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Abstract

The common chameleon, Chamaeleo chameleon, is an arboreal lizard with highly independent, large-amplitude eye
movements. In response to a moving threat, a chameleon on a perch responds with distinct avoidance movements that are
expressed in its continuous positioning on the side of the perch distal to the threat. We analyzed body-exposure patterns
during threat avoidance for evidence of lateralization, that is, asymmetry at the functional/behavioral levels. Chameleons
were exposed to a threat approaching horizontally from the left or right, as they held onto a vertical pole that was either
wider or narrower than the width of their head, providing, respectively, monocular or binocular viewing of the threat. We
found two equal-sized sub-groups, each displaying lateralization of motor responses to a given direction of stimulus
approach. Such an anti-symmetrical distribution of lateralization in a population may be indicative of situations in which
organisms are regularly exposed to crucial stimuli from all spatial directions. This is because a bimodal distribution of
responses to threat in a natural population will reduce the spatial advantage of predators.
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Introduction

Changes in body orientation in response to external stimuli are

fundamental to animal motion and locomotion and require the

perception of one’s location in relation to the relevant stimuli.

Frequent examples are provided by visually guided responses,

including cases in which animals perform highly accurate spatio-

temporal corrections of their body or organ position relative to

a moving stimulus. Such position corrections, often referred to as

‘‘station keeping’’ [1–5], are observed, for example, in bees

maintaining position in front of their hives, or hoverflies closely

tracking females in courtship [1–6]. Body position corrections are

often observed in avoidance, such as in the case of locusts (Locusta

migratoria). When holding onto a twig or branch and exposed to

a threat, a locust will respond by actively positioning itself so as to

keep on the far side of its perch. Such behavior is performed only

while the threat is in motion, resulting in minimizing its exposure

to that threat [7]. Similar behavior patterns are observed in

grasshoppers and cicadas and may well reduce the chances of

detection.

Chameleons (Chamaeleonidae, Reptilia) are slow-moving, pre-

dominantly arboreal lizards that capture insect prey with a long

tongue. Chameleons rely on cryptic coloration and slow motion to

approach prey and to reduce visual detection by potential

predators [8,9]. Their concealment or evasive motor patterns

are related to the level of threat, with a low-level, distant threat

more likely to elicit ‘‘freezing’’ of slow motion and a high-level,

nearby threat more likely to elicit ‘‘free-falling’’ escape or gaping

behavior. In the ‘‘free fall’’ response, the chameleon suddenly

drops from its perch to the shrubs below, and with the use of

cryptic color change attempts an escape.

When a threat appears on the side of a branch opposite to that

on which a chameleon is perched, the chameleon will often remain

motionless [8,9]. However, if the threat appears at other angles,

and is more fully exposed to the chameleon, the chameleon will

flatten its torso bilaterally and rotate on the branch so that its

ventral side, in the direction of the threat, is minimally exposed

(Lustig et al., unpublished data). Throughout, the chameleon

visually tracks the threat and adjusts its body position with smooth

rotational motions, even if the threat is several meters away.

In this avoidance response, as with other motor responses of

animals with bilateral morphological symmetry, the question of

laterality arises. Is there an effect of direction of the stimulus’

approach on the motor patterns displayed by the chameleon?

While the spatio-temporal patterns of eye use have been analyzed

[10], the movements of the chameleon’s body as it attempts to hide

from the threat remain unstudied.

Bilateral symmetry in vertebrates is widely expressed morpho-

logically and anatomically [11,12]. In the central nervous system,

bilateral morphological similarities are observed in the brain and

cranial and spinal nerves. However, bilateral similarity in gross

anatomy does not necessarily imply bilateral similarity in the

neural architecture or consequent behavioral patterns. Lateraliza-

tion [13] refers to a situation in which the two sides of the body
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differ in structure, function or both. Lateralization is known to

occur in all vertebrate classes [14–16], as well as in certain

invertebrates with lateralized behavior patterns, and is expressed

frequently during foraging, sexual displays, aggression and

avoidance responses [14,17,18].

