38 relevant radiomics features were trained on 70% and validated on
30% of the dataset. ML performance was compared to two musculoskeletal radiologists, a general
radiologist and two radiology residents. XGboost achieved the best performance with an area under
the curve (AUC) of 93.7% (95% CI from 87.7 to 99.8%) among ML models. MSK radiologists achieved
an AUC of 90.6% (95% CI from 86.7% to 94.5%) and 88.3% (95% CI from 84% to 92.7%), respectively,
similar to residents. The general radiologist achieved an AUC of 84.5% (95% CI from 80% to 89%),
significantly lower than of XGboost (p = 0.017). In conclusion, radiomics-based ML achieved a
performance similar to MSK radiologists and significantly higher compared to general radiologists in
differentiating between TOH and AVN.

Keywords: hip; avascular necrosis of bone; osteoporosis; machine learning; artificial intelligence;
transient osteoporosis; radiomics; XGboost

1. Introduction

Transient osteoporosis (TOH) and avascular necrosis (AVN) of the hip are two disease
entities that have caused great confusion in orthopedic and radiologic literature. Both
entities affect the bone marrow of the proximal femur, with TOH causing extensive bone
marrow edema (BME) [1,2] and AVN causing necrosis which can manifest with a variety of
findings, including BME appearing at later stages of the disease [3,4]. Both diseases can be
accompanied by subchondral fractures of different types and can lead to articular collapse
if left untreated [2,4,5]. Accurate differentiation between them is greatly dependent on
MRI and is of utmost importance since it can either lead to the adoption of conservative
treatment for TOH or surgical treatment for AVN. Inaccurate diagnosis may, therefore,
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have a great impact on the treatment planning since erroneous diagnosis of AVN over TOH
can lead to unnecessary surgery.

Confusion has been caused by early publications which suggested a common patho-
physiology of the two entities mainly because both can be associated upon MRI with
BME, subchondral fractures and articular collapse in advanced disease. Based on these,
AVN was thought to be a progression of TOH, causing great confusion for radiologists
and orthopedic surgeons [6–8]. Nonetheless, current data indicate no pathophysiological
similarity between the two diseases, since large cohort results have shown no progression
of TOH to AVN [2,5,9], and no microscopic similarities between them [10]. It is also now
clear that subchondral fractures in TOH have a completely different morphology compared
to the “band-like” and “crescent” sign of AVN. Importantly, TOH has a benign course with
complete recovery with only weightbearing protection and painkillers, whereas AVN is
not self-limited and requires surgical treatment [2,5,6]. Despite the growing evidence that
TOH and AVN should be considered as different disorders, confusion between the two
still exists [11,12] and their diagnosis still requires a combination of clinical and imaging
features and significant experience in musculoskeletal (MSK) imaging.

Radiomics has emerged as a method for quantitative high-precision image analysis
based on high-throughput feature extraction, coupled with advanced machine learning
algorithms. Image features invisible to the human eye are extracted and analyzed for
comprehensive appraisal of disease states and the identification of data patterns that allow
accurate disease diagnosis and monitoring [13,14]. Radiomics attempts to overcome the
subjectivity and variability related to image interpretation from radiologists by utilizing
multidimensional objective data mathematically derived from images and employing
artificial intelligence to analyze the data in an intuitive manner [15]. Radiomics has found
limited application in MSK disorders such as the prediction of femoral osteoporosis [16]
and the differentiation between low- and high-grade chondrosarcomas [17]. It has also
been found to be more accurate than radiologists in distinguishing soft-tissue lipomas from
liposarcomas [18] and differentiating between types of sacral tumors [19]. The suitability
of radiomics in analyzing bone marrow lesions has been also demonstrated recently by
achieving better accuracy than inexperienced radiologists in differentiating bone islands
from osteoblastic metastases [20].

Herein, we present the development of radiomics-based machine learning algorithms
that aim to differentiate between TOH and AVN. The aim of our study was to extract
radiomics features from MR images of patients with both diseases and develop three
machine learning models to differentiate between them. The presented machine learning
modeling process was based on multivendor images, thus increasing its applicability to
MRI examinations from any center. Finally, the performance of developed algorithms
was compared to radiologists and radiology residents at different levels of training in an
attempt to demonstrate the value of the developed classifiers in the diagnosis of hip bone
marrow disease.

