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Abstract

Disparity between genome-wide mutations in bladder and other cancers where smoking
is a risk factor raises questions about carcinogenesis in different epithelia. To develop an
experimental model of bladder carcinogenesis, we clonally expanded in vitro differenti-
ated normal human urothelial (NHU) cells following exposure to an exemplar procarcino-
gen and used whole-genome DNA sequencing to derive mutational signatures. Benzo[a]
pyrene (BaP) was activated by endogenous cytochrome P450 (cytochrome P450 family
1 subfamily A member 1 [CYP1A1]) to create genomically modified NHU cells. Comparison
with the Catalogue of Somatic Mutations in Cancer (COSMIC) showed that mutations
induced by BaP in NHU cells were similar to smoking-associated signatures in bladder and
other cancers, including single- and doublet-base substitution signatures characterised by
C > A transversions (COSMIC_SBS4 and COSMIC_DBS2, respectively), and an insertion/
deletion signature of C deletions in homopolymer regions (COSMIC ID3). Our study
provides the first direct evidence that BaP is activated locally in the urothelium, initiating
the well-described smoking-associated mutational signatures. An absence of other com-
mon bladder cancer (BLCA)-associated genomic signatures points strongly to other
primary causes of BLCA, which the new experimental approach described here is well
placed to investigate. Mutational signatures ignore whether genes are affected, but tissue-
specific drivers (KMT2D, KMT2C, and CDKN1A) were significantly overmutated in this
model, providing insight on the emergent selection pressures.
Patient summary: In a carefully controlled laboratory setting, we exposed normal human
urothelial tissues to a procarcinogen (benzo[a]pyrene) found in cigarette smoke. We show
that the urothelial tissues activated the carcinogen and led to mutations forming across the
genome in a characteristic pattern. This particular “mutational signature” is found in
bladder tumours and other smoking-induced cancers (eg, lung); however, our study
highlights that there are other unknown mutational processes in bladder cancer that is
not the direct result of smoke carcinogens, and this will require further investigation.
© 2020 The Authors. Published by Elsevier B.V. on behalf of European Association of
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Lifetime accrual of mutations in the cells of our different
tissues reflects the interactions between carcinogen expo-
sure(s), genomic damage, tissue-specific gene expression,
and the DNA-repair machinery. Whole-genome DNA
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sequencing (wgDNAseq) identifies the thousands of pas-
senger and rarer driver mutations, with the frequency of
each base-change–type relative to its genomic context
described as a “mutational signature” [1]. As an aggregated
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historical record of carcinogen-tissue interactions, tumour
mutational signatures are complex and challenging to
deconvolute. The potential to combine advances in genomic
sequencing with in vitro tissue-specific models offers a
timely opportunity to relate controlled carcinogen expo-
sures directly to molecular initiating events for specific
cancer types.

As a tissue evolved to endure exposure to urinary toxins/
toxicants, including carcinogens, urothelium differentiates
to form a tight urinary barrier epithelium with an inducible
capacity to metabolise xenobiotics [2]. Paradoxically, phase
I metabolism may result in the activation of procarcinogens
(including 2-naphthylamine, benzidine, 4,40-methylenebis
(2-chloroaniline), 4-aminobiphenyl, and benzo[a]pyrene),
leading to local initiation of urothelial carcinogenesis, but
no experimental system has yet been established to model
this scenario. We generated functional barrier-forming
differentiated urothelium from isolated, in vitro–propagat-
ed normal human urothelial (NHU) cells. Following expo-
sure to 2 mM benzo[a]pyrene (BaP) for 7 d, urothelial
cultures remained viable, as reported previously [2] and
demonstrated by retention of barrier tightness (Supple-
mentary Fig. 1). After maintenance for a further 7 d, control
and exposed tissues were disaggregated and expanded as
clones on irradiated 3T3-J2 feeder cells in proliferative cell
culture conditions, before genomic analysis to determine
mutational signatures (Fig. 1).
Fig. 1 – Schematic of the experimental approach wherein functionally differen
of >2000 V.cm2; Supplementary Fig. 1) were exposed to benzo[a]pyrene (BaP) 

supported cultures. Expanded clones were analysed by wgDNAseq and mutatio
mutations within each class of single-base substitution (SBS). Error bars = stan
clones). The control SBS percentages (ANOVA p = 0.0002) showed significant en
transversions in virtually all DNA sequences. In the control SBS, C > A transvers
significant enrichment of C > A transversions. Multiple comparisons were perf
NHU = normal human urothelial; wgDNAseq = whole-genome DNA sequencing. 

