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ion of the inhibitor affinity of HIV-1
protease via a modified LIE approach†

Son Tung Ngo, *ab Nam Dao Hong,c Le Huu Quynh Anh,d Dinh Minh Hiepe

and Nguyen Thanh Tung f

The inhibition of the Human Immunodeficiency Virus Type 1 Protease (HIV-1 PR) can prevent the synthesis

of new viruses. Computer-aided drug design (CADD) would enhance the discovery of new therapies,

through which the estimation of ligand-binding affinity is critical to predict the most efficient inhibitor. A

time-consuming binding free energy method would reduce the usefulness of CADD. The modified linear

interaction energy (LIE) approach emerges as an appropriate protocol that performs this task. In

particular, the polar interaction free energy, which is obtained via numerically resolving the linear

Poisson–Boltzmann equation, plays as an important role in driving the binding mechanism of the HIV-1

PR + inhibitor complex. The electrostatic interaction energy contributes to the attraction between two

molecules, but the vdW interaction acts as a repulsive factor between the ligand and the HIV-1 PR.

Moreover, the ligands were found to adopt a very strong hydrophobic interaction with the HIV-1 PR.

Furthermore, the results obtained corroborate the high accuracy and precision of computational studies

with a large correlation coefficient value R ¼ 0.83 and a small RMSE dRMSE ¼ 1.25 kcal mol�1. This

method is less time-consuming than the other end-point methods, such as the molecular mechanics

Poisson–Boltzmann surface area (MM/PBSA) and free energy perturbation (FEP) approaches. Overall, the

modified LIE approach would provide ligand-binding affinity with HIV-1 PR accurately, precisely, and

rapidly, resulting in a more efficient design of new inhibitors.
Introduction

The human immunodeciency virus (HIV) causes acquired
immunodeciency syndrome (AIDS), which leads to the death
of several million people worldwide.1 Although new patients
have been reduced by around �40% compared to the peak in
1997, still �1.7 million new people have been infected in 2018.1

Moreover, globally, nearly 40 million people are currently living
with HIV/AIDS, but only �23 million patients have access to
antiviral drugs.1 The HIV/AIDS epidemic is still one of the most
important global health issues. Therefore, the search for a new
therapy to prevent HIV continuously attracts a large number of
scientists. The scientists have tried to inhibit HIV by preventing
viral reproduction through the use of fusion,2 reverse
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transcriptases,3 integrases,4 and protease inhibitors.5 Recently,
the contemporary use of multiple drugs, which target several
different HIV targets, are oen employed to enhance the treat-
ment efficiency, resulting in the decrease of patient mortality.
This method is known as highly active antiretroviral therapy
(HAART).6 Unfortunately, several resistance issues and unex-
pected side effects have been recorded over the treatment via
HAART.7 Designing new inhibitors for HIV targets is still urgent.

The HIV-1 PR enzyme plays an important role in the
synthesis of new viruses since it contributes to the cleavage of
polyproteins to generate mature components of the HIV virion.8

Thus, the inhibition of HIV-1 PR is able to stop virus replication.
Severally successful inhibitors have been designed for inhibit-
ing HIV-1 PR and many of them were approved for HIV treat-
ment, such as Amprenavir, Indinavir, Lopinavir, Nelnavir,
Ritonavir, and Saquinavir.9 HIV-1 PR inhibitors are currently
used alongside reverse transcriptase inhibitors, resulting in an
improvement in HIV-1 therapy. However, available HIV-1 PR
inhibitors still have many side effects and their efficiency
decrease with mutant viral strains.10,11 Thus, the search of
a potential candidate to efficiently inhibit HIV-1 PR still attracts
numerous efforts.

