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Abstract. Atomic force microscopy (AFM) is a powerful technique which is commonly used
to image surfaces at the nanoscale and single-molecule level, as well as to investigate physical
properties of the sample surface using a technique known as force spectroscopy. In this chapter,
we review our recent research where we used AFM to investigate physical properties of phos-
pholipid monolayers, bilayers, and cell membranes. We describe the experimental procedures
for AFM imaging, force measurements, and theoretical models to analyze force spectroscopy
data. The data obtained allowed correlations between AFM topography and local adhesion and
mechanoelastic properties of supported lipid bilayers in water, supported pulmonary surfactant
films in air, and the plasma membrane of epithelial type II cells. Finally, AFM was applied to
help elucidate the effect of anesthetics and cholesterol present in the lipid films.
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21.1
Introduction

Lipid membranes are integral components of the cellular organization in all living
organisms [1]. As the major constituents of the biological membranes that form
the outer boundary of cells and organelles they are involved in a vast number of
biological processes. Their functions are to compartmentalize the cells, sort, reg-
ulate, and mediate biomolecular interactions. These complex functions are possi-
ble owing to the diverse physical-chemical properties of these membranes, which
include two-dimensional fluidity, material elasticity, chemical diversity, and rich
phase behavior [2]. Understanding the physical and chemical properties of lipid
membranes [3, 4] and how they control biological processes is critical to our under-
standing of the molecular mechanisms of many diseases and finding a cure for them.
The variety in structure and physical properties of cell membranes governs their
biomolecular assembly and plays an important role in many fundamental biological
processes [5]. For example, small, condensed rafts of spingolipids, cholesterol, and
raft-associated protein play a crucial role in signaling, intracellular trafficking of
lipids, platelet activation, membrane fusion, and protein binding [6, 7]. Lipid rafts
present in a cell membrane serve as entry and exit sites for microbial pathogens, such
as influenza virus, measles virus, and HIV. Lipid–protein mixtures not only form
membranes. Pulmonary surfactant [8, 9], which is a specific lipid–protein complex,
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forms a molecular film that covers the lung’s interface with the air [10]. The major
functions of pulmonary surfactant are to reduce the surface tension of the airspace–
liquid interface, provide stability to the alveolar structure, and reduce the work of
breathing [11]. Understanding the lateral distribution and interactions among the
lipids and proteins in pulmonary surfactant monolayers is extremely important in
order to develop methods of preventing alveolar collapse in cases of surfactant de-
ficiency such as in premature infants or dysfunctional surfactant such as in adult
respiratory distress syndrome (ARDS) [12].

Supported phospholipid bilayers (SPBs) [13] and monolayers are accepted and
convenient model systems which mimic many fundamental properties of biolog-
ical membranes and pulmonary surfactant. SPBs are composed of phospholipids
adsorbed to a planar solid support. They also are of importance for biotechnol-
ogy applications, as they form membrane-mimetic materials useful for creation of
new classes of biosensors, diagnostic tools, and high-throughput characterization
platforms for rapid and early detection of interactions between cells and their en-
vironment [14, 15]. Such lipid films can serve as templates into which functional
biomolecules can be incorporated, creating a powerful platform for the development
of nanosensor and nanodevices. For biomedical and nanotechnology applications it
is important to control processes involving the interaction of lipid membranes and
monolayers with DNA and proteins, as well as polymers and inorganic nanoparti-
cles. Adhesion of particles to the supported lipid films is important in biotechnology
and medicine applications, for example, to study toxicity of nanoscale air pollutants
and also for the development of effective pulmonary drug delivery systems [16].

Atomic force microscopy (AFM) has proven to be a valuable tool for imag-
ing “soft” biological samples such as lipid films [17–21] especially in intermittent
contact mode [22–24]. With AFM, one can not only image membranes in their
native hydrated state. One can also measure the forces of interaction between the
AFM probe and the sample, obtaining information about the physical properties of
biological systems [25–29].

Measuring the physical and chemical properties of lipid membranes and mono-
layers involves measuring a multitude forces of weak noncovalent bonds (e. g.,
electrostatic, van der Waals, and/or hydrogen bonds) or hydrophobic interactions
between geometrically complementary surfaces. To understand a response of a bi-
ological system to its environment one needs to measure the physical and chemical
properties of the macromolecular assembly, such as membranes and monolayers,
and how these properties are affected by mechanical stress, thermal change, and/or
molecular adsorption. It concerns the mechanical properties such as two-dimensional
fluidity and anisotropic elasticity of the membrane as well as thermodynamic prop-
erties underlying its rich phase behavior. Those bulk properties can also be inves-
tigated by a thermodynamic approach such as calorimetry, densitometry, contact
angle measurement, or analysis of adsorption kinetics using surface plasmon res-
onance or ellipsometry. On a molecular level, molecular dynamics simulation has
been employed, providing an insight into the organization of lipid structures and the
stability. AFM is an ideal tool to measure directly the molecular force from 0.1 pN
up to micronewtons between two surfaces or even single molecules. On approach
of the AFM probe tip to the sample, the force–distance curve can be used to charac-
terize surface properties, such as van der Waals and electrostatic forces, solvation,
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hydration, and compression-related steric forces [30]. The retraction force curves
often show a hysteresis referred to as an adhesion “pull-off” event, which can be used
to estimate the adhesion forces. Many experimental force data are now available in
the literature, and theoretical models have been developed for the analysis of forces
acting between two solid surfaces [31–36]. In contrast, only a few publications have
addressed force measurements of soft thin layers [37] such as thiol self-assembled
monolayers [38–41] and phospholipid bilayers [42–44].

Here we review our recent research on interaction forces measured with AFM on
SPBs in water and supported phospolipid monolayers in air, as models for biological
membrane and pulmonary lung surfactant films, and on epithelial type II cells which
cover the lung’s interface with the air.