comparison with C > G, T > A, and T > G. *** p < 0.0001 for C > A changes in com
NHU cultures thus exposed to BaP showed significantly
increased C > A transversions (p < 0.0001; Fig. 1); these
mutations arise following cytochrome P450 family 1 sub-
family A member 1 (CYP1A1)-mediated activation of BaP
and formation of guanine DNA adducts [2]. Single nucleo-
tide polymorphisms in CYP1A1 have been associated with
bladder cancer (BLCA) risk [3]. Clear signatures of single-
base substitution (SBS) C > A transversions (“SBS-BaP-
NHU”; Fig. 2A; derivation detailed in Supplementary Fig.
2) and doublet-base substitution (DBS) CC > AA transver-
sions (“DBS-BaP-NHU”; Fig. 2B and Supplementary Fig. 3)
were apparent. In addition, a BaP-induced insertion/
deletion (ID) signature of C deletions was found in
association with homopolymer regions (“ID-BaP-NHU”;
Fig. 2C and Supplementary Fig. 4). No karyotypic abnormal-
ities were observed in BaP-exposed clones.

C > A transversions constitute 10% of mutations in the
exome-sequenced BLCA cohort of The Cancer Genome Atlas
(TCGA; Supplementary Fig. 5). Analysis of SBS-BaP-NHU
using the “signal” workflow [4] and cosine similarity testing
allowed comparison with pan-cancer and tissue-specific
tumour signatures. Catalogue of Somatic Mutations in
Cancer (COSMIC)_SBS4, the “smoking signature” found in
tissues exposed directly to tobacco smoke [1] and ascribed
experimentally to BaP [5], was found to be the closest match
in the largest pan-cancer database [1] (Supplementary Fig.
6 and 7). COSMIC_SBS4 has been observed in a wgDNAseq
tiated NHU cell sheets (generating a transepithelial electrical resistance
for 7 d before single-cell clones were expanded as colonies in feeder-
nal signatures were derived. Graph shows mean percentage of
dard deviation (n = 3, control, and n = 4, BaP-exposed independent
richment of C > T and T > C transitions, which are more common than
ions were not significantly enriched. The BaP SBS percentages showed
ormed using Tukey’s post hoc test. ANOVA = analysis of variance;
* C > T and T > C changes were significantly enriched (p < 0.01) in
parison with all other types.



Fig. 2 – Mutational signatures derived from BaP-exposed functionally differentiated NHU cells. (A) Single-base substitution (SBS) signature of
96 subtypes based around six substitution classes (referred to by the pyrimidine of the mutated Watson-Crick base pair) and framed by their 30 and 50

flanking nucleotides. The SBS signature shows an enrichment of diverse C > A transversions. (B) Doublet-base substitution (DBS) signature of
78 strand-agnostic mutation types show an enrichment mainly of CC > AA. TG > AT and TG > CA substitutions were additionally observed and were
previously reported following BPDE exposure of iPS cells [5]. (C) Insertions/deletion (ID) signature reveals BaP-caused single C/G deletions most
commonly in homopolymer runs of two to four cytosines/guanines (n = 4 independent BaP-exposed clones normalised to n = 3 independent control
clones; bars indicate the mean and error bars denote the standard deviation). Data in this figure are expressed as percentages; for counts and
normalisation data, see Supplementary Figures 2–4. BaP = benzo[a]pyrene; BPDE = benzo(a)pyrene diol epoxide; iPS = induced pluripotent stem;
NHU = normal human urothelial.
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BLCA cohort (n = 85 [6]), although not that of the COSMIC
study itself (n = 23 [1]). COSMIC signatures SBS4, DBS2, and
ID3 are frequently found together as a triad of smoke-
induced mutations [1]. DBS-BaP-NHU and ID-BaP-NHU,
which correspond directly to COSMIC signatures DBS2 and
ID3, are found in most BLCA (Supplementary Fig. 8 [1]).
C > A dominated signatures have been detected de novo in
BLCA, of which “Bladder_F” was most similar to SBS-BaP-
NHU and is closely related to the smoking signatures of
other tissues [4,7] (Supplementary Fig. 6 and 7).

