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Abstract

Background: Most genomic data have ultra-high dimensions with more than 10,000 genes (probes). Regularization
methods with L1 and Lp penalty have been extensively studied in survival analysis with high-dimensional genomic
data. However, when the sample size n ≪ m (the number of genes), directly identifying a small subset of genes
from ultra-high (m > 10, 000) dimensional data is time-consuming and not computationally efficient. In current
microarray analysis, what people really do is select a couple of thousands (or hundreds) of genes using univariate
analysis or statistical tests, and then apply the LASSO-type penalty to further reduce the number of disease
associated genes. This two-step procedure may introduce bias and inaccuracy and lead us to miss biologically
important genes.

Results: The accelerated failure time (AFT) model is a linear regression model and a useful alternative to the Cox
model for survival analysis. In this paper, we propose a nonlinear kernel based AFT model and an efficient variable
selection method with adaptive kernel ridge regression. Our proposed variable selection method is based on the
kernel matrix and dual problem with a much smaller n × n matrix. It is very efficient when the number of
unknown variables (genes) is much larger than the number of samples. Moreover, the primal variables are explicitly
updated and the sparsity in the solution is exploited.

Conclusions: Our proposed methods can simultaneously identify survival associated prognostic factors and predict
survival outcomes with ultra-high dimensional genomic data. We have demonstrated the performance of our
methods with both simulation and real data. The proposed method performs superbly with limited computational
studies.

Background
Survival prediction and prognostic factor identification
play a very important role in medical research. Survival
data normally include the censoring variable that indi-
cates whether some outcome under observation (like
death or recurrence of a disease) has occurred within
some specific follow-up time. The modeling procedures
must take into account such censoring. It is even more
difficult to develop a proper statistical learning method
for survival prediction.
Several models for survival predictions have been pro-

posed in statistical literature. The most popular one is
the Cox proportional hazards model [1-3], in which
model parameters are estimated with partial log

likelihood maximization. Another one is the accelerate
failure time (AFT) model [4-6]. AFT is linear regression
model in which the response variable is the logarithm
or a known monotone transformation of a failure
(death) time. There are mainly two approaches in litera-
ture for fitting a AFT model. One is the the Buckley-
James estimator which adjusts censored observations
using the Kaplan Meier estimator [7,8], and the other is
a semiparametric estimation of AFT model with an
unspecific error distribution [9-11]. However, the semi-
parametric Bayesian approach based on complex
MCMC procedures is computationally intensive and
tends to have inaccurate results, and the Stute’s
weighted least squares (LS) estimator only implicitly
accounts for the censored time. The model has not been
widely used in practice due to the difficulties in comput-
ing the model parameters [12], and there is no nonlinear
AFT model in the literature.

* Correspondence: zliu@umm.edu
1University of Maryland Greenebaum Cancer Center, 22 South Greene Street,
Baltimore, MD 21201, USA
Full list of author information is available at the end of the article

Liu et al. BMC Bioinformatics 2010, 11:606
http://www.biomedcentral.com/1471-2105/11/606

© 2010 Liu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:zliu@umm.edu
http://creativecommons.org/licenses/by/2.0


Kernel based methods such as support vector
machines (SVM) have been extensively studied recently
in the framework of classification and regression [13] in
the area of pattern recognition and statistical learning.
The concept of kernel formulated as an inner product
in the feature space allows us to build nonlinear exten-
sions of many linear models [14]. It would have been a
potential alternative if it were not for the complexity of
censoring. Moreover, LASSO type penalty and its gener-
alized versions have been proposed for gene (variable)
selection with high dimensional genomic profiles with
censored survival outcomes [15-18]. However, since the
sample size n ≪ m (the number of variables), methods
based the primary formulation with a huge m (m > 40,
000) are not efficient. Consequently, in current microar-
ray analysis, what people really do is select a couple of
thousands (or hundreds) of genes using filter-based
methods (such as T-test) and then apply the LASSO-
type penalty to further reduce the number of disease
associated genes. This two-step procedure will lead to
missing biologically important genes and introducing
bias. The dual solution with kernel proposed in this arti-
cle attempts to resolve these inadequacies by solving a
much smaller n × n matrix.
In this paper, we propose a nonlinear kernel ridge

regression for censored survival outcome prediction
under the framework of AFT model. We also develop
an efficient dual solution with adaptive kernel ridge
regression for ultra-high dimensional genomic data
analysis.
Unlike the weighted least square method, our model

explicitly accounts for censoring. The proposed models
are evaluated with simulation and real data and the pre-
diction error of the test data.