21.2
Phase Transitions of Lipid Bilayers in Water

The complex structural dynamics of phospholipid bilayers are governed by tempera-
ture-dependent parameters such as average interfacial area per lipid, bilayer thick-
ness, and disorder of the hydrophobic tails. Although SPBs differ from free-standing
membranes such as those found in vesicles or liposomes, they serve as good mod-
els for biological membranes. The SPB can exist in several lamellar phases: gel
phase, liquid-crystalline or fluid phase, subgel phase, and ripple phase [45]. Often,
phase behavior is dominated by the main Lβ–Lα (gel–fluid) transition. A large num-
ber of stable, metastable, and transient lamellar gel structures can be adopted by
different lipids. For saturated phosphatidylcholines, such as 1,2-dipalmitoyl phos-
phatidylcholine (DPPC), there are four recognized lamellar phases, namely, a liquid-
crystalline phase (Lα) or phases with ordered hydrocarbon chain arrangements,
a ripple phase (Pβ), a gel phase (Lβ), and “subgel” or “crystal” phase (Lc) [46].
Phase-related bilayer properties have been examined using a variety of experi-
mental techniques [47–50]. The phase transition from the gel phase to the liquid-
crystalline phase is shown schematically in Fig. 21.1. Physical properties of lipids
such as density and thickness have been studied by differential scanning calorimetry,
pressure calorimetry or dilatometry, and densitometry and other methods [51, 52].
Temperature-dependent AFM studies allow for visualizing these phase transitions
and provide valuable information about changes in structural and physical properties
of bilayers during phase transitions. Temperature-dependent AFM studies involving
imaging bilayers have been reported [53–57]. In addition, we have examined the
force measurements as a function of temperature [58].

In this section we review our results on force measurements in SPBs during
phase transitions associated with melting or anesthetic incorporation. Dioleoyl phos-
phatidylcholine (DOPC; lyophilized or in chloroform solution) (Sigma, Oakville,
ON, USA) and DPPC (Avanti Polar Lipids, Alabaster, ME, USA) were used without
further purification. Phosphate buffer (pH 6.8) and distilled, nanopure water were
used in the preparation of all vesicles. Freshly cleaved ASTMV-2 quality, scratch-
free ruby mica (Asheville-Schoonmaker Mica) was used as the solid support. Sup-
ported planar bilayers were prepared for AFM imaging by the method of vesicle
fusion [59, 60]. All vesicles were prepared as previously reported [59]. Aliquots of
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Fig. 21.1. Domain formation
in a phospholipid bilayer
supported on mica. The fluid
phase domains correspond to
a lower thickness than the
gel-phase domains

the vesicle solution were deposited on freshly cleaved pure mica. After a controlled
period of time the mica was gently rinsed with nanopure water. Surfaces were imaged
with an atomic force microscope (Pico SPM, Molecular Imaging) equipped with an
AFMS-165 scanner. The nominal spring constants of Au–Cr-coated MAClevers
used were approximately 0.6 N/m. The tip radius of curvature was typically 25 nm.
The scan rate was 20 μm/s. All imaging and force measurements were performed
in a liquid cell under nanopure water. For temperature-dependence experiments the
temperature was varied from 22 to 65 ◦C, within 0.1 ◦C accuracy with a 1 ◦C/min
ramp.

21.2.1
Morphology Change During Lamellar Phase Transition

21.2.1.1
Temperature-Dependent Phase Transition

A DPPC phospholipid bilayer normally exists in the gel phase at room temperature.
When heated above the melting transition temperature it transforms into the fluid
phase. Domains of lower thickness are readily formed during this process. Such
domains are shown schematically in Fig. 21.1 and are easily observed by AFM
imaging (Fig. 21.2).

A DPPC supported bilayer was imaged while it was heated from room tempera-
ture to 65 ◦C and also while it was cooled back to room temperature. The topography
images (Fig. 21.2) show the typical formation of lipid domains during the phase tran-
sition. In Fig. 21.2, panel A, a DPPC bilayer is in the gel phase, Lβ, at 22 ◦C. When
sample was heated, several phase transitions were observed as a function of increas-
ing temperature: a broad main transition was observed at 42–52 ◦C, and another
transition at 53–60 ◦C within the fluid phase. The first transition, at 42–52 ◦C, is at-
tributed to the main Lβ–Lα transition, and the second transition, between 53–60 ◦C,
to the formation of a fluid disordered phase, perhaps with interdigitated or partly
interdigitated lipid chains. Slowly cooling the system back showed that the two
higher-temperature transitions at 42–52 and 53–60 ◦C are reversible and that the
bilayer can be restored to its initial thickness [61]. A DOPC bilayer, which exists in
a fluid phase at room temperature, when heated shows thickness reduction as well
as an increase in surface coverage [62], but no domain formation. Previous studies
have established the Lβ–Lα phase transition temperature for DPPC at 41 ◦C [63].
The presence of two broad transitions that we observed on supported bilayers can
be attributed to the effect of the mica support and to separating the phase transitions
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Fig. 21.2. Atomic force microscopy (AFM) topography images (scan size 1.5 μm by 1.5 μm)
showing a phase transition in a 1,2-dipalmitoyl phosphatidylcholine (DPPC) bilayer. A DPPC
bilayer at room temperature, 22 ◦C. B DPPC bilayer with excess of halothane (60 μl) [57].
C 50 ◦C—melting transition [61]. The scale bars show the deviation in height

in the bilayer’s upper and lower leaflets. A similar effect was reported for supported
bilayer transitions observed using differential scanning calorimetry by Yang and
Appleyard [64].

21.2.1.2
Phase Transition Due to Incorporation of Halothane

Understanding the changes in physical and chemical properties of biological mem-
branes owing to the incorporation of anesthetics is of great interest for understanding
the mechanism of anesthetic action. Currently, it is understood that anesthetic di-
rectly affects membrane proteins; however, because they are lipophilic, they partition
into the membrane and may interact with membrane proteins via the lipid bilayer.

AFM imaging of a DPPC bilayer (Fig. 21.2, panel B) shows domain formation
in the presence of general anesthetic halothane similar to what we observed during
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heating. We have shown that changes in bilayer thickness induced by halothane are
similar to the first melting transition [58]. For a DPPC SPB containing halothane,
only one transition at 52–60 ◦C was evident during heating and cooling. The presence
of halothane changes the structural properties of the bilayer in such a way that the
other transitions observed for the pure bilayer are not possible. We assume that
in the presence of halothane, the water interface layer is disturbed by halothane
molecules, thus eliminating the low-temperature transition. In spite of the visual
similarity between an anesthetic-induced domain formation (Fig. 21.2, panel B) and
the heat-induced gel–liquid phase transition (Fig. 21.2, panel C), observed by AFM
imaging, the mechanism of anesthetic action is likely to be different from the effect of
membrane melting. We assume that the physical properties of the domains produced
in lipid bilayers by halothane and by temperature are also different. To address these
physical properties we used the atomic force microscope also as a force apparatus.