Our study supports a role for BaP in bladder carcinogen-
esis. BaP is a polycyclic aromatic hydrocarbon (PAH)
procarcinogen found in cigarette smoke and detectable in
the urine of smokers or healthy volunteers after a PAH-rich
meal [8]. Cigarette smoking is the main risk factor for BLCA
(estimated hazard ratio is 2–4 for current smokers [9]).
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Our results support the capacity of urothelium to activate
BaP locally, initiating BLCA-relevant mutations within the
epithelium. Such initiated cells were retained viable within
the barrier urothelium and capable of clonal expansion in a
proliferative setting. This attests to the potential for
carcinogen-initiated cells to remain nascent within the
tumour-suppressive environment of the mitotically quies-
cent urothelium until promoted by a regenerative signal. A
recent study of induced pluripotent stem (iPS) cells exposed
to either 2 mM BaP (with metabolic activation provided by
rat liver S9 fraction) or the adduct-forming metabolite
benzo(a)pyrene diol epoxide (BPDE; 0.125 mM) [5] found
similar signatures to SBS-BaP-NHU with both exposures
(Supplementary Fig. 7). However, the changes observed in
DBS-BaP-NHU and ID-BaP-NHU were observed only in iPS
cells exposed to BPDE, and not BaP + S9 [5]. These results
combine with the detection of the similar COSMIC
signatures DBS2 and ID3 in BLCA [1,6], to support a
fundamental role for local procarcinogen activation by
urothelium in bladder carcinogenesis.

Mutational signatures specifically ignore the location of
observed mutations, but tissue-specific carcinogenesis is
critically reliant on where specific driver mutations occur.
To establish the disease relevance of this model, we
interrogated the location of mutations observed in relation
to areas of active transcription. Linear regression indicated a
significant increase in mutation rate associated with areas
of active transcription (p < 0.0001; Supplementary Fig. 9).
Tumour studies have described an inverse correlation
between gene expression and mutation rate [10]. Hypothet-
ically, this is due to efficient transcription-coupled DNA
repair (“TCR”), although it is possible that the evolutionary
selection of tumour cells favours those with enhanced TCR.
We selected genes frequently mutated in TCGA BLCA cohort
to perform a focussed analysis in BaP-exposed NHU cells
(Supplementary Table 1). Whilst most genes gained
mutations in a pattern consistent with a random distribu-
tion of mutations across the genome, KMT2D, KMT2C, and
CDKN1A were significantly overmutated, whilst PIK3CA, RB1,
ATM, KMT2A, ASXL2, and FBXW7 were significantly pro-
tected from mutation (Supplementary Table 1). This
provides novel evidence of the gene (and hence driver)
selection pressures operating on initiated (BaP-exposed)
cells during proliferative expansion (promotion).

Whilst our BaP-exposure study found the canonical
smoking signatures, it did not find evidence for COSMIC
signatures SBS2/SBS13, which account for most mutations
in BLCA and are ascribed to apolipoprotein B mRNA editing
enzyme catalytic polypeptide-like (APOBEC) activity
[1,6]. This lack of evidence of APOBEC activity strongly
suggests that carcinogen-induced genomic stress per se
(and BaP specifically) does not lead to persistence of single-
stranded genomic DNA sufficient to trigger APOBEC-
mediated mutagenesis in the tissue and predicts an
additional mechanism. The new experimental system
described here is well placed to address the question of
APOBEC activation and other gaps in our understanding of
BLCA aetiopathology.
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Supplementary material related to this article can be
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