Lateralization of motor functions has been described in all

poikilotherm groups–fish, amphibians and reptiles. For example,

in the mosquitofish (Gambusia holbrooki) and Girardinus falcatus, body

turning during predator evasion is lateralized, while in the

zebrafish (Brachydanio rerio), exploratory biting of objects is

correlated with the use of the right eye [19–21]. In the

mosquitofish, the red tailed goodeid (Xenotoca esieni), and the

Siamese fighting fish (Betta splendens), visually guided aggressive

behavior patterns are elicited using the right eye [22]. In the shiner

perch (Cymatogaster aggregate), lateralized individuals are faster in

their escape responses as compared to unlateralized individuals

[23].

In amphibians, lateralized motor patterns are found in limb use

in toads (e.g., Bufo bufo, B. marinus and B. viridis) [24,25]. In the frog

Litoria caerulea, the right forearm is used mostly in upright-ward

motion [26]. Side-dependent predatory behavior and predator-

avoidance patterns have been observed in B. bufo and B. viridis

[27,28].

Among reptiles, lateralized visuo-motor behavior has been

found in the aggressive behavior of Orusaurus ornatus [29] and

Sceloporus virgatus, where aggressive charges by females during

courtship rejection are more often from the left side [30]. Right-

biased predatory responses have been documented in the ornate

dragon lizard (Ctenophorus ornatus) [31] and in the common wall

lizard (Podarcis muralis) [32].

Several theories have addressed the possible functions of

lateralization. One line of reasoning is that in animals with

laterally placed eyes, a feature common to most vertebrates,

lateralization reduces inter-hemispheric conflicts. Such conflicts

may arise when two stimuli are perceived simultaneously, one by

each eye [16,33]. Hemispheric dominance in a given task,

especially under full decussation of the optic nerves, may be

a means of reducing or eliminating the dilemma of which stimulus

should be responded to. Another possible function is related to

neural processing. In most examined vertebrates, each hemisphere

is more highly specialized in attending to, or responding to certain

stimulus categories such as ‘‘threat’’, ‘‘prey’’, or ‘‘familiar-novel’’.

This frees precious cognitive ‘‘storage space’’ and reduces

redundancy of brain function [16].

Lateralization may occur at the individual level, population

level, or both. An equal distribution of lateralization in the

population (termed ‘‘anti-symmetrical’’) implies that approximate-

ly one half of the individuals are biased toward one side while the

other half is biased toward the opposite side. An asymmetrical

distribution occurs when a significant proportion of the population

is biased toward a given side [16]. This bias may be expressed in

the response to a given visual stimulus, motor function, or

morphological/anatomical feature.

In this study we analyze the motor responses of chameleons

faced with an approaching threat in an attempt to provide insight

into the dynamics of the response and to assess whether it is

lateralized at the individual level, population level or both. In their

natural habitats, chameleons mostly move in relatively thick,

homogeneous vegetation. Threats, such as predators, may appear

from any distance or direction with equal probability. Having an

avoidance response that is lateralized, i.e., biased toward a given

side, may be detrimental to survival. We therefore hypothesize

that the avoidance response of the chameleon will not be side-

dependent.

Figure 1. Experimental setup. (A) Oblique view. (B) Schematic overhead view. The experimenter, positioned behind the camera (a) acts as the
threatening stimulus. Chameleon (x), vertical pole (b), incandescent bulbs (c), pole rotation cords (d), visual barrier (e), screen (f).
doi:10.1371/journal.pone.0037875.g001

Visually Guided Avoidance in Chameleons
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Materials and Methods

The research was conducted at the Dept. of Biology, University

of Haifa, Oranim Campus in Tivon, Israel, between November

2006 and November 2009. Collection, maintenance, and exper-

imentation with the chameleons were performed under permits

from the Israeli Nature and Parks Authority (permit 2011/11411)

and the University of Haifa ethics committee. Methods are

provided here in brief; further details can be found elsewhere [10].