21.2.2
Change in Forces During Phase Transition

21.2.2.1
Force Measurements

In AFM force measurements, the probe is moved towards the sample and cantilever
deflection is measured as a function of the extension of the piezoelectric tube. During
approach to the surface, the attractive and repulsive forces measured are characterized
by van der Waals and electrostatic interactions as well as solvation, hydration, and
compression-related steric forces [26, 36, 52, 65]. The probe is then retracted from
the surface. The retraction force curves often show a hysteresis referred to as an
adhesion pull-off event, which can be used to determine adhesion forces between
the probe and the sample.

In our experiments, we imaged the supported bilayer first in tapping MAC mode.
After the image was complete and had been saved we switched the regime into the
contact mode and then using the same cantilever, we measured forces of interaction
by positioning the atomic force microscope tip on different locations using the image
obtained in tapping mode.

It is a well-known fact that the force interactions depend on the velocity of
the surface approach [26], especially for soft, viscoelastic materials. We varied the
frequency sweep over about four decades, from 0.01 to 10 Hz. The Z-range was
50 nm. Note that varying the scan frequency affects simultaneously the velocity at
which the tip is withdrawn from the bilayer and the contact time between the tip and
the sample. At a fixed applied load, increasing the frequency sweep rate increases the
tip velocity, but decreases the contact time. Data were collected over a time period of
2 h at ten locations on the bilayer and a total of 100 force curves were analyzed for
each sample. Force curves were saved as plots and then converted into text files for
analysis. After the raw data had been collected they were converted into the “force
versus separation plots”, averaged, and analyzed.

Here we review our results on force measurements in DOPC and DPPC SPBs
during heating above TM from 22 to 65 ◦C. We also compare them with results
obtained on bilayers saturated with halothane at 20 ◦C.
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21.2.2.2
AFM Force Analysis

Force measurements using the atomic force microscope (described in Sect. 21.2.2.1)
give us raw data of cantilever deflection δV versus piezo movement zpiezo. Raw data
were transformed numerically using the MatLab environment. Raw data (Zc versus
Zp) were then converted into force F versus surface–tip separation D using Hooke’s
law: F = kZc, where k is the spring constant of the cantilever, and the geometric
relationship D = Zc − Zp for incremental changes.

Statistical data were extracted from a large set of measurements. The bin size of
the histogram was determined statistically by dividing the range of measurements by
the square root of the number of measurements. The average of the adhesion force
and the standard deviation were obtained from the analysis of the whole set of force
curves, which were represented in histogram form, P(x), and then adjusted using
Gaussian and Poisson distributions.

21.2.2.3
Adhesion Forces

To extract information about adhesion forces we analyzed the retrace part of the
force curve. Raw data of the cantilever deflection corresponding to the retraction of
the tip from the surface, after contact, are shown in Fig. 21.3.

Force data were collected as a function of temperature for a DPPC SPB. When
a pure DPPC bilayer was heated, the temperature increase resulted in a gradual
change of the force profile. The force required to detach the tip from the bilayer
increased from 3 nN at 36 ◦C to 10 nN at 50 ◦C. In addition, the jump out of the
contact was not abrupt, compared with that for a “solid-like” surface (i. e., mica).
The distance the tip travels before it separates from the surface increased with
increasing temperature. As van der Waals forces are known to vary only slightly
with temperature, the change in the profile must be due to tip–bilayer interactions
that depend on the bilayer phase. Incorporation of halothane into DPPC also leads

Fig. 21.3. Cantilever deflection dZc as
a function of the piezotube elongation
when the tip is retracted from the sample.
DPPC bilayers deposited on mica were
measured under three conditions: a the
DPPC bilayer at 22 ◦C; b the DPPC
bilayer at 50 ◦C; c the DPPC bilayer with
halothane incorporated at 22 ◦C
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to a significant change in the force profile. As a bilayer adsorbed on mica is known
to screen the van der Waals forces [66], the huge adhesion force observed cannot
originate solely from the van der Waals forces. This adhesion behavior can be
compared with that observed in the phase transition on DPPC from the gel to the
liquid crystal observed on increasing the temperature (Fig. 21.3, plots b and c).
Halothane induces then a transition of the bilayer into the fluid phase in a similar
manner as melting, and induces the increase in adhesion, although the adhesion with
excess halothane was greater than the adhesion observed on pure DPPC at elevated
temperature.

To analyze the force histogram (Fig. 21.4), we employed Poisson statistics. It
has been demonstrated that the force of a unit interaction between an atomic force
microscope tip and a surface can be determined from a statistical analysis of a series
of detachment force measurements. For a statistical analysis based on adhesion force
originating from a discrete number n of individual interactions or bonds, Fs was used.
The total force distribution follows Poisson statistics, where both the adhesion force
Fadh and the variance σ originate from a number of individual tip–surface bonds, n:

Fadh = nFs and σ2 = nF2
s . (21.1)

The force of one bond, Fs, is therefore given by the square of the variance of the force
divided by the mean adhesion force Fadh. The value n is the ratio between Fadh and Fs.
This analysis has the advantage that knowledge of the mean radius of curvature is
not required [67] and gives information on the nature of the bilayer. This analysis
allows one to correlate microscale changes in the bilayer physical properties with

Fig. 21.4.Distribution of adhesion force Fadh, measured in phospholipid bilayers in water: a DPPC
Fs = 0.3 nN, n = 3; b DPPC Fs = 0.5 nN, n = 6 [58]; c DPPC + halothane Fs = 0.5 nN,
n = 14 [58]
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Table 21.1. Experimental adhesion force Fadh and its standard error σ on a 1,2-dipalmitoyl
phosphatidylcholine (DPPC) bilayer at room and elevated temperature and DPPC with halothane,
measured at room temperature; calculation of the number of bonds n and the mean force of
a single bond Fs