Results and Discussion
Simulation Data
Simulation studies are conducted to evaluate the perfor-
mance of the proposed methods under different
assumptions. The following describes a method to gen-
erate input data with censored survival outcomes that
emulates the mechanisms presented by the actual data.

1. Sample 12 -dimensional input data x with 100
training and test samples respectively from a multi-
variate normal distribution with mean zero and var-
iance-covariance matrix Σ. The pairwise correlation
between the ith and the jth input variables in Σ is r|
i-j| and different correlations (r = 0.2, 0.4, 0.6, and
0.8) will be chosen to assess the performance of the
proposed method.
2. Choose the model parameters w = [1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1]T, and generate the event time
from log T = wt xk + ε, where ε ~ N(0, s2) and s is

determined by the signal to noise ratio (SNR = μsurv/
s). For instance, with the mean log survival time of
3, and SNR = 3 : 1, we have s = 1. SNR = 3 : 1 is
used in all of our simulations. Finally, k indicates the
kth power of input variables, so the log survival time
is associated with the input variables nonlinearly.
3. The censoring variables are generated as uni-
formly distributed and independent of the events.
Letting di = (rand + C)Ti, the censoring status will
be δi = Ti <di. Different Cs give a different portion
of censored data. Roughly 40% - 60% censored data
are produced in our simulations.

We analyze the simulation data with the proposed
DKRR algorithm and build the model with training data,
evaluate the performance of the model with the test
data. The performance of the DKRR algorithm with dif-
ferent kernels and different correlation structures are
shown in Figure 1. As shown in the upper panels of
Figure 1, when the the survival data are simulated with
k = 1 and the true model is linear, the linear model has
the best performance with the the average relative root
mean squared error (RRMSE) around 0.1. Models with
the radial basis function (rbf) kernel have the second
best performance with different correlation structures
(r = 0.2 -0.8). Models with the third order polynomial
have the worst performance with the mean RRMSE
around 0.4. On the other hand, when the survival data
are generated with a quadratic model with k = 2 as
shown in the lower panels of Figure 1, Model with sec-
ond order polynomial kernel and rbf kernel are the two
top performers with the average test RRMSE around
0.2, and the linear model performs the worst with the
largest average test RRMSE around 0.6. These results
indicate that model specification is very important. A
misspecified model may lead to inaccurate predictions.
Finally, there are no statistical significant differences for
input variables with different correlations (r = 02 -0.8).
To evaluate the performance of AKRR method, the

survival data are generated from linear model with r =
0.4, and different ws. The generated input data have the
dimensions of 100, 1000, 10000, 50000, and 100000, but
only 12 variables at the positions of 1, 11, 21, 31, ...,
101, 111 are nonzero with the values of [w1, w11, w21, ...,
w101, w111]

T = [1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1]T ,
[0.2, 0.2, 0.2, 0.2, 0.2, 0.2, -0.2, -0.2, -0.2, -0.2, -0.2, -0.2]
T, or [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, -0.1, -0.1, -0.1, -0.1, -0.1,
-0.1]T respectively. The rest coefficients are set to 0. The
random noise and rest of the variables are generated
from the distribution of N(0, s2), and s is determined
by the mean survival time and the signal to noise ratio
(SNR = 3:1). The test RRMSEs with different input
dimensions are shown in Figure 2. Figure 2 shows that
the test RRMSEs have not changed significantly when
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the input dimension increases from 100 to 100000,
which indicates that AKRR method performs well even
with a huge number of variables. The frequencies of
first 12 component variables being selected out of 100
random simulations with different w are given in Table
1. Table 1 shows that AKRR can correctly identify the
survival associated variables with high accuracy. AKRR
identifies all 12 variables with over 88% ratios and iden-
tifies 10 out of 12 variables with over 96% ratios when |
wi| = 1. Moreover, the performances are still very
impressive when the associations between survival time
and covariates are weak. AKRR identifies 10 out of 12
variables with over 95% and 94% ratios when |wi| = 0.2
and |wi| = 0.1 respectively. Table 2 gives more details
about the average number of variables being selected
and the ratios of correctly-detected, over-fitting, and