Computer-aided drug design (CADD) is a very useful method
to shorten the development of new therapy.12 Several
approaches have been established to determine the free energy
This journal is © The Royal Society of Chemistry 2020

http://crossmark.crossref.org/dialog/?doi=10.1039/c9ra09583g&domain=pdf&date_stamp=2020-02-20
http://orcid.org/0000-0003-1034-1768
http://orcid.org/0000-0003-0232-7261


Fig. 1 Initial structure used for MD simulations of Indinavir bound to
HIV-1 PR (PDB ID: 2BPX).
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difference of binding between the ligand and the receptor such
as non-equilibrium molecular dynamics (NEMD),13,14 free
energy perturbation (FEP),15,16 thermodynamic integration
(TI),17,18 molecular mechanic/Poisson–Boltzmann surface area
(MM/PBSA),19–21 linear interaction energy (LIE),22–25 fast pulling
of ligand (FPL),26,27 biased sampling (US),28–30 deep learning,31

molecular docking,32,33 and quantitative structure–activity rela-
tionship (QSAR) approaches.34–36 Moreover, it is known that the
accuracy of a ligand-binding affinity determination method is
normally inversely proportional to the computational cost. In
general, a computed method is employed on the number of
ligands to analyse. In particular, the screening of million trial
ligands is oen performed using rapid and low accuracy
approaches such as docking and QSAR methods. The testing
binding affinity of hundred inhibitors is frequently carried out
via an approximate method, which keeps blank between
performance and accuracy, as known as MM/PBSA, LIE, FPL,
and the US approaches. Time-consuming protocols including
NEMD, FEP, and TI usually give results in agreement with
experiments. These schemes are usually used to rene the
results of an approximate method. Furthermore, the imple-
mentation of temperature/Hamiltonian replica exchange
molecular dynamics simulations of the free energy perturbation
method can present higher accuracy and precision results.37–39

Approximate methods are oen employed to resolve the
CADD problem. In particular, the MM/PBSA and LIE end-point
approaches are very popular methods. In theMM/PBSAmethod,
binding free energy is evaluated via a combination of molecular
mechanics and continuum solvent.40–42 However, the accuracy
of the MM/PBSA method depends on several factors that involve
a continuum solvation approach, dielectric constant, and
entropic determinations.43–45 Moreover, when the considered
system is larger than 2000 atoms, the entropic estimation via
normal mode analysis would cost a large CPU time. Therefore,
the entropic calculation is usually carried out in the last snap-
shot of MD simulations rather than the whole conformation
over the equilibrium interval.43–45 Thus, the statistical signi-
cance is unguaranteed. The selection of the dielectric constant
also causes issues, resulting in a signicant decrease of the
obtained accuracy and precision.43–45 Overall, although the MM/
PBSA method is able to estimate reasonable values of ligand-
binding affinity, the absolute values do not correlate with the
experiments.46–48

In addition, another end-point free energy estimation
approach, LIE, gives successful results to different systems.49–56

In this approach, the binding free energy difference is
computed based on the average of electrostatic and van der
Waals (vdW) interaction energy differences of the inhibitor with
its neighbouring atoms in various states involving the inhibitor
in a solvated complex (bound state – noted as subscript b) and
inhibitor in solvation (free state – noted as subscript f). In this
context, we have computed the binding free energies of 33
inhibitors interacting with HIV-1 PR by using conventional
molecular dynamics (MD) simulations and the LIE approach. In
particular, the continuum model was employed to enhance the
accuracy of the conventional LIE approach. In the improved LIE
method, the contribution of polar free energy was also
This journal is © The Royal Society of Chemistry 2020
considered as an important factor controlling the ligand-
binding affinity. The scaling factors for electrostatic, vdW and
polar terms were tted considering the binding process of 22
systems and then re-evaluated in 11 systems. The obtained
results probably provide an appropriate way to screen a large
number of ligands with affinity to HIV-1 PR.

Materials and methods
Initial conformation and parameterization of HIV-1 PR
complexes

The three-dimensional structures of 33 HIV-1 PR protease
inhibitor complexes (cf. Fig. 1) are deposited in protein data
bank with PDB ID: 1AJV,57 1AJX,57 1D4J,58 1EBW,58 1EBZ,58