DPPCa DPPCb DOPCa DPPCa DPPC + halothaneb

22 ◦C 22 ◦C 22 ◦C 60 ◦C 22 ◦C

Fadh (nN) 1 1.5 3 5 7
σ (nN) 0.6 0.8 1.2 2 2
Fs (nN) 0.3 0.4 0.5 0.8 0.5
n 3 4 6 6 14

DOPC dioleoyl phosphatidylcholine
a From [61]
b From [58]

the molecular structure and the mobility of individual lipid molecules. The lipids in
biological membranes have a high lateral mobility since they can easily exchange
their positions. The fluidity of the membrane can be then thought of as the lateral
motion of the constituents of the membranes. This fluidity should depend on the
chain length and the composition of the membranes. The mobility of tails can be
seen as the number of molecules n in contact with the AFM probe. The larger n is,
the higher the mobility. The change in mobility increases the number of bonds n and
therefore Fadh and σ .

The statistical distribution of the adhesion forces (Table 21.1) clearly demon-
strates that adhesion forces observed for a pure DPPC bilayer increase with heating
and increase even more with halothane incorporation.

A fluid-phase DPPC bilayer at high temperature is typically ascribed to a higher
number of tip–sample bonds [61]. The force of a single bond is increased in a fluid
phase. In addition, in a fluid phase, n increases on decreasing the speed of the tip
motion v. The number of bonds, n, involved is higher in the fluid phase. It has been
shown previously that the force required to remove a single lipid from a bilayer is of
the order 30–140 pN [68,69], depending on the lipid and on the technique employed.
The lowest values that we measure are at least twice this range, suggesting that we
do not observe single lipid binding events. Instead, our unit “bonds” must represent
patches containing more than three lipids. The detachment force between the patch
and the tip must be smaller than the extraction force of the entire patch otherwise
we would see evidence of lipids coating the tip. This is consistent with our previous
work where continuous imaging of bilayers displayed no resolution degradation or
changes in force curves, which would result from uncontrollable lipid coating the
atomic force microscope tip.

The effect of halothane is similar to the effect of melting. A DPPC bilayer
with halothane corresponds to higher adhesion force, higher standard error, and
a larger number of single binding events between the atomic force microscope
tip and the sample. This number, n = 14, is more than 2 times larger than for
a fluid phase produced by melting. The single force Fs was not altered significantly
by the presence of halothane. The presence of halothane in the bilayer increases,
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therefore, the fluidity of the DPPC molecules in the bilayer. The number of binding
events, n, could also be higher owing to the contribution of halothane molecules
themselves, interacting with the atomic force microscope tip. The unit force Fs for
fluid-phase DPPC is 0.8 compared with 0.5 for the DOPC bilayer (Table 21.1);
the umber of unit bonds is 6 for both fluid-phase DPPC and DOPC bilayers. This
correlation permits evaluation of a bilayer fluidity and is in a good agreement with
imaging data. Adhesion forces depend, therefore, on the physical properties of
the bilayer and the force analysis gives valuable information on the nature of the
bilayer.

21.2.2.4
Repulsive Forces

Repulsive forces were extracted by analyzing the approach part of experimental force
curves. Figure 21.5 shows plots of the repulsive forces measured while the atomic
force microscope tip was approaching the sample surface of pure mica for a DPPC
bilayer at room temperature, a DPPC bilayer at 50 ◦C [61], and a DPPC bilayer with
an excess of halothane [58].

For pure DPPC, three exponential regimes clearly exist, one at the long range
from 4 to 7 nm, another at short range between 0.3 and 4 nm, and the third, steep
one in close contact with mica, which we will not consider.

The long-range interactions can be explained by electrostatics. Electrostatic
repulsion likely originates from an effective charge density at the bilayer–water
interface, where zwitterionic headgroups interact with water molecules. The ap-
proximate expression of the electrostatic force (also called double-layer force) is
given by [70]

F = 4πσRψT exp(−KD D) , (21.2)

where R is the tip radius, σ is the surface charge, ψT is the tip potential, and KD is
the inverse of the Debye length. KD can be estimated to be 0.25/nm.

Fig. 21.5. Logarithmic representation of the
force acting on the DPPC layer at 22 ◦C
(squares), on the DPPC layer at 50 ◦C
(circles), and on the DPPC layer with
halothane at 22 ◦C (triangles)
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The long-range force does not seem to be affected by temperature, as the two
curves in the log plot are almost parallel (Fig. 21.5). In the presence of halothane,
(Fig. 21.5), the long-range electrostatic forces appear to be reduced, in the range
above 4 nm. Therefore, halothane clearly changes the surface charge density of the
DPPC bilayer by replacing water molecules and reducing water shielding of the lipid
bilayer, thereby decreasing the magnitude of the electrostatic forces.

The second, short-range regime, between 0.3 and 4 nm, is attributed to the
deformation of the bilayer. Most studies on the bilayer report a jump corresponding to
the piercing of the bilayer for forces ranging from approximately 3 to 25 nN [71–73].
This jump into contact is observed when the force gradient exceeds the spring
constant of the cantilever k, which is the case when k < 1 N/m. Although the
force sensitivity can be altered, a high cantilever spring constant (k = 30 N/m)
was chosen for monitoring all the data during the penetration. The force gradient
attributed to the layer indentation was measured to be around 10 N/m and the force
needed to puncture the lipid bilayer is in good agreement with that found in other
studies.

The repulsive force in the short-range regime at the contact of the bilayer cannot
be easily treated using common elastic mechanical models such as Hertz’s theory,
or any other models based on continuum mechanics. The heads of the phospholipids
are responsible for a crystalline elasticity, i. e., a change of the head-to-head distance
(high elasticity but low rupture). The lipid chain behaves like rubber (low elasticity),
and this behavior is related to the change of entropy (increase of order when one
presses the layer). It results in the property that the cell membranes can be easily de-
formed in the plane but do not resist the expansion (distance between the headgroup
cannot vary more than 2%). With our AFM experiments we are examining very
small, discrete areas where nanoindentation induces not only macroscopic compres-
sion of the bilayer, but also nanoscale structural changes in the bilayer. Therefore,
a molecular approach, considering steric forces [42], is preferable.