2. Materials and Methods
2.1. Patients

A total of 213 hips were retrospectively included in this study. The dataset com-
prised 109 consecutive hips with TOH (107 patients) and 104 consecutive hips with AVN
(67 patients), referred to the bone marrow imaging specialty referral clinic of a university
hospital between July 2014 and March 2020. Patients (n = 106) with tumors, prior trauma,
infection, inflammatory arthropathies, follow-up less than 1 year or surgery on the hip
of interest were excluded from the study (Figure 1). The study was performed according
to the Declaration of Helsinki, all patients have provided informed consent to undergo
the examination and the study has received institutional review board approval (Ref. No.
360/08/29-04-2020).
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Figure 1. Flow diagram describing the formation of study groups for radiomics analysis and machine 
learning model development. TOH: Transient Osteoporosis of the Hip; AVN: Avascular Necrosis; ML: 
Machine Learning (created with BioRender.com, date last accessed: 15 September 2021). 

2.2. MR Imaging and Ground Truth Diagnosis 
For the purposes of initial diagnosis and differentiation between TOH and AVN, MRI 

findings were evaluated in combination with clinical data including (a) potential risk 
factors predisposing to AVN and (b) a history of acute or insidious onset of pain extending 
to the groin and/or thigh indicating TOH compared to AVN, respectively. All TOH 
patients were followed up for ≥1 year to document spontaneous resolution of symptoms 
solely with conservative measures, as per routine clinical practice. MRI examinations 
included in this study were performed in a variety of centers across the country utilizing 
1.5 or 3T MRI machines of multiple vendors. A minimum of (a) coronal T1-w, (b) coronal 
short tau inversion recovery (STIR) sequences, (c) axial fat suppressed PD/T2-w and (d) a 
high-resolution 3D gradient echo sequence of the affected hip were assessed for each 
patient. The aforementioned sequences are part of the routine hip protocol in our 
institution, suitable to evaluate the whole range of hip pathology. In cases of TOH and 
AVN, only 2D sequences were necessary for the diagnosis. In case the MRI protocol of the 
initial examination was deemed incomplete, imaging was repeated in-house with a 1.5 T 
MR scanner (Vision/Sonata, Siemens, Erlangen). All data were evaluated by a senior 
academic radiologist with 35 years of experience in bone marrow imaging, who evaluated 
clinical data in conjunction with imaging data. Ground truth diagnosis was made by 
assessing all available MRI sequences, clinical data at presentation and follow-up, in 
consensus with the referring orthopedic surgeon and the diagnosis was recorded. The 
MRI diagnosis of TOH was based on the presence of bone marrow edema, with or without 

Figure 1. Flow diagram describing the formation of study groups for radiomics analysis and machine
learning model development. TOH: Transient Osteoporosis of the Hip; AVN: Avascular Necrosis;
ML: Machine Learning (created with BioRender.com, date last accessed: 15 September 2021).