Each tested chameleon was exposed to a threat that approached

it from its left or right side in the following manner: the chameleon

was placed on a vertical wooden pole that was between 3 mm and

Figure 2. Head angles measured relative to the threat. An overhead view of the sagittal plane of the head of a chameleon (C) when perched
vertically on a pole (P), in relation to the threat (T); a – the angle in relation to the threat, b – the angle in relation to both threat and pole.
doi:10.1371/journal.pone.0037875.g002

Figure 3. Ventral surface exposure used in the avoidance response analysis. A single frame from a sampled video sequence is depicted. (A)
Unmodified image showing the ventral view of the chameleon holding onto a narrow pole, with its eyes protruding from both sides of the pole. (B)
Body surface of the chameleon with the areas exposed on each side of the pole (hatched) used for the determination of respective surfaces. The
caudal border of the area analyzed (broken horizontal line) is determined on the basis of 36maximal head width, from the rostral end.
doi:10.1371/journal.pone.0037875.g003

Visually Guided Avoidance in Chameleons
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14 mm in diameter. The pole could be rotated on its long axis

either clockwise or counter-clockwise. Once the chameleon had

settled, the pole was rotated in a 30u step (at ,15u/s) in a given

direction (Phase 1) and was then left stationary, allowing the

chameleon to respond (Phase 2). The two phases were termed

a ‘‘run’’ and each test comprised three consecutive runs. The

experimenter acted as the ‘‘threat’’, standing stationary ca. 120 cm

from the pole so that the pole’s rotation resulted in relative

movement of the chameleon toward the threat. Clockwise

rotations resulted in a ‘‘left-approaching’’ threat toward the

chameleon, while counter-clockwise rotations resulted in a ‘‘right-

approaching’’ threat. The poles were either wide or narrow

relative to the ventral width of the head of the tested chameleon.

The wider pole allowed the chameleon to view the threat only

monocularly at any given moment, whereas the narrower pole

allowed the chameleon to view the threat both monocularly and

binocularly. Each chameleon was tested once with a left-

approaching threat and once with a right-approaching threat.

Each test comprised three consecutive runs in the given direction.

The tests were video-recorded with the camera positioned in front

of the experimenter, 120 cm from the tested chameleon and at its

level. From this position, the camera’s view was of the chameleon’s

ventral side (Fig. 1).

To determine whether the chameleon’s correction of position is

a vestibular-driven compensatory response, we performed two

control experiments: (a) the pole was rotated without a visual

threat and (b) the threat was rotated, while the pole was kept

stationary. In control experiment (a), the vertical pole was placed

inside an opaque-white plastic sphere, 35 cm in diameter. The

chameleons (n = 4), when perched on the pole, could view only

the pole and its base but no obvious threats. In each test, the pole

was rotated in succession 10 times clockwise and 10 times counter-

clockwise at an angular velocity of ,15u/s [see Video S1]. In

control experiment (b), a threat stimulus (a head figurine

5610 cm) was moved 50 cm from the pole in an arc of ca. 80u
[see Video S2]. The chameleons (n = 2) were tested for their

response to the threat when perched on the pole and level with the

threat. Ten tests were performed at each of three angular velocities

(15u, 35u and 70u/s). For each angular velocity, three arbitrary

tests were chosen for analysis. Two angles were analyzed: angle a–

formed by the sagittal plane of the head relative to the threat, and

angle b–formed by the sagittal plane of the head relative to the

threat, through the pole. Angle b determined the chameleon’s

position behind the pole relative to the threat and may be regarded

as a measure of the level of visual concealment (Fig. 2).

Analysis
Video sequences were edited using Adobe ElementsTM

software. A specially written program (SIPL Lab, Technion,

Israel) sampled the sequences at intervals of four frames (i.e.,

160 ms) and provided the size of the surface of the chameleon’s

body (in number of pixels) that was exposed on each side of the

pole (Fig. 3). To overcome differences in the absolute body size of

the tested chameleons and maintain uniformity of the data,

a measure of the relative body surface exposed was employed for

each chameleon. The maximal ventral width of the head (i.e.,

mandible width) was measured. Then, from the very rostral end of

the head, a distance that was three times the maximal head width

was measured caudally and a horizontal line was drawn, forming

a caudal ‘‘borderline’’ (Fig. 3).

Figure 4. Definitions of body side motion. A chameleon perched on a vertical pole (P) and the threat, as viewed from above. (A) The chameleon
is positioned opposite (ca.180u) the threat, in an initial state. (B) The position of the chameleon during, or immediately following, pole rotation. A
given side of a chameleon is termed the ‘‘leading side’’ if the threat approaches from that side (i.e., the left side of the chameleon during left-
approaching threat, as shown here, or the right side of the chameleon during right-approaching threat). The side opposite the leading side in each
test is termed the ‘‘following side.’’
doi:10.1371/journal.pone.0037875.g004

Visually Guided Avoidance in Chameleons
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The tested population comprised chameleons of different sizes,

which would have resulted in unequal effects on the statistical tests

of the pooled data, since smaller chameleons would have lower

exposures by definition. To normalize the data, the tested

population was divided into four groups according to head width.