The exponential increase of the repulsive force likely originates from tail steric
repulsion induced by the atomic force microscope tip compressing the bilayer. The
tails in the bilayer will resist compression, because compression will increase the
local concentration of the alkyl segments, increasing the free energy of the system.
The steric forces of compression act on the bilayer until the loading force is close to
the yield force, when the tip penetrates through the bilayer. The breakthrough force
decreases as the temperature increases, and a DPPC bilayer at elevated temperatures
shows similar instability in the force plot as a fluid-phase DOPC bilayer and a fluid-
phase 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) bilayer [44].

The steric force per unit area that the bilayer exerts on the tip can be modeled
using the formalism developed in the work of de Gennes [74]. This model was further
developed by Cappella and Dietler [26], where interaction between two polymer
surfaces was considered. We modified this formula, considering the interaction of
the AFM probe and the bilayer, which gives the formula for the steric repulsion
force:

Fste = 100kTRLγ 3/2 exp(−2πD/L) , (21.3)

where k is the Boltzmann constant, R is the tip radius of curvature, T is the temper-
ature, γ is the tail density (inverse of the area per lipid), D is the distance between
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the atomic force microscope tip and the mica surface, and L is the uncompressed
bilayer thickness. Similar to the equation for the two interacting polymer surfaces,
this formula is valid in the range of distances where 0.2 < D/L < 0.9. Since the tip
radius is not well defined, it is difficult to estimate the tail density from the fit, but
the transition between the two exponential regimes can be a good way to measure
the thickness of the bilayer L.

The steric forces can, however, be used to determine the thickness of the layer
adsorbed at the surface in good agreement with the image cross-section analysis.
With the temperature increase, the steric force departs from a pure exponential law
owing to the increase of the lateral mobility of the phospholipid tails. The transition
between the electrostatic regime and the steric regime where the tip is at the top of the
bilayer can be an effective way to estimate the bilayer thickness. At 22 ◦C, a transition
occurs at D = 4 nm, corresponding to a thickness L = D/0.9 = 4.5 nm, which
agrees with what is known from the literature (4.7 nm). With increasing temperature,
the magnitude and the range of the steric force decrease contrary to the change in
the electrostatic force. The steric force in a fluid phase, at elevated temperatures, is
reduced by 50% compared with that a gel phase, as in Fig. 21.5. This can be explained
by the reduction in the tail density with temperature. The tail density is reduced from
1/50 to 1/67.1 (considering an area per lipid of 50 Å2 at room temperature and
67.1 Å2 at 65 ◦C [75–77]), which makes 25% of difference and therefore a change
of 40% in the force. In a fluid regime, i. e., at T > 50 ◦C, the shape of the steric part
of the force–distance curve starts to depart from an exponential dependence and is
similar to the linear abrupt jump observed for a fluid-phase DOTAP bilayer at room
temperature. It appears that (21.3) is only valid for a gel-phase DPPC bilayer, where
lateral motion of the lipids is lower.

With halothane incorporation (Fig. 21.5, triangles) the force is mostly governed
by the bilayer deformation, described by steric forces. The induced phase transition
of the DPPC has already been characterized by a decrease in the “effective thickness”.
The major difference with the temperature-induced phase transition comes from the
fact that the incorporation of halothane changes the electrostatic interaction, which
was not the case during the melting transition. Our force measurements confirmed
that assumption and clearly showed the differences in the physical properties of
the bilayer in thin domains, produced by the melting transition and partitioning of
halothane.

When the adhesion forces are compared for DPPC and DOPC bilayers, they
are similar for the fluid-phase DPPC bilayer at elevated temperatures and the fluid-
phase DOPC bilayer at room temperature. The unit force Fs for fluid-phase the
DPPC bilayer is 0.8 compared with 0.5 for the DOPC bilayer (Table 21.1); the
number of unit bonds is 6 for both fluid-phase DPPC and DOPC bilayers. This
correlation permits evaluation of a bilayer fluidity and is in a good agreement with
imaging data. Therefore, adhesion forces depend on the physical properties of the
bilayer, and force analysis gives important information on the nature of the bilayer.
In the repulsive part of the force plot using a steric force model also provides
an important insight into the properties of the bilayer and ability of lipids to resist
compression. Steric forces reduce with the temperature increase for the DPPC bilayer
and correlate well with low steric forces for the fluid-phase DOPC bilayer at room
temperature. In general, a fluid-phase bilayer can be characterized by the reduced
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repulsive forces, compared with the gel-phase bilayer. The major contribution to this
change is provided by changes in steric forces. Lipid compression is much easier in
the fluid phase owing to the higher disorder of tails and mobility of lipids, and lower
tail density.

Individual bond forces can be estimated for lipid bilayers and changes in binding
number can be used as a distinctive feature of the increase of bilayer fluidity. A force
analysis revealed that the interaction between the tip and the surface was governed
by both the electrostatic forces, for longer range, and the steric forces, at shorter
range. Electrostatic repulsion likely originates from an effective charge density
at the bilayer–water interface, where zwitterionic headgroups interact with water
molecules. The steric forces can be used to determine the thickness of the layer
adsorbed at the surface in good agreement with the image cross-section analysis.
With the temperature increase, the steric force departs from a pure exponential law
owing to the increase of the lateral mobility of the phospholipid tails. The transition
between the electrostatic regime and the steric regime where the tip is at the top of
the bilayer can be an effective way to estimate the bilayer thickness.

The temperature-induced phase transition of DPPC has been characterized by
a decrease in the, “effective thickness” and we also observed similar behavior for
bilayers containing halothane [58]. The major difference comes from the fact that the
incorporation of halothane changes the electrostatic interaction, which was not the
case during the melting transition. Halothane is a small polar molecule and is assumed
to increase the polarity of the bilayer at the interface, and has been shown to replace
water molecules bound to lipids at the interface. Our force measurements confirmed
that assumption and clearly showed the differences in the physical properties of
the bilayer in thin domains, produced by the melting transition and partitioning of
halothane.