2.2. MR Imaging and Ground Truth Diagnosis

For the purposes of initial diagnosis and differentiation between TOH and AVN,
MRI findings were evaluated in combination with clinical data including (a) potential risk
factors predisposing to AVN and (b) a history of acute or insidious onset of pain extending
to the groin and/or thigh indicating TOH compared to AVN, respectively. All TOH patients
were followed up for ≥1 year to document spontaneous resolution of symptoms solely
with conservative measures, as per routine clinical practice. MRI examinations included
in this study were performed in a variety of centers across the country utilizing 1.5 or
3T MRI machines of multiple vendors. A minimum of (a) coronal T1-w, (b) coronal short
tau inversion recovery (STIR) sequences, (c) axial fat suppressed PD/T2-w and (d) a high-
resolution 3D gradient echo sequence of the affected hip were assessed for each patient.
The aforementioned sequences are part of the routine hip protocol in our institution,
suitable to evaluate the whole range of hip pathology. In cases of TOH and AVN, only
2D sequences were necessary for the diagnosis. In case the MRI protocol of the initial
examination was deemed incomplete, imaging was repeated in-house with a 1.5 T MR
scanner (Vision/Sonata, Siemens, Erlangen). All data were evaluated by a senior academic
radiologist with 35 years of experience in bone marrow imaging, who evaluated clinical
data in conjunction with imaging data. Ground truth diagnosis was made by assessing all
available MRI sequences, clinical data at presentation and follow-up, in consensus with the
referring orthopedic surgeon and the diagnosis was recorded. The MRI diagnosis of TOH
was based on the presence of bone marrow edema, with or without irregular low signal
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intensity linear structures, deeply located in the subchondral bone [1,2,5]. The presence of a
“sparing” sign, joint effusion, synovitis and periarticular soft tissue edema were supportive
of the diagnosis (5). The MRI diagnosis of AVN was based primarily on the presence
of the “band-like” sign demonstrated with low signal intensity on T1-w MR images and
high signal intensity, also known as “single line” sign, on fluid sensitive sequences [1,4,21].
The “double line” sign, originally described in non-fat-suppressed T2-w MR images, is
no longer used as it represents a chemical shift artifact [21]. The presence of subchondral
fracture was demonstrated with high signal intensity on fluid-sensitive sequences and
BME, suggesting an advanced stage of the disease [21]. No alternative method for ground
truth establishment exists in clinical practice. For the purposes of radiomics analysis and
machine learning model development, mid-coronal STIR MR images through the femoral
head and neck were utilized. STIR images suffice for the diagnosis of both AVN and TOH
in everyday practice, since fluid-sensitive sequences represent the gold standard for the
study of bone marrow edema.

Images used for machine learning model development were also evaluated by radiol-
ogists at various levels of training, with and without a special interest in MSK radiology, to
compare the ability of a variety of readers to differentiate between the two disorders. In
order to capture the whole spectrum of reader experience, images used for model devel-
opment were also independently reviewed by two fellowship-trained MSK radiologists
(E.E.V. and K.S. with 7 and 5 years of MSK experience, respectively), a 4th (I.S.) and a 5th
(G.A.K.) year radiology resident with a special interest in MSK radiology and a general
radiologist (N.M.). All readers were presented with the same images (randomly shuffled)
and were blinded to the ground truth and the performance of machine learning algorithms.
Cases where no consensus could be reached by all three senior MSK-trained observers (K.S.,
E.E.V. and G.A.K.) were considered as the most complicated and were used for further
benchmarking of the developed machine learning method.

2.3. Radiomics Analysis and Machine Learning

Femoral heads and necks were manually segmented by a radiology resident with
10 years of experience in hip MRI research, with 3D Slicer (v 4.11 for Windows, https:
//slicer.org, date last accessed: 15 September 2021). In order to achieve gray level harmo-
nization across STIR images from various scanners, histogram normalization and a fixed
bin width were used according to the recommendations of PyRadiomics for MRI-based
feature extraction (https://pyradiomics.readthedocs.io, date last accessed: 15 Septem-
ber 2021). Voxel spacing standardization was achieved by resampling to a voxel size of
1 × 1 × 1 mm and 849 radiomics features were extracted from the defined ROIs including
original, wavelet and Laplacian of Gaussian filtered values. Radiomics features were
scaled (RFscaled = RF−µoRF

SDRF
, µ: mean, SDRF: standard deviation), multicollinearities were

reduced by removing highly correlated features (Pearson correlation > 0.7) and feature
selection was performed with the used of the Boruta feature selection algorithm with a
cutoff set at p < 0.01, to enable more robust machine learning model development. Boruta
is a random forest-based feature selection method which has been shown to perform better
in high-dimensional datasets than alternative common algorithms [22,23]. Boruta selects
features useful for discriminating between the two conditions, eliminating all irrelevant
features which could lead to model overfitting as previously described [24,25].