under-fitting. The optimal parameters in the parenthesis
are decided by 10-fold cross-validation with the training
data only. p* is chosen from the values of 0.6, 0.7, 0.8,
0.9, 1, since our computational experiments show that
AKRR seems to converge to the same solution when p
≥ 0.6 with different initializations for the same data set.
l* is chosen from 0:0.001:1. The average number of
selected variables varies from 11.43-12.61 around the
true number 12. AKRR identifies exactly the same 12
variables with the ratios of 75%, 54%, and 52% for |wi| =
1, 0.2, and 0.1 respectively. In all three cases, AKRR
chooses the number of variables in the range of 11-13
with over 90% ratio.
For comparison purposes, we also implement the pri-

mal version of LASSO for AFT model with Gauss-Seidel
method to optimize w directly. The computational time
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Figure 1 Test RRMSE with Different Correlation Structures. Test Relative Root Mean Squared Error (RRMSE) with Different Models and
Different Correlation Structures: L - linear; p2 - second order polynomial kernel; p3 - third order polynomial kernel; and rbf - radial basis function
kernel. The upper panels show the performance with the linear model (k = 1) and the lower panels show the performance with quadratic
model(k = 2).
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for different input dimensions is listed in Table 3. Table 3
shows that AKRR is so computational efficient that it
only takes 17.5 seconds for one run to identify variables
from 100,000 candidate variables, while LASSO might
take days. With 50000 variables, AKRR only needs 7.5
seconds on average to converge, while LASSO fails to

converge after 2 hours. When the input dimension is
large, AKRR is much more efficient. This is reasonable
since the computational time of AKRR is mainly asso-
ciated with the sample size and dual variables. This
method will be fast even with ultra-high dimensional
input as long as the sample size is small, which is com-
mon in genomic data analysis.

Diffuse Large B-cell Lymphoma Data
We now consider one diffuse large B-cell lymphoma
(DLBCL) data [19] evaluating gene expression profiles
associated with the patient’s survival. In this study,
tumor-biopsy specimens and clinical data were obtained
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Figure 2 RRMSE with Different Input Dimensions. Test Relative Root Mean Squared Error (RRMSE) with Different Input Dimensions. The input
dimensions vary from 100 to 100,000.

Table 1 Frequencies of Correctly Identified variables with
Different Parameters Out of 100 Simulations

Parameters |wi| = 1 |wi| = 0.2 |wi| = 0.1

w1 100 100 99

w11 100 98 99

w21 97 99 98

w31 98 99 99

w41 98 98 94

w51 88 77 81

w61 90 86 77

w71 98 95 99

w81 98 98 97

w91 96 96 95

w101 99 99 98

w111 99 100 100

Table 2 Model performance with Simulation Data and
Different Parameter Values

|wi|s (l*, p*) Av. # of
Vars

Exactly-
match

Overfitting Underfitting

1 (0.01, 0.6) 12.61 75% 21% 4%

0.2 (0.002, 0.6) 11.52 54% 3% 43%

0.1 (0.001, 0.6) 11.43 52% 2% 46%
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retrospectively from 240 patients with untreated diffuse
large-B-cell lymphoma who had no previous history of
lymphoma, according to a protocol approved by the
National Cancer Institute institutional review board.
The median follow-up time was 2.8 years overall (7.3
years for survivors), and 57 percent of patients died dur-
ing this period. The median age of the patients was 63
years, and 56 percent were men. CDNA microarray data
with 7,399 probes were collected. We divide the data
into two equal parts with 120 training data and 120 test
data. We utilize the two-fold cross validation scheme to
choose the optimal l and evaluate our method. We ran-
domly split the data into two roughly equal-sized sub-
sets and build the model with one subset and test it
with the other. To avoid the bias arising from a particu-
lar partition, the procedure is repeated 100 times, each
time we split the data randomly into two folds and do
cross validation. The relevance count is utilized to count
how many times a gene is selected in the cross valida-
tion. Clearly the maximum relevance count for a gene is
200 with the two-fold cross validation and 100 repeat-
ing. The optimal l* is in the range of 0.26-0.3, and the
optimal p* is set to 0.7 in all the experiments. The test
RRMSE is 0.07 on average, which is better than the
average test RRMSE (0.101) with LASSO based primal
model. This is reasonable, since AKRR has one addi-
tional parameter p. Genes associated with survival time
are shown in Table 4. We identify 23 probes with over
100 relevant counts. Those 23 probes are corresponding
to 21 known genes. All of the selected genes play
important roles in apoptotic processes and/or the devel-
opment and progress of various cancers. 17 out of 21
genes are associated with different lymphoma according
to PubMed. For example, BMP6 is the top gene in other
category associated with poor outcome and HLA-C gene
is from the major histocompatibility class (MHC) II
family, both genes were also identified by Rosenwald et
al. 2002. Moreover, CD86, CD79a, and CD19 are well
known antigens and MHC II signatures associated with
favorable survival outcomes. We then perform pathway
analysis using DAVID (david.abcc.ncifcrf.gov) and iden-
tify 5 lymphoma associated pathways: NOD-like Receptor
Signaling Pathway, Pathways in Cancer, Allograft Rejec-
tion, Focal Adhesion, and Graft-versus-host Disease.