21.3
Force Measurements on Pulmonary Surfactant Monolayers in Air

Pulmonary surfactant is a specific mixture of phospholipids and surfactant-specific
proteins. It forms a molecular film at the interface of the hydrated lung epithelium
with the air and thereby reduces the surface tension of the interface to near zero.
This is required for normal respiration and structural stability of the lung. In adult
respiratory distress syndrome (ARDS), surfactant function fails. As a result, the
lung is less compliant, the gas exchange area is reduced, and blood oxygenation is
strongly decreased. The surfactant film is also the first barrier of airborne particles
in polluted air. When inhaled, ultrafine particles with an aerodynamic diameter of
100 nm or less produce a major health threat. They cross the surfactant film, cross
the lung epithelium, and enter the bloodstream. We describe force spectroscopy
experiments aimed at a better understanding of surfactant failure in ARDS. Force
spectroscopy was used to study the interactions between airborne particles and the
surfactant. Particles (modeled by an atomic force microscope tip) interact with the
surfactant film before they get into close contact because of the electrical surface
potential of the film. This interaction depends on surface potential, which is locally
strongly variable, depending on the film composition.
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Fig. 21.6. Supported lipid mono-
layer and multilayers on mica, trans-
ferred from the liquid–air interface by
Langmuir–Blodgett deposition; these
multilayers are shown on the AFM
topography image in Fig. 21.7a

We have shown that the ability of surfactant to reduce surface tension is as-
sociated with a distinct molecular architecture of the surfactant film. The func-
tional pulmonary surfactant forms a pattern of molecular monolayer areas and ar-
eas of lamellar stacks, cross-linked to the monolayer at the air–aqueous interface
(Fig. 21.7a). We recently found that cholesterol in excess of a physiological propor-
tion abolishes surfactant function, and surfactant fails to lower the surface tension
upon compression [78]. This failure of function is associated with a change in the
molecular architecture [79]. The formation of multilayer stacks, which is a char-
acteristic feature of functional surfactant, does not occur in the presence of excess
cholesterol.

We performed atomic force measurements on supported pulmonary surfactant
films in air to address the effect of cholesterol on the physical properties of lung
surfactant films. We used bovine lipid extract surfactant (BLES). BLES is a hy-
drophobic extract of bovine lung lavage that differs from natural surfactant in the
lack of surfactant-specific proteins SP-A and SP–D and cholesterol. Phosphatidyl-
cholines represent 80% of its mass with half of the phosphatidylcholines being
the disaturated DPPC. Between 5 and 10 mass % is the negatively charged phos-
phatidylglycerol, and two hydrophobic surfactant-associated proteins (SP-B, SP-C).
BLES in nonbuffered normal saline (pH 5–6) with a phospholipid concentration
of 27 mg/ml was a kind gift from the manufacturer (BLES Biochemical, Lon-
don, ON, Canada). Cholesterol was purchased from Sigma Chemicals. A solu-
tion of 1:1:1 methanol, chloroform, and BLES by volume was first vortexed and
then spun at 100g for 5 min. The methanol–water phase was discarded and the
BLES in chloroform was retained and either 5 or 20% of cholesterol (by mass)
with respect to phospholipids in chloroform was added. Each solution was then
dried under N2 and resuspended with Goerke’s buffer [140 mM NaCl, 10 mM N-(2-
hydroxyethyl)piperazine-N ′-ethanesulfonic acid and 2.5 mM CaCl2; pH 6.9] to ob-
tain an aqueous suspension of BLES and cholesterol at a concentration of 27 mg/ml
phospholipids. BLES solutions were spread at the air–liquid interface. Supported
planar monolayers on mica were prepared using Langmuir–Blodgett technique and
transferred on mica support when films were compressed to a surface tension of
25 mN/m. Supported films were imaged in air using a NanoWizard atomic force
microscope from JPK Instruments, Germany. All measurements were performed
at 25 ◦C, over five different velocities, collecting each time ten force curves. Sil-
icon cantilevers from Micromash, Spain, were used with cantilever spring con-
stants of 0.6 and 0.7 N/m as determined by a thermofluctuation method using JPK
SPM software. Forces were measured on several different structural areas of the
film, by positioning the atomic force microscope tip after the image had been col-
lected.
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21.3.1
Adhesion Measurements: Monolayer Stiffness and Function

Atomic force measurements helped us to elucidate how the loss of mechanical
stability is related to the local mechanical properties of the film. Films containing 5
and 20% w/w cholesterol were compared. The presence of 20% cholesterol in BLES
resulted in a decrease of the observed adhesive interaction, and an increase in the
rigidity of the film. The force measurements were performed both on the monolayer
area and on a first bilayer adjacent to the monolayer. The typical height of the bilayer
area is 4.5 nm, and that of the monolayer is 2.5 nm. Typical areas where forces were
measured are shown in Fig. 21.7a. For BLES with 20% cholesterol, only a monolayer
was present and was used for force measurements (Fig. 21.7a, point 1).

BLES with 5% cholesterol at the bilayer area has an adhesion of 60 nN, which is
higher than that of the monolayer. BLES with 20% cholesterol has a lower adhesion
than the BLES monolayer with 5% cholesterol. It is interesting that the “single force”
Fs was slightly lower in the presence of 20% cholesterol, 3 nN compared with 4 nN
with 5% cholesterol, but the number of bonds decreased significantly from 15 and
10 to 7 (Table 21.1 [79]). Therefore, the presence of 20% cholesterol decreases the
fluidity of the monolayer.

A force histogram (Fig. 21.8) was used to estimate the single force Fs and the
number of bonds n. It is interesting that Fs was slightly lower in the presence of 20%
cholesterol, 3 nN compared with 4 nN with 5% cholesterol, but n decreased signifi-
cantly from 15 and 10 to 7 (Table 21.2). Therefore, the presence of 20%cholesterol
decreases the fluidity of the monolayer.