Each chameleon in each group had its exposure measurements

multiplied by a computed factor which took into account the head

width relative to the pole width used in each test. Consequently,

data were normalized to the size of the largest chameleons.

The temporal aspect of the response, ‘‘latency to final

exposure,’’ was calculated by counting the number of frames

from the moment of termination of the pole rotation to the

moment (frame) when the chameleon had reached its final

exposure and remained still. The data extracted for each sampled

frame in each run represented the exposed surface (in pixels) for

each chameleon and for each side of the pole, within the above-

defined area. In each test, only the side that approached the threat

during a given pole rotation, termed the ‘‘leading side,’’ was used

for analysis (Fig. 4).

In each exposure of each individual in a given run, three

measures were considered: 1) the exposure at the onset of the pole

rotation, ‘‘Initial exposure’’; 2) the exposure at the very end of the

rotation, ‘‘End of rotation exposure’’ and 3) the final exposure at

the very end of the run, ‘‘Final exposure’’. Each of the three values

was averaged over the three consecutive runs of any given test.

The data were analyzed using repeated measures MANOVA

with pole width and direction of threat approach as the main

effects. As individuals could be classified as side-biased on a given

pole width (see Results), two further analyses were required for

each of the biased groups separately.

Results

Control Experiments
(a) Rotation of the chameleon on the pole within the opaque-

white sphere elicited no apparent change of position: the

chameleon maintained its position on the pole and rotated with

it, clockwise or anti-clockwise [see Video S1]. (b) When perched

on a stationary pole and exposed to a threat moving in an arc, the

chameleons responded in highly synchronized adjustments of their

position relative to the threat (Fig. 5). The analysis showed that

both a and b were maintained highly stable in all tests and under

all three angular velocities. The angular velocity of 15u/s was the

velocity used in the main experiment, as well as in control

experiment (a). The results of both control experiments thus

demonstrated that the avoidance response of the chameleons is

related to the motion of the visual threat and is not elicited by

inertia.

Observed Aspects of the Response
Distinct spatio-temporal motor patterns were observed in the

exposure of the chameleon’s body. In Phase 1, an initial increase

in ventral body exposure was observed and in Phase 2, there was

a decrease in exposure (Fig. 6). Phase 1, which covered the

duration from the onset to the termination of pole rotation,

resulted in the ‘‘leading side’’ of the chameleon being relatively

more exposed to the threat. During Phase 1, exposure at any given

moment could be viewed as the product of the rotation itself and

the actual movement of the chameleon. Keeping motionless

(‘‘frozen’’) or moving with the trajectory of the pole would result in

increased overall exposure, while moving counter to the rotation of

the pole would result in decreased overall exposure. Consequently,

a chameleon that actively counter-rotated during pole rotation

would reach the end of the perturbation with lower surface

exposure than that of a ‘‘frozen’’ chameleon. In Phase 2, the

‘‘correction phase,’’ body exposure changed from the very end of

the pole rotation to the end of the test (point of final exposure) due

only to the motion of the chameleon in relation to the now

stationary threat. This is depicted in Fig. 4, with the decrease in

exposure being due to the chameleon’s counter-rotation relative to

the threat.

A repeated measures MANOVA, with pole width and direction

of threat approach as the main effects (Figs. 7, 8), revealed

significantly lower exposure in tests on wide poles than in tests on

narrow poles, for Initial exposure (F(1,16) = 34.276, p,0.001), End

of rotation exposure (F(1,16) = 38.509, p,0.001), and Final

exposure (F(1,16) = 25.809, p,0.001). The latency to final

exposure in tests on wide poles did not differ from the latency in

tests on narrow poles (F(1,16) = 1.704, p = 0.210). The direction of

threat approach did not have a significant effect on the Initial

exposure (F(1,16) = 3.39, p = 0.084) or on the End of rotation

exposure (F(1,16) = 1.501, p = 0.238). The Final exposure during

tests with a right-approaching threat was significantly lower than

the Final exposure with a left-approaching threat (F(1,16) = 6.233,

p = 0.024). The latency to final exposure (Fig. 9) in tests with right-

approaching threats did not differ from the latency in tests with

left-approaching threats (F(1,16) = 1.182, p = 0.293). The in-

teraction between the main effects of pole width and direction of

threat approach was not significant (F(1,16) = 0.392, p = 0.540).