The resulting curated radiomics dataset was used to build three machine learning
classifiers to discriminate between TOH and AVN. The study was performed according to
the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) guidelines [26]. All
classifiers were built with the use of the R programming language (v. 4.03, https://www.
R-project.org/, date last accessed: 15 September 2021) by training two advanced gradient
boosting algorithms, XGboost and CatBoost, as well as a support vector machine (SVM)
model, as implemented in the packages “xgboost”, “catboost” and “e1071”, respectively.
The dataset of 213 images (109 hips with TOH and 104 with AVN) was split for training and
testing with a ratio of 70:30 (training:testing dataset) (Figure 1). Machine learning classifiers

https://slicer.org
https://slicer.org
https://pyradiomics.readthedocs.io
https://www.R-project.org/
https://www.R-project.org/
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were developed with 10-fold cross-validation in the training dataset and hyperparameter
tuning was performed with the use of random search. The testing dataset served as an
external validation set, since the MRI examinations were collected from multiple scanners
at different centers, ensuring that our models are not center specific. The pipeline for
radiomics and machine learning analysis is described in Figure 2.
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Figure 2. Computational pipeline for radiomics analysis and machine learning model development.
The process starts with image acquisition and segmentation of the femoral head and neck (1) followed
by radiomics analysis (2) consisting of feature extraction and data preprocessing in preparation for
subsequent model development (3). Three machine learning algorithms (XGboost, CatBoost and
SVM) were trained and validated with multivendor data and their performance was compared to
that of expert readers. TOH: Transient Osteoporosis of the Hip; AVN: Avascular Necrosis; STIR: Short
Tau Inversion Recovery; LoG: Laplacian of Gaussian; SVM: Support Vector Machine (created with
BioRender.com, date last accessed: 15 September 2021).

Extreme gradient boosting (XGboost) is considered the most successful algorithm
for the classification of tabular data such as radiomics. XGboost is a tree-based method
which builds an ensemble of classification trees. At each training step, a new random
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tree is created and a model is added to reduce the error of the already present trees.
Stochastic gradient descent is used to minimize the loss when adding each new tree.
XGboost is considered the most successful machine learning algorithm, winning the most
machine learning competitions using tabular data. It offers faster execution speed and
optimal accuracy to other algorithms [27,28]. Most importantly, randomization techniques
and regularization are implemented in XGboost to avoid overfitting, rendering XGboost
extremely lucrative in studies with small sample sizes. In addition, XGboost scales well
with computer resources, adapting to the available hardware. For all these reasons, XGboost
was our first choice combining all the desirable advantages required in further clinical or
commercial distribution of our algorithm [28,29]. CatBoost is a newer variant of gradient
boosting algorithms, which has the ability to handle both categorical and numerical data
equally well and is thought to achieve optimal execution speeds, maximum accuracy and
minimal overfitting [30]. Therefore, CatBoost was our second choice after XGboost since
it is one of the most advanced gradient boosting algorithms with clear advantages in the
case of clinical or commercial distribution of our algorithm. Support vector machine (SVM)
is one of the traditional but still relevant supervised machine learning methods which
finds the optimal separating margin (hyperplane) between each pair of clinical classes.
SVM performs well in a wide range of classification problems [31]. Even though XGboost
is known to outperform SVM in most cases of radiomics data, SVM has been widely
used in radiomics studies, achieving acceptable results [32,33],. Therefore, comparison of
our results with the results of SVM can offer a significant comparison to other published
methodologies and traditional machine learning methods.

2.4. Statistical Analysis

Descriptive statistics were used to analyze patient demographics, presented as fre-
quencies and mean ± standard deviation (SD). Sensitivity, specificity, positive predictive
value (PPV) and negative predictive value (NPV) were calculated for each classifier and ex-
pert reader for the detection of AVN against TOH. Receiver operating characteristic (ROC)
curves were constructed with the use of the pROC R package and classifier performance
was assessed with the respective area under the curve (AUC) and 95% confidence intervals
for the AUC calculated by bootstrapping. Expert reader performance (AUC) was compared
to the best performing classifier with the use of DeLong’s method [34] and the respective
ROC curves were plotted together. Statistical analysis was performed with the use of
R (v. 4.03, https://www.R-project.org/, date last accessed: 15 September 2021) and the
non-parametric Mann–Whitney U test was used to compare the ages of patients between
the two groups. Significance was defined with a p-value lower than a = 0.05.