1EC0,59 1EC2,58 1EC3,58 1G2K,60 1G35,60 1OHR,61 1D4H,58 1T3R,62

1W5X,59 1W5Y,59 1XL5,63 2AQU,64 2BPX,65 2CEJ,66 2CEM,66

2CEN,66 2I0D,67 2Q5K,68 2QI0,69 2UXZ,70 3H5B,71 3NU3,72 3O9G,73

3OXC,74 4DJQ,75 4DJR,75 4U7Q,76 and 4U7V.76 HIV-1 PR and ions
were parameterized using the GROMOS96 43a1 force eld77

referring the previous works.26,78 In particular, the protonation
states of Asp25A and Asp25B are assigned according to previous
works26,79–83 or predicted via Propka 2.0 (ref. 84) since it has large
effects on the ligand-binding affinity estimation. Moreover, the
SPC water model was employed to represent water molecules.85

The parameters of the ligands were generated via the PRODRG2
webserver,86 but the atomic charges were determined by using
the restrained electrostatic potential (RESP) approach87 calcu-
lated by molecular orbital quantum chemical calculations using
the Hartree–Fock (HF) functional with the 6-31G(d) basis set.

Molecular dynamics (MD) simulations

GROMACS version 5.1.3 (ref. 88) was used to mimic the solvated
complexes. In this solvated complex, the HIV-1 PR + inhibitor
system was inserted into a periodic boundary dodecahedron
RSC Adv., 2020, 10, 7732–7739 | 7733



Fig. 2 All-atom RMSD of HIV-1 PR + Indinavir (2BPX) over 4 inde-
pendent MD trajectories with a length of 20 ns. The complex almost
reaches equilibrium region after 5 ns.
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box with a volume of �367 nm3 and consists of 1 HIV-1 PR
molecule, 1 inhibitor, �10 880 water molecules, and �4–5 Cl�

ions to neutralize the system (a total of �34 600 atoms). The
ligand was put into a periodic boundary dodecahedron box with
a volume of �74 nm3 and consists of 1 inhibitor molecule and
2400 water molecules (a total�7200 atoms). The simulation was
carried out with parameters referring to the previous work,26,89

in which the non-bonded pair cut-off is 1.0 nm. The vdW cut-off
is 1.0 nm and the PME method is used for electrostatic inter-
actions. MD simulations were performed in turn according to
the following steps: energy minimization, position restraint in
NVT ensemble, equilibrate in NPT simulations, and production
MD simulations. In particular, the energy minimization was
carried out by using the steepest descent approach. NVT and
NPT simulations were achieved with an MD length of 100 ps per
simulation. During the NVT simulation, the complex was
restrained via a small harmonic potential. MD simulations were
completed in 20 and 5 ns, which correspond to the solvated
complex and isolated ligand in solvation systems, respectively.
MD simulations were performed 4 autonomous times to
generate 4 independent trajectories with the same initial
conformation but different generated velocities.
Data analysis

The root-mean-square-deviations (RMSDs) of all atoms in the
starting conformation was determined. Hydrogen bonds (HB)
are calculated based on the geometric determination. In
particular, the distance between the acceptor (A) and the donor
(D) is required to be less than 0.35 nm and the A–H–D angle
should be larger than 135� (H is hydrogen). The vdW, electro-
static, and polar interactions were computed to construct esti-
mation models for the LIE method (eqn (3)) via linear
regression analysis. The MM/PBSA approach was also carried
out to estimate the difference in binding free energy between
HIV-1 PR and its inhibitors. The details of the calculations were
mentioned in previous studies.90
Results and discussion
Structures and energies of complexes during MD simulations

The RMSD of all atoms in the solvated complex was evaluated to
determine the equilibrium region (cf. Fig. S1 in ESI†), which was
used to evaluate the free energy of interaction between the two
molecules, HIV-1 PR and the inhibitor. The RMSD values were
quickly enlarged during the rst 2 ns of MD simulations and
reached equilibrium circumstances aer 5 ns of MD simula-
tions, as shown in Fig. 2. RMSD values are smaller than 0.3 nm
since the starting conformation is a native structure obtained
through experiments. The solvated complex is rigidly stabilized
during the last 10 ns of the MD simulations. The free energy
estimation was calculated over the 10–20 ns interval of MD
simulations. During this time, the protein–ligand interaction
can be claried with a two-dimensional protein–ligand inter-
action map using the last MD-generated conformations, as
shown in Fig. S2 of ESI.† All maps mention that vdW interac-
tions dominate over electrostatic interactions in all complexes.
7734 | RSC Adv., 2020, 10, 7732–7739
The RMSD of the solvated ligand system is rigidly similar to the
complex. The energy calculation was carried out during the 2–5
ns interval of MD simulations.