Figure 5. Head angles relative to the moving threat. Provided are
the head angles relative to a moving threat under angular velocities of
15u/s, 35u/s and 70u/s. Each data point (mean 6 SE) is from six readings
(three per chameleon).
doi:10.1371/journal.pone.0037875.g005

Visually Guided Avoidance in Chameleons
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Within Individual Comparisons
For each chameleon and for a given pole width, a comparison

was performed of the mean values of each of the three parameters

(i.e., Initial exposure, End of rotation exposure, and Final

exposure) between tests of right-approaching threat and left-

approaching threat. The means were calculated from the values of

Figure 6. Patterns of motor response of a chameleon on a narrow pole. The degree of body exposure is depicted during three consecutive
runs (respectively, triangles, circles, and squares) along with their mean (continuous line). The images are of the chameleon as viewed by the observer
(the ‘‘threat’’) at the respective time points.
doi:10.1371/journal.pone.0037875.g006

Figure 7. Chameleons’ ventral exposure as a function of pole width. The ventral surface exposed to the threat, on a narrow or wide pole, at
the onset of pole rotation (Initial), end of pole rotation (Rotation end), and end of test (Final).
doi:10.1371/journal.pone.0037875.g007

Visually Guided Avoidance in Chameleons
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a given parameter over the three consecutive runs comprising each

test. If two or three of the parameters provided a lower mean value

than the parameters for the comparable test on the opposite side,

that individual chameleon was considered ‘‘side biased.’’ Of the

individuals tested on narrow poles, a proportion of 0.75 were

either all higher or all lower in all three spatial parameters than the

comparable values in the opposite threat-approach direction. For

the wide pole tests, the proportion of individuals was 0.76.

On narrow poles, the proportion of chameleons displaying

a bias to right-approaching threats was 0.583 (14/24), whereas

the proportion displaying a bias to left-approaching threats was

0.416 (10/24). On wide poles, the proportions were 0.588 (10/

17) for the right-side bias and 0.411 (7/17) for the left-side bias.

Right-side-biased or left-side-biased individuals were found

throughout the tested population in tests on both narrow and

wide poles. When examining the entire population, no side bias

was observed due to the existence of two sub-groups, each biased

toward a given threat-approach direction. Consequently, a further

repeated measures MANOVA was performed for each pole

width, with the direction of threat approach as a main effect and

bias group as a covariate factor. The results showed that, for all

three spatial parameters, there was a significant effect of the

direction of threat approach (Initial exposure: F(1,23) = 26.273,

p,0.001; End of rotation exposure: F(1,23) = 30.437, p,0.001;

Final exposure: F(1,23) = 16.486, p,0.001). Moreover, the

interaction between the direction of threat approach and the

Figure 8. Chameleons’ ventral exposure as a function of threat-approach direction. The ventral surface exposed to a right- or a left-
approaching threat at the onset of pole rotation (Initial), end of pole rotation (Rotation end), and end of test (Final).
doi:10.1371/journal.pone.0037875.g008

Figure 9. Latency of response as a function of pole width or threat-approach direction. The latency to final exposure on a narrow or wide
pole, under a right- or left-approaching threat (N = 17).
doi:10.1371/journal.pone.0037875.g009

Visually Guided Avoidance in Chameleons
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bias group was significant for all three spatial parameters (Initial

exposure: F(1,23) = 26.426, p,0.001; End of rotation exposure:

F(1,23) = 30.858, p,0.001; Final exposure: F(1,23) = 15.549, p

= 0.001). No differences were found between right- and left-

approaching threats in the latency to final exposure, with bias

group as a covariate (F(1,23) = 0.58, p = 0.454). Similarly, the

interaction between direction of threat approach and bias group

was not significant (F(1,23) = 0.503, p = 0.485).