Fig. 21.7. A AFM topography image of supported bovine lipid extract surfactant (BLES) film,
scan area 15 μm by 15 μm. B Adhesion force map image 64 by 64, collected on the same area.
The adhesion force map was collected while forces of interaction at each of 64 by 64 points
were measured. The adhesion peak of the retrace plot was used to generate the adhesion force
map image. 1 area of a typical monolayer; 2 area of a typical bilayer, adjacent to a monolayer
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Table 21.2. Experimental adhesion force Fadh and its standard error σ on a bovine lipid extract
surfactant (BLES) bilayer with with 5% cholesterol, a BLES monolayer with 5% cholesterol,
and a BLES monolayer with 20% cholesterol, measured at room temperature; calculation of the
number of bonds n and the mean force of a single bond Fs. Rate 200 nm/s, load 20 nN. Adhesion
force on pure mica does not exceed 1.5 nN

BLES 20% cholesterol BLES 5% BLES 5%
monolayer cholesterol monolayer cholesterol bilayer

Fadh (nN) 20 40 60
σ (nN) 8 12 15
Fs (nN) 3 4 4
n 7 10 15

Fig. 21.8. Distribution of
adhesion force, Fadh, in
air: a BLES monolayer +
20% cholesterol; b BLES
monolayer + 5% choles-
terol; c BLES bilayer +
5% cholesterol

The increase in the adhesion force for a bilayer as compared with a monolayer
may be understood by an increase in the contact area between the AFM probe and
the sample at a given load. BLES with 20% cholesterol shows the lowest adhesion
force, compared with monolayer and multilayer areas of BLES with 5% cholesterol.
This indicates that adhesion properties of the film were considerably altered by the
incorporation of 20% cholesterol, decreasing adhesive interaction, and increasing the
rigidity of the film. The lipid molecules are not mobile enough in the presence of 20%
cholesterol and cannot be easily rearranged around the tip to increase the contact area
and adhesion force. The increased rigidity of the film and decreased adhesion that we
observed may play an important role in preventing the monolayer–bilayer conversion.

21.3.2
Repulsive Forces: The Interaction of Charged Airborne Particles with Surfactant

The repulsive forces (Fig. 21.9) observed in air between the lipids film and the
AFM probe were analyzed using two theoretical models for electrostatic interaction.
The atomic force microscope tip was modeled once as a point charge and once as
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Fig. 21.9. Electrostatic
force measured in air
on BLES film with 0%
cholesterol (top) and
with 20% cholesterol
(bottom). Experimental
data are shown by dots
and theoretical fits with
the point-charge model
are drawn in solid lines

a charged semisphere. Here q is a charge of the atomic force microscope tip, k
is a constant, ε is the dielectric permittivity of the medium, and r is the separation
distance between the tip and the medium. The supported BLES surfactant monolayer
is composed of lipid molecules, which are organized and oriented in such a way that
the dipole moment is directed along the surface normal. Therefore, the patch of
the monolayer can be treated as two charged planes, each having charge Q+ and
Q− and surface charge density σ+ and σ−, with the separation distance δo, which
corresponds to the thickness of the monolayer and is equal to 2.5 nm. The surface
charge density of the sample, σ , is related to the surface potential V , which we have
determined experimentally using Kelvin probe force microscopy [80, 81] and used
here as a parameter.

In the case of a point charge, the total electrostatic force acting on q is given by

F = Vq

2δ0 A0

(
β√

1 + β2
− α√

1 + α2

)
, (21.4)

where

D

R0
= α ,

D + δ0

R0
= β .

For the semisphere model, the force acting on the semisphere tip with a radius Rso

will be

Fs = Vq

2δ0 A0

(√
1 + β2

1 −
√

1 + α2
1 −

√
1 + (β1 − γ)2 +

√
1 + (α1 − γ)2

)
,

(21.5)
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where

D + RS0

R0
= α1 ,

D + RS0 + δ0

R0
= β1 ,

RS0

R0
= γ .

Kelvin probe microscopy was used [81] to determine the surface potential of the
lipid layer in air. Cholesterol induces a nonuniform distribution of the electric surface
potential even at small physiological concentrations, showing nanoscale domains in
the Kelvin image, while the AFM topography image remains uniform. Such domains
vary in surface potential from −0.6 V, measured for 0% cholesterol, to −0.4 V, at
20% cholesterol.

Both models we used fit the experimental data well, showing the presence of
electrostatic interactions in the net force measured between the tip and the sample. To
better fit the experimental data we varied the charge on the atomic force microscope
tip and the size of the charged disks, R0, which experimentally corresponds to the size
of domains already observed with both AFM and Kelvin probe force microscopy
imaging. We modeled the AFM probe also with a charged sphere; in this model
the effective charge depends on the radius of the tip. Samples of BLES with 20%
cholesterol exhibit stronger electrostatic repulsion at longer distances, for all models
used.

Interestingly, the electrostatic force was found to be more sensitive to the size
of these domains than to the changes in the surface potential observed owing to
the effect of cholesterol. The experimental data and the theoretical fit correlate
well and both revealed that the size of the domains is approximately 5 times larger
for the film containing 20% cholesterol than that for the film with no cholesterol
present. This confirms the important role of cholesterol—it produced small domains
which differ by electrostatic potential, initially invisible with AFM, which causes
the increase in the total electrostatic force. These findings correlate with the results
of molecular dynamics simulations [82], where cholesterol was shown to order
individual lipids adjacent to cholesterol molecules, but abolished the long–range
cooperativity between lipids, characteristic for the gel phase with true latticelike
spatial order, and altered the lipid electrostatic potential [83]. In the presence of
cholesterol [84] it was shown that the membrane electrostatic potential has a much
larger variance depending on the distance along the bilayer normal, compared with
that for a pure DPPC bilayer.