In order to estimate the ligand-binding affinity to HIV-1 PR
using the LIE approach, the difference of the mean electrostatic
(DEcoub–f ) and vdW (DEvdWb–f ) interaction energy between the
inhibitor and its neighbouring molecules in a solvated complex
of HIV-1 PR (bound state) and in solvation (free state) were
calculated over 4 independent MD trajectories. The magnitude
of DEvdWb–f is signicantly larger than DEcoub–f implying the domi-
nation of the hydrophobic interaction during the binding
process of a ligand to HIV-1 PR, which is consistent with the
previous works.27,78 Moreover, in the modied LIE approach, the
inuence of conformational entropy49 and solvent-accessible
surface area (DGsur)50,91 have also been exercised. The entropic
contribution was evaluated by a normal mode approximation.
The difference in surface energy (DGsur) was determined by
using the Shrake–Rupley method. Furthermore, the difference
in the polar interaction energy (DGPB) was calculated as it is
probably employed as a term in the LIE function. The DGPB was
predicted by numerically resolving the linear Poisson–Boltz-
mann equation in a continuum solvent approximation. The
results obtained are shown in Table 1. In particular, the average
of DGsur, DGPB, and �TDS values are computed as �8.93, 67.4,
and 32.68 kcal mol�1, respectively, and are in good agreement
with previous studies92–94 implying the validation of the calcu-
lated values.

Optimization of LIE equations

Asmentioned above, in the original LIE theory, the difference in
the binding free energy was estimated based on the difference
of DEcoub–f and DEvdWb–f (eqn (1)) with the empirical coefficients of
a ¼ 0.180 and b z 0.300–0.500, which are validated upon
applied receptors such as P450CAM, potassium channel and
aspartic proteases.95–99 Recent work on amyloid beta-peptide
system conrmed that the coefficients are a ¼ 0.288 and b ¼
0.049.89 The use of these coefficients to determine the binding
This journal is © The Royal Society of Chemistry 2020
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Table 1 The free energy values obtained from experiments and MD
simulationsa

Complexes DEcoub–f DEvdWb–f DGsur DGPB �TDS DGEXP

1D4H 28.20 �43.80 �9.54 80.18 34.73 �13.74
1T3R 21.13 �34.10 �8.01 64.77 32.35 �14.91
1W5X 37.64 �44.50 �9.63 79.57 37.07 �11.54
1W5Y 23.52 �50.69 �9.71 84.82 34.80 �11.65
1XL5 23.72 �37.62 �8.99 58.82 30.73 �10.09
2AQU 12.02 �35.68 �10.00 70.51 36.03 �12.79
2BPX �6.14 �32.15 �9.17 69.51 32.35 �12.90
2CEJ 23.38 �36.10 �9.19 55.09 31.74 �11.83
2CEM 16.61 �38.03 �9.15 61.60 35.32 �10.87
2CEN 26.06 �44.79 �9.41 68.62 33.93 �11.39
2I0D 24.06 �35.78 �8.92 81.24 33.01 �16.60
2Q5K 6.24 �31.51 �8.97 65.86 30.65 �15.51
2QI0 16.38 �34.69 �8.17 60.51 28.75 �10.13
2UXZ 33.49 �36.04 �9.60 49.54 33.58 �11.64
3H5B 14.43 �32.45 �8.34 69.86 31.91 �13.73
3NU3 14.67 �30.94 �7.62 66.56 28.86 �13.48
3O9G 6.20 �27.26 �8.48 75.99 30.45 �16.88
3OXC 30.11 �36.22 �8.85 53.30 32.85 �11.54
4DJQ 12.60 �28.06 �8.40 71.38 29.72 �14.16
4DJR 24.18 �35.30 �8.31 77.05 29.54 �15.82
4U7Q 29.57 �40.04 �10.18 74.49 41.44 �13.38
4U7V 5.43 �31.10 �7.87 43.50 29.19 �7.54

a Experimental values were acquired using the formula DGEXP ¼
RT ln Ki, where R is a gas constant, T is the absolute temperature, and
Ki is the inhibition constant obtained from previous studies.58,59,62–76

The computational results were averaged over 4 independent
trajectories. The unit of energy is kcal mol�1.