Because the interaction between threat-approach direction and

bias group was significant with respect to the three spatial

parameters, a separate repeated measures MANOVA was

conducted for each of the bias groups (i.e., left and right) and

for each pole width (i.e., narrow and wide).

Figure 10. Avoidance response patterns of the two side-biased groups on a narrow pole. Ventral surface exposure (mean 6 SE) on
narrow poles in response to right- or left-approaching threats in chameleons of the right-biased group (10.1, N = 14) and of the left-biased group
(10.2, N = 10). Exposure readings are at 200-ms intervals, (A) at the onset of pole rotation, (B) at the end of pole rotation, and (C) at the end of the test.
doi:10.1371/journal.pone.0037875.g010

Visually Guided Avoidance in Chameleons
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Tests on Narrow Poles
In the tests on narrow poles, for the right-biased group, all

three spatial parameters were significantly lower for right-

approaching threats than for left-approaching threats (Initial

exposure: F(1,13) = 16.721, p = 0.001; End of rotation exposure:

F(1,13) = 18.049, p = 0.001; Final exposure: F(1,13) = 10.853, p

= 0.006) (Figs. 10.1, 11). For the left-biased group, all three

spatial parameters were significantly lower in tests on left-

approaching threats vs. right-approaching threats (Initial expo-

sure: F(1,10) = 10.465, p = 0.009; End of rotation exposure:

F(1,10) = 13.051, p = 0.005; Final exposure: F(1,10) = 5.586, p

= 0.04) (Figs. 10.2, 11). The latency to final exposure (Fig. 12) did

not differ between right- and left-approaching threats in either

the right-biased group (F(1,13) = 0.513, p = 0.487) or the left-

biased group (F(1,10) = 0.086, p = 0.775).

Tests on Wide Poles
In tests on wide poles, for the right-biased group, all three

spatial parameters were significantly lower in tests on right-

approaching threats than on left-approaching threats (Initial

exposure: F(1,9) = 14.412, p = 0.004; End of rotation exposure:

F(1,9) = 12.269, p = 0.007; Final exposure: F(1,9) = 17.058, p

= 0.003) (Figs. 13.1, 14). For the left-biased group, only the Initial

exposure and the End of rotation exposure were significantly

lower for left-approaching threats than for right-approaching

threats (Initial exposure: F(1,6) = 26.203, p = 0.002; End of

rotation exposure: F(1,6) = 31.063, p = 0.001) (Figs. 13.2, 14).

The parameter of Final exposure did not differ between the

right- and left-approaching threats (F(1,6) = 2.386, p = 0.173).

The latency to final exposure (Fig. 12) also did not differ between

the right- and left-approaching threats in either the right-biased

group (F(1,9) = 1.049, p = 0.333) or the left-biased group (F(1,6)

= 0.217, p = 0.658).

Discussion

When a threat stimulus [Videos S2 and S3] is moved in an arc

around a chameleon perched on a stationary pole, the chameleon

will respond in a precise counter-rotation, keeping the pole

between it and the threat. At the functional level, lower exposure

to a threat, specifically the ‘‘Final exposure’’, implies better

concealment. With its surrounding obscured by an opaque screen

and no obvious threat, no such position corrections are observed,

leading to the conclusion that the avoidance response to threat is

mediated by vision. The precise nature of the avoidance response

closely resembles the previously described ‘‘station keeping’’

observed mainly in insects [1,2,6] For example, bees maintain

their spatial positioning precisely relative to their hive’s entrance

[2,3], while water-striders (Geris paludum F.) do so in relation to

water flow [4]. Using smooth pursuit, male blowflies (Lucelia spp.)

view visual targets of interest by specific ommatidia [34]. Male

hoverflies (Syritta pipiens) visually track and intercept flying females

for copulation by maintaining the image of the female fixated on

the frontal facets of both eyes [6]. This is performed with extreme

accuracy by translating the angular position of the target on the

retina to the angular velocity of the tracking fly, with response

latencies of ca. 20 ms.