Four out 5 pathways (except for NOD-like Receptor Sig-
naling Pathway) are known to be associated with DLBCL
from PubMed.

Follicular Lymphoma (FL) Data
Follicular lymphoma is a common type of Non-Hodgkin
Lymphoma (NHL). It is a slow growing lymphoma that
arises from B-cells, a type of white blood cell. It is also
called an “indolent” or “low-grade” lymphoma for its
slow nature, both in terms of its behavior and how it
looks under the microscope. A study was conducted to
predict the survival probability of patients with gene
expression profiles of tumors at diagnosis [20]. Fresh-
frozen tumor biopsy specimens and clinical data were
obtained from 191 untreated patients who had received
a diagnosis of follicular lymphoma between 1974 and
2001. The median age of patients at diagnosis was 51
years (range 23 - 81) and the median follow up time
was 6.6 years (range less than 1.0 - 28.2). The median
follow up time among patients alive was 8.1 years. Four
records with missing survival information were excluded
from the analysis. Affymetrix U133A abd U133B micro-
array genechips were used to measure gene expression
levels from RNA samples. A log 2 transformation was
applied to the Affymetrix measurement. Detailed experi-
mental protocol can be found from the original paper.
There are total of 42928 probes. It is time consuming to
directly apply standard LASSO methods to this problem
without an initial reduction of dimensions. Our method
takes less than 10 seconds for one run. Similar two-fold
cross validation scheme with 100 random partitions is
utilized to this data. The optimal l* is in the range of
0.1 - 0.12 with the optimal p* = 0.6. The test RRMSE is
0.09. The final results are shown in Table 5.
Thirteen probes with over 100 relevance counts are

identified. Those 13 probes are corresponding to 11
known genes associated with lymphoma and related dis-
eases. For instance, gene C4A localizes to the major his-
tocompatibility complex (MHC) class III region on
chromosome 6. It plays a central role in the activation
of the classical pathway of the complement system. C4A
anaphylatoxin is a mediator of local inflammatory pro-
cess. It induces the contraction of smooth muscle,
increases vascular permeability, and causes histamine
release from mast cells and basophilic leukocytes. C4A
is on the pathway of Systemic Lupus Erythematosus
(SLE). Patients with SLE can increase the risk of certain
cancers, including non-Hodgkin’s lymphoma. We find
that C4A is negatively associated with survival time
according the estimated coefficient of C4A. ALDH2 is
another well studied gene which is significantly asso-
ciated with acetaldehyde-induced micronuclei and alco-
hol-induced facial flushing. Defects in ALDH2 are a
cause of acute alcohol sensitivity and alcohol induced

Table 3 Computational Time (in Seconds): AKRR vs
LASSO

Input Dimensions AKRR LASSO

100 0.4801 0.6378

1000 0.5844 6.4577

10000 1.7500 978.23

50000 7.5255 >7200

100000 17.4545 - -
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cancers. There are accumulating evidences that ALDH2-
deficient individuals are at much higher risk of esophageal
cancer and malignant lymphoma. Our study indicates that
the up-regulated ALDH2 is positively associated with
patient survival outcomes. Six other genes are also

associated with different cancers including follicular
lymphoma.