3. Results
3.1. Patient Demographics

The mean age of patients with AVN was 43.74 ± 14.77 years, which did not signif-
icantly differ compared to the mean age of patients with TOH, which was found to be
45.77 ± 10.3 years (p = 0.464). A total of 94 right and 119 left hips of 113 male and 61 female
patients were included in the study (Table 1).

Table 1. Patient demographics.

Total AVN Hips TOH Hips

Number of hips 213 104 109
Age 44.76 ± 12.53 years 43.74 ± 14.77 years 45.77 ± 10.3 years
Side 94R–119L 56L–48R 63L–46R
Sex * 61F–113M 38F–29M 23F–84M

*: number of patients; AVN: avascular necrosis; TOH: transient osteoporosis of the hip; F: female; M: male;
R: right; L: left.

https://www.R-project.org/
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3.2. Radiomics Analysis and Machine Learning Model Development

Following data scaling and collinearity correction, Boruta was used to extract a sub-
set of 38 radiomics features from the initial 849 feature dataset, consisting of 31 wavelet
and seven original features. This set of 38 features was used for subsequent machine
learning model development (Figure 3). XGboost achieved the best performance in dis-
criminating between AVN and TOH with an AUC of 93.7% (95% CI from 87.7 to 99.8%),
whereas CatBoost achieved slightly lower performance with an AUC of 92.1% (95% CI from
85.4 to 98.8%) and SVM achieved the lowest AUC of 87.4% (95% CI from 79.1 to 95.6%)
(Figure 4 and Table 2). Given the superior performance of XGboost, it was utilized to
identify radiomics features that play an important role in discriminating between the two
conditions. Thirty one out of 38 features were found to contribute to model performance.
However, the wavelet filtered maximum, short-run emphasis and entropy were found to
be the three features (cluster 2 in Figure 5) with the highest importance contributing to the
differentiation between the two conditions. The majority of important features (26/31) used
by XGboost to accurately classify MR images were derived from wavelet decompositions
of the original images (Figure 5). Performance of all three algorithms in the training set
reached an AUC of 100%. The fact that the independent test set had similar performance,
the use of early stopping in XGboost training and the fact that log-loss in the train and
validation set continued to decline until the final iteration of the models ensured that our
models did not overfit.
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Figure 3. Identification of important features with the use of Boruta feature selection. Following collinearity correction and
scaling, Boruta was applied as an artificial intelligence algorithm to select relevant features for unbiased development of
machine learning classifiers. The Z-score boxplot presents rejected (red), tentative (yellow) and accepted (green) features.
p < 0.01 was used as a cutoff for the selection of accepted features. Blue boxes represent Z-scores of shadow features acting
as internal controls for the selection of important variables. Subsequent machine learning was performed using accepted
(green) features.
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Table 2. Performance of the three machine learning algorithms.

Performance Measure XGB CB SVM

AUC (95% CI) 93.74% (87.7–99.8%) 92.1% (85.4–98.8%) 87.4% (79.1–95.6%)
Sensitivity 93.55% 90.32% 83.87%
Specificity 93.94% 93.94% 90.91%

PPV 93.55% 93.33% 89.66%
NPV 93.94% 91.18% 85.71%

p-value <0.001

AUC: Area Under the Curve; CI: Confidence interval; XGB:XGboost; CB: CatBoost; SVM: Support Vector Machines; PPV: positive predictive
value; NPV: negative predictive value.
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Figure 5. Radiomics features identified as important for the performance of XGboost. Important features belong to
two clusters based on their degree of importance. Cluster 2 contains three features which represent the most important
determinants of XGboost performance in differentiating between TOH and AVN.
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3.3. Comparison of Machine Learning to Radiologists