Figure 11. Ventral surface exposure of the two side-biased groups on a narrow pole, as a function of threat-approach direction.
Exposure (mean6 SE) during right- or left-approaching threats, for the right-biased (N = 14) and left-biased (N = 10) groups, in tests on narrow poles
at the onset of pole rotation (Initial), end of pole rotation (Rotation end), and end of test (Final).
doi:10.1371/journal.pone.0037875.g011
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Lateralization at the Population Level
At the population level, lateralization was observed in the Final

exposure, with better concealment (i.e., lower exposure) when

threats approached from the right, under both monocular and

binocular viewing. No such lateralization was observed in the

Initial exposure or in the End of rotation exposure. In comparison,

eye use under these conditions [10] showed lateralization only

when binocular viewing was possible. There is thus no obvious

correspondence between lateralization of eye use and body use.

This may support the view that lateralization here stems from the

brain’s sensory-motor functions rather than merely from the

information provided by the eyes.

Anti-symmetry of Lateralization in the Population
That the chameleons were either ‘‘right biased’’ or ‘‘left biased’’,

as judged by their individual performance, points to the existence

of two similar-sized sub-populations. Comparisons between

responses to right- and left-approaching threats within each sub-

population revealed significant differences in the three examined

spatial parameters, but not in the temporal parameter (i.e., latency

to final exposure). Each sub-population was lateralized with

respect to a given threat-approach direction: individuals of the

‘‘right-biased’’ sub-population were better concealed from threats

approaching from the right, while individuals of the ‘‘left-biased’’

sub-population were better concealed from threats approaching

from the left. This bimodality of response is expressed in the

exposure values (mean and SE) of any given sub-population to

threats approaching from the right that do not overlap with the

exposure values to threats approaching from the left. The

divergence in response is depicted in Figs 10.1, 10.2 and 13.1.

In contrast, the exposures of the left-biased group in response to

right- and left-approaching threats (Fig. 13.2) did overlap in the

values of the two threat-approach directions toward the end of the

response (see further on). Since the sub-populations were of

roughly similar proportions, the situation is regarded as ‘‘anti-

symmetrical’’ [16]. It should be noted that such a bimodal

distribution of side-biased individuals in a population is not as

common as asymmetric distributions. Most populations tested for

lateralization in terms of handedness, fleeing, strikes and other

behavioral patterns are asymmetrically distributed, with a majority

biased toward one side and a minority toward the other

[13,14,16,35,36]. Anti-symmetrical distribution of lateralization

has been demonstrated, for example, in rats (Rattus norvegicus) [37],

with ca 10% of individuals in the population being ambidextrous

and the remainder equally divided between right- and left-handed

individuals. An octopus (Octopus vulgaris) hiding in an aquarium also

displays anti-symmetry in eye use when viewing prey presented to

it [38].

Here, the fact that the tested population is weakly lateralized

(and only in the parameter of Final exposure), yet comprises sub-

populations that are strongly lateralized (in all three parameters),

makes sense in light of their relatively homogeneous natural

habitats. In these arboreal habitats, the chances of confronting

a threat from a given three-dimensional position are equal, and the

chances of a threat confronting a left- or right-biased chameleon

are also equal. This may be regarded as an evolutionary solution

to preventing predators from using lateralization to their

advantage.

A noticeable difference between the right- and the left-biased

groups was observed with respect to final body exposure. The

Figure 12. Latency of response of the two side-biased groups as a function of threat-approach direction. Latencies (mean6 SE) to final
exposure of chameleons of the right-biased and left-biased groups, under right- or left-approaching threats, on narrow or wide poles (respective
number of chameleons tested: 14, 10, 10, 7 for groups from left to right).
doi:10.1371/journal.pone.0037875.g012
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Final exposure values of the right-biased group were lower (i.e.,

better concealment) for right-approaching vs. left-approaching

threats, for all pole widths. The Final exposure of the left-biased

group on a wide pole was kept relatively low for both threat-

approach directions. This, together with the similarity of exposure

levels to right-approaching and left-approaching threats on

a narrow pole, underlies the overall better concealment of the

entire population when responding to right-approaching threats.