Conclusions
We proposed kernel based methods for nonlinear AFT
model and variable selection for ultra-high dimensional
data. Our evaluations with simulation and real data
illustrate that the proposed methods can effectively
reduce the dimension of the covariates with sound pre-
diction accuracy. In many studies, both clinical and
genomic data are available. Due to the ultra-high dimen-
sion in genomic data, directly applying LASSO based
methods to genomic data is usually not feasible. Our
proposed method provides an efficient solution for it.
Kernel based nonparametric methods have been well
studied in statistical learning, but there are not many
studies for survival analysis. In this paper, we provide a
basis for further explorations in this field.

Methods
To formulate the model, consider a set of n independent

observations { , , }Ti i i i
n x =1 , where δi is the censoring

indicator, Ti is the survival time (event time) if δi = 1 or
censoring time if δi = 0, and xi = (xi1, xi2, ..., xim)

t is the
m-dimensional input vector of the ith sample. Letting w
= (w1, w2, ..., wm)

t be a vector of regression coefficients

Table 4 Genes Associated with Survival Time for DLBCL Data

Count GenBank Symbal Description

200 X59618 RRM2 ribonucleotide reductase M2 polypeptide

200 X15187 HSP90B1 tumor rejection antigen (gp96) 1

200 M60315 BMP6 bone morphogenetic protein 6

176 U04343 CD86 CD86 antigen (CD28 antigen ligand 2, B7-2 antigen)

181 X07203 MS4A1 membrane-spanning 4-domains, subfamily A, member 2

198 S75217 CD79A CD79A antigen (immunoglobulin-associated alpha)

200 M28170 SD19 CD19 antigen

138 U45878 BIRC3 baculoviral IAP repeat-containing 3

146 U10485 LRMP lymphoid-restricted membrane protein

176 U07620 MAPK10 mitogen-activated protein kinase 10

179 LC_30727

153 M63438 HLA-C immunoglobulin kappa constant

164 U46767 CCL13 small inducible cytokine subfamily A (Cys-Cys), member 13

142 X14723 CLU clusterin

200 M27492 IL1R1 interleukin 1 receptor, type I

183 J05070 MMP9 matrix metalloproteinase 9

200 X61118 LMO2 LIM domain only 2 (rhombotin-like 1)

200 M81750 MNDA myeloid cell nuclear differentiation antigen

115 X57809 IGL@ heat shock 70 kD protein 1A

162 J03746 MGST1 microsomal glutathione S-transferase 1

200 D38535 ITIH4 inter-alpha (globulin) inhibitor H4

200 M21574 PDGFRA platelet-derived growth factor receptor, alpha polypeptide

187 ESTs ESTs

Table 5 Genes Associated with Survival Time for FL Data

count ProbeID Symbal Description

200 231760_at C20orf51 chromosome 20 open reading frame
51

200 232932_at

200 235856_at C4A complement component 4A (Rodgers
blood group)

187 224280_s_a LOC56181 family with sequence similarity 54,
member B

200 201425_at ALDH2 aldehyde dehydrogenase 2 family
(mitochondrial)

180 214694_at M-RIP Myosin phosphatase Rho-interacting
protein

200 214713_at YLPM1 YLP motif containing 1

200 218477_at TMEM14A transmembrane protein 14A

200 220669_at HSHIN1 HIV-1 induced protein HIN-1

195 203970_s_a PEX3 peroxisomal biogenesis factor 3

200 208470_s_a HPR haptoglobin-related protein;
haptoglobin

175 210920_x_a

200 215444_s_a TRIM31 tripartite motif-containing 31
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and j(xi) is the nonlinear transform of xi in feature
space, the AFT model is defined as

M i ni
t

ix w x( ) = ( ) = … , , , ,1 (1)

where M(xi) > log Ti if δi = 0 and M(xi) = log Ti if
δi = 1. Because there are both equality and inequality
constraints in the model, new methods need to be
developed.