In order to appreciate the value of the proposed method, the best performing algorithm
(XGboost) was compared to expert readers. Given the difficulty in differentiating between
the two entities, radiologists at various levels of training were selected to participate in
the study. The highest performance was achieved by one of the two MSK radiologists
who achieved an AUC of 90.6% (95% CI from 86.7% to 94.5%, p < 0.001) with a sensitivity
of 89.42% and a specificity of 91.82%, whereas the second MSK radiologist achieved an
AUC of 88.3% (95% CI from 84% to 92.7%, p < 0.001). Radiology residents undergoing
subspecialty training in MSK radiology performed equally to fellowship-trained MSK
radiologists (AUC of 88.9% and 87.2% for the 4th and the 5th year resident, respectively).
Interestingly enough, MSK-oriented residents achieved a sensitivity superior to XGboost
but with significantly lower specificity (70.91% and 83.64% specificity for each of the
residents, respectively). The general radiologist achieved an AUC of 84.5% (95% CI from
80% to 89%, p < 0.001), which was significantly lower than the performance of XGboost
(p = 0.017) which performed on average 9.2% better. The performance of all other readers
was slightly lower than the model without reaching significance (p > 0.05) (Figure 6
and Table 3). The performance of XGboost was also evaluated against a series of the
most complicated cases of our dataset (where no consensus agreement could be made
by the three senior MSK-trained observers), where it achieved an AUC of 91.7% (95% CI
75.3–100%) (examples shown in Figure S1).
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Figure 6. Comparison between receiver operating characteristic (ROC) curves of XGboost and expert
readers. ROC curves of XGboost and musculoskeletal radiologists are plotted as solid lines whereas
the ROC curves of residents and the general radiologist are plotted as dashed lines. XGboost (pink
line) is shown to have the best performance, which was significantly higher than the performance
of a general radiologist (GR—purple line). XGB: XGboost; MSKR: Musculoskeletal Radiologist;
GR: General Radiologist; RR: Radiology Resident; OBS: Observer; AUC: Area Under the Curve.
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Table 3. Comparison of XGboost to expert readers.

Performance Measure XGB MSKR1 MSKR2 GR RR1 RR2

AUC (95% CI) 93.74%
(87.7–99.8%)

90.6%
(86.7–94.5%)

88.3%
(84–92.7%)

84.5%
(80–89%)

88.9%
(84.8–93.1%)

87.2%
(82.7–91.7%)

Sensitivity 93.55% 89.42% 89.42% 98.08% 94.23% 84.47%
Specificity 93.94% 91.82% 87.27% 70.91% 83.64% 90%

PPV 93.55% 91.18% 86.92% 76.12% 84.48% 88.78%
NPV 93.94% 90.18% 89.72% 97.50% 93.88% 86.09%

p-value * 0.39 0.15 0.017 ** 0.19 0.08

AUC: Area Under the Curve; CI: Confidence interval; CR:Consultant radiologist; RR: radiology resident; PPV: positive predictive value;
NPV: negative predictive value; *: p-value of the comparison of each reader to XGB; **: statistically significant value.

4. Discussion

Differentiation between TOH and AVN represents a challenging task for radiologists
because of similarities in their imaging appearance, including the presence of BME, sub-
chondral fractures and femoral head collapse in advanced disease. Accurate diagnosis
requires significant expertise and evaluation of clinical data including pain characteristics
and risk factors. Herein, discrimination between the two entities has been achieved with
the use of radiomics and machine learning. Most importantly, multivendor imaging data
were used to develop an XGboost classifier which performed significantly better than a
general radiologist and equally to MSK radiologists and MSK-oriented radiology residents.