Fig. 3 Correlation between experimental binding free energies and
that calculated using the LIE model (eqn (3)) of the training set con-
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free energy of HIV-1 PR + inhibitor produces a failure since the
correlation coefficients are observed as R ¼ 0.20, 0.14, and
�0.43 corresponding to the set of empirical parameters of
(0.180, 0.500), (0.180, 0.300), and (0.288, 0.049), respectively.
Overall, the empirical coefficients are changed depending on
the applied receptors. Moreover, although suitable empirical
coefficients of the HIV-1 PR system represented with CHARMM
force eld100,101 (with a ¼ 0.169 and b ¼ 0.017)102 were used, an
uncorrelated coefficient was observed between the experimental
and computed values as R ¼ �0.43.102 Furthermore, an
improved LIE model (eqn (2)) involving surface free energy
DGsur (with a ¼ 0.014, b ¼ 0.061, and g ¼ 0.042)103 was also
considered to calculate the HIV-1 PR + inhibitor representative
by the Amber99 force eld.87,104 Unfortunately, the correlation
coefficient between the computational and experimental values
is R ¼ 0.22. Therefore, the results obtained implied that the LIE
model is also depended on the applied force eld to represent
the complex.

DGLIE ¼ aDEvdW
b–f + bDEcou

b–f (1)

where DEvdWb–f ¼ hVvdWl–s ib � hVvdWl–s if and DEcoub–f ¼ hVelecl–s ib � hVelel–

sif are the difference of the mean electrostatic and vdW inter-
action energy between the inhibitor and its surrounding mole-
cules in a solvated complex of the receptor (bound state) and in
solvation (free state), respectively.
This journal is © The Royal Society of Chemistry 2020
DGLIE ¼ aDEvdW
b–f + bDEcou

b–f + gDGsur (2)

where DGsur is the difference on the surface free energy, which
was calculated by using the Shrake–Rupley method.

Because of the failure of the available empirical coefficients,
an appropriate set of parameters was generated for HIV-1 PR +
inhibitor represented by the GROMOS force eld as follow:

DGLIE ¼ aDEvdW
b–f + bDEcou

b–f + gDGPB + d (3)

where DGPB is the polar interaction free energy, which was
estimated via numerically resolving the linear Poisson–Boltz-
mann equation in continuum solvent approximation. In
particular, the empirical coefficients a, b, g, and d are found to
be of �0.92, �0.11, �0.47, and �23.06 kcal mol�1, respectively
(eqn (3)), providing a correlation coefficient of R ¼ 0.84 and
a root mean square error (RMSE) of 1.07 kcal mol�1 (Fig. 3)
experimentally. In particular, the large negative value of
d implies that the ligand adopts a very strong hydrophobic
interaction with HIV-1 PR,95,105 which is in good agreement with
the two-dimensional protein–ligand maps (cf. Fig. S2 in ESI†).
The negative value of g indicates that the polar interaction
contributes to the attraction between HIV-1 PR and the inhib-
itor as well as the contribution of the electrostatic interaction (b
< 0). Consequently, the vdW interaction acts as a repulsive
factor during the binding process since the parameter a is
smaller than zero.
Validation of the model

In order to conrm that our proposed coefficients including a,
b, g, and d still work effectively with other systems, the approach
was applied on the testing set consisting of 11 various inhibi-
tors, which were taken randomly (Table 2). The mean values of
free energy were calculated and are described in Table 2. The
binding free energy between a ligand and HIV-1 PR was then
evaluated according to the proposed model (eqn (3)). The
results obtained suggested that the proposed LIE approach is
sisting of 22 complexes (Table 1).