Kernel Ridge Regression (KRR)
The kernel ridge regression for right censored survival
data is as follows:
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When ties in the event times are presented, variables
associated with each tied time appear in the constraints
independently. We can define an index function I(δi) = 1
if δi = 1, and for censored data with δi = 0, I(δi) is defined
as I(δi) = 1 if log Ti ≥ wtj(xi) and 0 otherwise.
Then equation (2) is equivalent to the following quadra-
tic function:
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where l ≥ 0. If we set the gradient of J(w) with respect
to w to zero, then the solution for w is a linear combi-
nation of the vectors j(xi):
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where F is the design matrix, whose ith row is given
by j(xi)t, and a = (a1, a2, ..., an)

t are the dual variables,
defined by
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Substituting w = Fta into ai, we obtain
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where K = (K(xi, xj))n × n = (j(xi)tj(xj))n × n is a kernel
matrix which can be defined explicitly and K(xi,.) = j(xi)
tFt is the i-th row of the kernel matrix. Popular kernels
include:

• Linear kernel:

K i j i
t

jx x x x, ,( ) =

• Radial basis function (Gaussian) kernel:

K i j
i jx x

x x
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| |
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• Polynomial kernel:

K pi j i
t

j

p
x x x x, ,( ) = +( )2

1

• Sigmoid kernel:

K i j i
t

jx x x x, tanh .( ) = ( )

Our kernel ridge regression algorithm based on the
dual equation (DKRR) (6) is as follows:
The Dual Kernel Ridge Regression (DKRR) Algorithm

Given l, training data x i i i i

n
T, log , { } =1

, test data

x k k k k

n
T k, log , { } =1

, and a small ε.

Calculate the kernel matrices K K i j
n n

= ( )⎡
⎣

⎤
⎦ ×

x x,

and K Kte k i n nk
= ( )⎡⎣ ⎤⎦ ×

x x, .

Center the kernels and the survival times:

K I
n

K I
nn n n

t
n n n

t= −( ) −( )1 1 1 1 1 1 and
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K K
n

K I
nte te n n

t
n n n

t
k

= −( ) −( )1 1 1 1 1 1 , where 1n: a vec-

tor with n 1’s. and In: an identity matrix, and

log log
log

T T
T

nk k
kk

n

k

k

= − =∑ 1 . Let a0 = [0, ..., 0, 0]t,

and j = 0
WHILE 1,

• FOR i = 1 to n,

I
K T

i

i

i

i
j

i






( ) =

>
=

( ) ≤

⎧

⎨
⎪
⎪

⎩
⎪

1 0

1 0

0

if 

if 

otherwise

,

,

,. log ,

.

& x a
⎪⎪

a
I

n
K Ti

j
i

j
i

i+ = − ( ) ( ) −{ }1 
 x a, . log

a j j
i
j

i
j

n
j t

a a a a+ + +
+= … …⎡

⎣
⎤
⎦

1
1

1 1
1, , , ,

END

• j = j + 1
• IF |aj+1 - aj| <ε, BREAK.
• aj = aj+1

END
This dual kernel ridge regression (DKRR)algorithm

designed for a quadratic error function with linear con-
straints is a convex function with convex constraints. The-
oretically this algorithm will always converge and global
optimal solution is guaranteed irrelevant to initial value a0.
In our computational experiments, the differences of the
estimated parameters with different initial values are very
small (less than 0.01 with the infinity norm).

Adaptive Kernel Ridge Regression
When the number of variables is greater than the sam-
ple size n, regularization is needed to obtain a stable

estimator w. We propose a L w pp i
p

i

n= <=∑ | | ( )1
1

penalty for variable selection and estimation simulta-
neously. Unlike LASSO, Lp penalty and its different
approximation schemes (i.e., adaptive LASSO) possess
the oracle property [21,22]. Here the oracle property of
a method means that it can correctly identify the non-
zero coefficients with probability converging to one and
that the estimators of nonzero coefficients are asympto-
tically normal with the same means and covariances as
what they would have the zero coefficients be known in
advance. We therefore propose the following penalized
AFT model:

J

n
I T

w

n
I

i

n

i
t

i i

i

m

i
p

i

n

w

w x

( ) =

( ) ( ) −{ }

+

=

=

=

=

∑

∑

∑

1
2

2

1
2

1

2

1

1

 





log

| |

ii
t

i i

i

i
p

i

m

T

w

w

( ) ( ) −{ }

+ −
=
∑

w x



log

| |

| |
,

2

2

2
1

2

(7)

where l ≥ 0. With n ≪ m, linear kernel is more
appropriate, since model with linear kernel has less
over-fitting. We will take j(xi) = xi, introduce an auxili-
ary (latent) variable vector u = [u1, u2, ..., um]

t, and
develop an adaptive procedure based on equation (7).
Equation (7) can be rewritten as:

J

n
I T

w

u

i

n

i
t

i i

i

i
p

i

m

w u

w x

,

log

| |

| |
,

( ) =

( ) −{ }

+

=

−
=

∑

∑

1
2

2

1

2

2

2
1





(8)

and, .u w= (9)

With equation (8) and (9), we will find the first order
derivative for w with a fixed u and then update u = w.
After taking the first order derivative, we have the fol-
lowing equation:

w

w x x u

x u

=

− ( ) −{ }( )

= ( )
=

−

=

−

∑

∑

1

1

2

1

2

n
I T

a

i

n

i
t

i i i
p

i

i

n

i
p


 log | |

| |



 == X t
ua,

(10)

where ⊙ represents the componentwise product of
two vectors and

X

t p t

n
t p t

u

x u

x u

=

( )

( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

−

−

 

1
2

2







| |

| |

,
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and

a
I

n
Ti

i t
i i= − ( ) −{ }


w x log . (11)

We substitute w au= X t and define a new kernel

function K XX t
u u= . Then we have K Xi i

t t
u ux x, .( ) = ,

which is the ith row of Ku. So,

a
I

n
X T

I

n
K T

i
i

i
t t

i

i
i i

=

( )

− ( ) −{ }
= − ( ) −{ }






x a

x a

u

u

log

,. log .

(12)

The adaptive kernel ridge regression algorithm based
on dual variables a with equation (10) and (12) is as
follows:
Adaptive Kernel Ridge Regression (AKRR) Algorithm

Given a l, p Î (0.1], training data x i i i i

n
T, log , { } =1

,

and a small ε and h.
Initializing w = u = rand(m, 1), and a = [0, ..., 0]t

Setting u(ui == 0) = 10e - 5 and j = 1.
While |w - u| >ε

• u = w,

• K XX t
u u=

• FOR i = 1 to n,

I
K T

i

i

i

i
j

i

( )
,

,. log ,

.

&





=

>
=

( ) ≤

⎧

⎨
⎪
⎪

⎩
⎪
⎪

1 0

1 0

0

if 

if 

otherwise

x a

a
I

n
K Ti

j
i

j
i

i+ = − ( ) ( ) −{ }1 
 u x a, . log

a j j
i
j

i
j

n
j ta a a a+ + +

+= … …1
1

1 1
1[ , , , , ]

END

• j = j + 1

• w au= X t .

END
w(w <h) = 0
Unlike other LASSO based methods which seek to

find optimal w directly, AKRR algorithm updates the
m-dimensional w through updating a much smaller
n-dimensional dual variable a. This method is computa-
tionally highly efficient when n ≪ m, which is common
in genomic data. Although the proposed method is

based on the dual problem, the primal variable w is
explicitly updated in the computation. Theoretically
AKRR algorithm will always converge to global optimal
solution when p = 1 irrelevant to initial values of w, u,
and a, as the error function is convex under L1 penalty,
but only local optimal solution is guaranteed when p <
1. However, in our computational experiments with
simulation and real data, even though we may have dif-
ferent optimal solutions with different initializations
only when p ≤ 0.5, most selected features are still the
same in different runs. AKRR always reach the same
optimal solution in all of our experiments when p ≥ 0.6.
One possible explanation is that the error function may
still be near convex or convex almost everywhere when
p is large. Therefore it may be possible that we enjoy
both the oracle property with less bias and the global
optimal solution with larger p (0.6 ≤ p < 1). Theoretical
study for the near convex error function, however, is
out of the scope of this paper. To prevent the results
stick to a local optimal solution when p ≤ 0.5, we run
AKRR 30 times and the best solution is chosen from the
run with smallest test error. Even though AKRR does
choose different variables with different ps, a small sub-
set (≥ 5) of most important genes are always selected in
our experiments. The model performance can be evalu-
ated with cross-validation and the relative root mean

squared error ( )
(( ) / )

RRMSE =
y y y

n
i i ii

−∑ 2
of the

test data. There are two parameters p and l for the
adaptive kernel ridge regression (AKRR) algorithm. One
efficient way is to set p = 0.1, 0.2, ..., 1 alternatively, and
then search for the best l through cross-validation. The
range of can be determined by the path of the optimal
solution. lmin = 0 and lmax is set to be the smallest
value with all zero estimated parameters by multiple
trials. We search the optimal l from l Î (0, 1] in this
paper. Usually we have a larger lmax for p = 1, and
smaller lmax when p is smaller.
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