Several studies have attempted to discriminate between TOH and AVN based on
their imaging appearance. Klontzas et al. presented a series of 155 patients with TOH
with a follow-up between 1 and 10 years, demonstrating that microtrabecular insufficiency
subchondral fractures can be present in approximately half of these patients, which have
a completely different appearance compared to necrotic lesions of AVN [5]. They also
showed that another unique feature of TOH is the “sparing” sign which represents sparing
of the medial bone marrow of the femoral head by BME in 87.7% of TOH cases [5]. On
the other hand, AVN is complicated with BME at later stages of the disease resulting
from articular collapse and neither the “band-like” nor the “crescent” sign resemble the
subchondral insufficiency fractures of TOH [5,9,21]. This is corroborated by data showing
that subchondral fractures of TOH never progress to AVN [5,9]. Despite the accumulating
data defining the imaging differences between the two diseases, MSK radiologists still face
difficulties in diagnosis especially in the absence of accompanying clinical data and confu-
sion is still evident in recent literature [11,12]. Attempts have been made to differentiate
between the two entities using dynamic contrast-enhanced MRI, but more patients are
needed to account for various AVN stages [35]. Towards this end, radiomics and machine
learning have achieved a diagnostic performance with an AUC close to 95%, equal to MSK
radiologists and significantly better than a general radiologist, without the incorporation
of any clinical data by both of the radiologists and the algorithm. The performance of our
algorithm was found to be excellent even when it was specifically assessed against the
most complicated of cases in our dataset, indicating the diagnostic value of the algorithm
in everyday clinical dilemmas. This powerful machine learning strategy can assist hip
MRI reporting by experienced and inexperienced radiologists, protecting TOH patients
from unnecessary surgery and ensuring prompt management of patients with AVN, in
order to prevent articular collapse and total hip replacement. In everyday clinical reality,
when evaluating MRI examinations with atraumatic bone marrow edema, no other entity
can complicate the differential diagnosis by imitating either AVN or TOH. Therefore, dif-
ferentiation between the two entities presents a real-life diagnostic challenge and cases
where radiologists are asked to decide between the two is a common occurrence in centers
specialized in bone marrow imaging.

The majority of features found to be important for the discrimination between the
two diseases were wavelet transformations of original radiomics features. This can be
potentially explained by the type of imaging characteristics used by the human eye for
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the traditional diagnosis of TOH and AVN. Traditional MRI diagnosis is based on the
presence of subchondral band-like serpiginous changes, the “crescent” sign, BME and its
pattern and low signal intensity irregular thin lines inside BME, located deep in the femoral
head [4,21]. All these characteristics are largely composed of edges and irregular lines
which are well known to be enhanced when images undergo wavelet transformation at
specific scales [36,37]. At the same time, although the images were normalized prior to
machine learning modeling, inconsistencies in the noise profile and the image contrast
emanating from the heterogeneous imaging conditions and protocols of the multicentric
dataset used are still expected to exist. Wavelet decomposition addresses this problem
by combining high and low pass filters to separately examine different frequency ranges
across the dataset. It could be then postulated that the high performance of the presented
models is strongly dependent on wavelet decomposition by highlighting edge information
and suppressing sources of variability in the original MR images.

Our study has certain strengths and limitations. Given the low prevalence of both
entities and especially TOH, the large number of hips examined in this study is an important
strength. In addition, the use of MR images from multiple vendors significantly increases
the value of our study, enhancing the generalizability of our results since our models have
been trained in handling data acquired at multiple sites. Another strength of our study is
the comparison of machine learning to radiologists which provides an objective estimate
of the importance of this work. One of the limitations of our study is its retrospective
nature. However, retrospective analysis is mandated by the low prevalence of TOH
and AVN along with the large number of images required for machine learning. Manual
segmentation could also be a limitation for our method. However, in our case, segmentation
involved selecting the outline/cortex of well-defined bone structures (femoral head and
neck) without involving subjective segmentation of single or ill-defined lesions that could
potentially introduce bias. Finally, the sole use of STIR images in this study could potentially
be considered a limitation of our study. Nonetheless, in everyday radiological practice,
fluid-sensitive sequences (e.g., STIR, proton-density weighted with fat suppression) suffice
for the diagnosis of both AVN and TOH, since they are sensitive for the identification of
bone marrow edema patterns characteristic to both diseases.

5. Conclusions

In conclusion, this study presents a radiomics-based machine learning method for
differentiating between TOH and AVN. Machine learning achieved a performance similar
to MSK radiologists and significantly higher compared to general radiologists. The pipeline
presented in this manuscript can be used to aid the diagnostic process, protecting TOH
patients from unnecessary surgery as a result of misdiagnosis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/diagnostics11091686/s1, Figure S1: Examples of cases where differential diagnosis between
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