RSC Adv., 2020, 10, 7732–7739 | 7735



Table 2 The free energy values obtained from experiments and MD
simulationsa

Complexes DEcoub–f DEvdWb–f DGsur DGPB �TDS DGEXP

1AJV 13.49 �38.34 �8.42 50.09 26.77 �10.59
1AJX 5.26 �29.40 �7.76 56.72 25.78 �10.86
1D4J 17.70 �46.77 �9.72 79.69 35.78 �11.47
1EBW 25.56 �33.65 �9.22 71.32 34.24 �12.42
1EBZ 28.40 �42.67 �9.40 86.32 35.12 �12.90
1EC0 21.90 �45.44 �9.62 80.94 34.64 �11.66
1EC2 22.44 �36.36 �10.75 78.56 39.94 �13.73
1EC3 30.66 �42.82 �10.52 75.25 37.29 �12.40
1G2K 14.40 �40.82 �9.14 58.10 30.38 �10.92
1G35 17.31 �42.16 �9.74 61.43 33.75 �11.17
1OHR 11.94 �22.28 �7.93 45.88 27.87 �11.94

a The experimental values were acquired using the formula DGEXP ¼
RT ln Ki, where R is a gas constant, T is the absolute temperature, and
Ki is the inhibition constant obtained from previous studies.57–61 The
simulated results were averaged over 4 independent trajectories. The
unit of energy is kcal mol�1.

Fig. 4 Correlation between the experimental binding free energies
and that calculated using the LIE model (eqn (3)). The testing set
consisted of 11 complexes (Table 2).
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rather robust. In particular, the correlation coefficient between
the computed and experimental values is R ¼ 0.83 (Fig. 4). The
RMSE value was estimated as 1.25 kcal mol�1. Therefore, the
accuracy and precision of the proposed model are appropriate
to predict the ligand-binding affinity of a trail ligand to the HIV-
1 PR system. Furthermore, the small RMSE means that the
model can categorize different inhibitors that reveal similar
binding free energies.
CPU time consumption

The estimation of ligand-binding affinity via the LIE scheme
was indicated that it is required less computing resources than
other end-point approaches such as MM-PBSA or FEP
methods.89 In fact, in the LIE model, it was not necessary to
perform additional computations to calculate the difference in
the binding free energy alongside the production MD simula-
tions. All of the free energy terms required to determine the
7736 | RSC Adv., 2020, 10, 7732–7739
binding free energy can be analyzed via the recorded confor-
mations of the solvated complexes and the isolated ligands in
the solution. Moreover, the estimation of the polar interaction
energy caused the modied LIE to cost more CPU time than the
original. However, since the HIV-1 PR + inhibitor is not very
large, the numerical resolution of the Poisson–Boltzmann
linear equation in continuum solvent approximation would not
cost much CPU time. Furthermore, the applied united-atom
GROMOS force eld would require signicantly less time-
consuming CPU than the all-atom force eld. In particular,
one single calculation to predict the ligand-binding affinity to
HIV-1 PR would consume �1 day for 4 independent trajectories
using a single compute node with dual Xeon E5-2670 V3 with
GPGPU acceleration.

Conclusions

Herein, a modied LIE approach has been successfully estab-
lished to estimate the binding free energy of a ligand to the HIV-
1 PR. The results obtained show a good correlation with the
experimental data (R ¼ 0.83) with a small RMSE (dRMSE ¼
1.25 kcal mol�1). We have found that the available LIE empirical
coefficients are not able to adopt good correlation with the
experimental values, especially the united-atom force eld
model employed to represent the systems.

Polar binding energy emerges as an important factor to
control the accuracy in the LIE model. The electrostatic inter-
action energy contributes to the attraction between two mole-
cules, but the vdW interaction acts as a repulsive factor between
the ligand and HIV-1 PR. Furthermore, it was found that the
ligands adopted a very strong hydrophobic interaction with the
HIV-1 PR.

The CPU time consumption of the modied LIE model is
larger than the original, since it spends computing resources to
resolve the linear Poisson–Boltzmann equation to estimate the
polar interaction free energy. However, the computing resource
cost would be signicantly lower than that required for the MM-
PBSA or FEP methods.89

Obtaining an efficient scheme for rapidly and accurately
estimating the ligand-binding affinity to the HIV-1 PR system is
of great attraction. The proposed LIE model would enhance the
development of HIV therapy.
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