Figure 13. Avoidance response patterns of the two side-biased groups on a wide pole. Ventral surface exposure (mean 6 SE) on wide
poles in response to right- or left-approaching threats in the right-biased (13.1, N = 10) and in left-biased (13.2, N = 7) groups. Exposure readings are
at 200-ms intervals, (A) at the onset of pole rotation, (B) at the end of pole rotation, and (C) at the end of the test.
doi:10.1371/journal.pone.0037875.g013
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Our results show that under monocular viewing (a wide pole), the

left-biased group exerted a relatively similar and efficient

avoidance response to threats from both sides, a feat not

accomplished by the right-biased group. In other words, the

performance of the left-biased group did not mirror that of the

right-biased group. Under binocular viewing (on a narrow pole),

the responses of each of the side-biased groups to threats from the

right or left differed significantly, under all conditions. Compara-

bly, in humans, left-handed individuals using their left hand

perform better in given tasks than do right-handed individuals

using their right hand [39]. Moreover, there is no difference

between left-handed and right-handed individuals in performing

ballistic tasks and visually guided tasks. However, for visually

guided tasks, left-handed individuals perform better with their

right hand compared with right-handed individuals using their left

hand [40]. These examples demonstrate that given tasks executed

by individuals of opposite handedness, with their preferred or non-

preferred hand, do not result in the same level of performance.

An individual belonging to a given biased group in narrow pole

tests could respond as belonging to the opposite bias group during

wide pole tests. The population thus comprises individuals with

a stable bias toward a given side and individuals with a transient

bias, depending on whether the visual input is monocular (wide

pole) or binocular (narrow pole).

The motor responses observed here were accomplished by the

chameleon’s using the pole as the axis of rotation. Although there

are numerous examples of lateralized limb use, we did not

consider this as a lateralization factor. The chameleons’ responses

were also analyzed in terms of eye use [10], showing lateralization

as a function of monocular/binocular viewing (pole width) and

direction of threat approach. We assume that this lateralization of

eye use projects onto the observed motor responses.

Obvious disadvantages of lateralization will occur when, for

example, the probability of encountering prey or predator is

similar for both sides of the body. In that case, having one side of

a sensory system less efficient in identifying or responding to

stimuli will be deleterious to the organism’s survival [28,41].

Many species, such as ground-dwelling birds and amphibians,

show lateralization at the behavioral level and live in a world

dominated by two distinct visual domains. One is the nearby

surfaces, such as ground or water, where food is found and social

interactions occur. The other is the above-head space, where avian

predators are likely to appear. Thus, for the fiddler crab (e.g. Uca

vomeris) living on mudflats, objects moving below the horizon are

regarded as conspecifics while those above the horizon are

considered predators [42]. Such a division of the visual world may

have been an evolutionary force toward laterality, whereby each

eye specialized in a given domain. In contrast, in dense foliage,

prey or predators may appear abruptly at close range and in any

spatial position, conditions under which laterality may be

detrimental.

Lateralized motor patterns include pawdness in bufonids during

body righting or removal of disturbances [24,43], escape responses

in lizards [44] and foot use in birds [45–48]. In contrast,

lateralization in the chameleons’ avoidance response was found

only when the motor patterns were analyzed at the finer individual

and population levels, as well as spatio-temporal levels. Moreover,

while certain components of the response (Initial exposure and

End of rotation exposure) did show lateralization, other compo-

nents (Final exposure) did not. In the Final exposure, laterality was

Figure 14. Ventral surface exposure of the two side-biased groups on a wide pole, as a function of threat-approach direction.
Exposure (mean6 SE) under right- or left-approaching threats, for chameleons of the right-biased (N = 10) and left-biased (N = 7) groups, in tests on
a wide pole at the onset of pole rotation (Initial), end of pole rotation (Rotation end), and end of test (Final).
doi:10.1371/journal.pone.0037875.g014
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observed in all responses except for the left-biased group under

monocular viewing. Forcing behavior patterns into bimodal

categories may therefore prevent us from seeing the more precise

underlying picture.

Supporting Information

Video S1 A control experiment aimed to determine if
chameleons correct their position using vestibular-
driven compensatory responses. The chameleons were

tested on a rotating pole within an opaque sphere, providing no

visual threat. Pole rotation was at an angular velocity of ,15u/s.

(WMV)

Video S2 A control experiment aimed to determine if
chameleons correct their position using visual but not
vestibular information. The chameleons were tested on

a stationary pole with a threat stimulus moved at an arc of ca.

80u, 50 cm from the pole. Threat angular velocities were 15u, 35u
and 70u/s.

(WMV)

Video S3 A demonstration of the position correction of
a chameleon on a vertical pole, in response to a threat (a
hand) moved at an arc around it.

(WMV)
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