21.4
Interaction Forces Measured on Lung Epithelial Cells in Buffer

Elevated levels of ultrafine particles in air pollution are associated with increased
morbidity and mortality [85]. Unlike larger particles, ultrafine particles reach the
peripheral lung and are able to cross the various barriers of the lung, including
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the lipid–protein layer of pulmonary surfactant at the air–alveolar interface and
the cell membranes of the epithelial and endothelial cells underneath and reach the
bloodstream [86–89]. The toxicity of inhaled nanoparticles entering the body through
the lung is thought to be initially defined by the electrostatic and adhesive interaction
of the particles with the wall of the lung, and lung epithelial cells. Because of their
substantial uptake, ultrafine particles are also of great interest for delivery of drugs
to the peripheral lung and the body. Despite the importance of the early penetration
steps in the biological effects of inhaled particles, the nature of the interactions
with the various barriers of the lung remain poorly understood. A detailed study,
therefore, promises substantial progress in the understanding of the health threat
posed by fine and ultrafine air pollutants and the effectiveness of drug delivery by
aerosols. The adhesive interaction includes electrostatic, van der Waals, steric, and
hydrophobic forces as well as the line tension between particle, cell, and aqueous
medium and depends on the elastic and plastic properties of the cell. The free energy
due to these interactions will be minimized upon particle wetting by the lining layer.
The lower the surface free energy of the particle, the less it will be wetted by the cell.
A thermodynamic model using the “wettability criterion” was indeed successful in
predicting passive particle uptake by cells [90]. Another thermodynamic analysis
combined with a molecular dynamics simulation found negative line tension values
for nanometer-sized particles, but positive values for those an order of magnitude
larger [91]. The engulfment of particles in the nanometer range by unbalanced
capillary forces was first suggested by Shanahan [92].

We demonstrated that the initial thermodynamic aspects and the time course of
the uptake of nanoparticles by lung epithelial cells can be studied using AFM [93]
in the force measurement mode. We investigated the first steps of the interaction of
nanoparticles with lung epithelial cells using the atomic force microscope as a force
apparatus. The apex of theatomic force microscope tip can be used as a model of the
nanoparticles, thereby enabling the monitoring of the interaction forces between the
nanoparticles and the cell over time. The adhesion force and the work of adhesion
have been investigated and correlated with the mechanical properties of the cell.

21.4.1
Cell Culture/Force Measurement Setup

Lung epithelial cells, type II, were isolated from male, pathogen-free Sprague-
Dawley rats weighing 150–250 g. The cells were cultured at 6 × 108 cells per
milliliter in Dulbecco’s modified Eagle’s medium supplemented with 1% l-
glutamine, containing 10% heat-inactivated fetal bovine serum, and 300 μl of
a penicillin–gentamycin solution in γ-irradiated culture dishes. The cells were grown
on light microscope glass cover slips. The cells were kept in an incubator under 5%
CO2 and at37 ◦C until they created a monolayer with approximately 80% of conflu-
ence (4–6 days). At this stage, the phenotype of the lung epithelial cells had changed
from type II to type I in that the cells were spread out flat on the interface and ceased
to produce surfactant.

Lung epithelial cells were first imaged using a light microscope (Zeiss Ax-
iovert 200). For force spectroscopy, a medium-covered cover slip with the cells was
mounted in the liquid cell of the atomic force microscope. The setup used allows for
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the observation of the sample and the atomic force microscope cantilever across the
cover slip from below by an inverted light microscope at the same time as force spec-
troscopy (or AFM imaging) is performed. The tip of the atomic force microscope
was thus placed over a suitable cell and cell location was under light-microscope
control (Fig. 21.10a). Figure 21.10b shows a typical force scan where the cantilever
deflection was monitored as a function of the sample position.

At first, the probe approached the cell with the lever undeflected (horizontal line
of the force trace), indicating no interaction. The tip then made contact with the
sample and became deformed. Forces of interaction between the probe and the cell
were then measured in medium at 35 ◦C, by approach of the tip to the cell interface
until a preset load was reached (trace of force curve). The force was acquired as
a function of the tip–sample separation h. After the tip has come into contact with
the cell, h becomes the penetration depth for the tip into the cell. Separate force
curves were acquired for a preset load of 100, 200, and 300 pN. The tip was now
kept in contact with the cell for a predetermined time (delay time), while the preset
load was kept constant under feedback control (i. e., when the load decreased, the
tip was moved forward). We varied the delay time from 0 to 1800 s. Thereafter, the
tip was retracted and the adhesion observed. Cantilevers (Micromash), with a spring
constant of 57 mN/m, and pyramidal silicon nitride tips were used (tip height 2.9 nm,
tip radius less than 20 nm (typical 10 nm), tip angle (face to face) 25−45◦ (top to
around 300 nm down). Cells were kept in the medium at all times. The spring
constant for each cantilever was measured before and after the experiment using
the procedures implemented by the manufacturer of the atomic force microscope

Fig. 21.10. Optical microscopy image of epithelial type II cells and atomic force microscope
cantilever. For force spectroscopy, an atomic force microscope tip was placed over the central
region of a cell. Trace and retrace force curves were measured on a cell. Force versus tip–sample
separation is shown in b. The approach part (trace) reveals how the cell deforms upon contact
by the tip. The retrace or withdraw part of the curve reveals a large adhesion peak which is often
split in multiple peaks. The sketches explain the physical situation for each part of the curve.
The hatched area denotes the work of adhesion (adhesion energy) between the tip and the cell.
The atomic force microscope tip was allowed to stay in contact for various times (delay time) in
position $3
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(thermal noise method). The sensitivity and the spring constant were found to be not
different before and after the experiment.

Forces of interaction between the probe and the cell were then measured in the
medium at 35 ◦C.

21.4.2
Mechanical Properties

The approach part of the force curve was used to determine the penetration depth
of the tip into the cell as well as the mechanical properties of the sample. Reviews
on this topic are given in [94, 95].The measurement of the penetration depth will
depend on the accurate determination of the contact point between the tip and
the cell. A cantilever spring constant lower than or similar to that of the cell is
preferable. In this case, we can assume that the contact point corresponds in the
trace force curve to the first upward deflection. After the tip has come into the
contact with the cell, D becomes the penetration depth h of the tip into the cell. To
evaluate the mechanical properties of the sample from the approach force profile, the
Sneddon model was employed [26, 96]. Note that the use of macroscopic physical
law should be reserved for homogeneous bulk materials. Young’s modulus should be
viewed as an effective parameter to analyze the trend of the in-plane organization of
supramolecular structures. The effective parameter can differ from one experiment to
another. A more sophisticated approach was to model the mechanical response of the
cell membrane explicitly taking into account the mechanics of the cell membrane and
that of the underlying cytoskeleton [97]. As the penetration depth h can reach 1 μm,
the tip shape must be considered as a function of h. The effective Young’s modulus,
E ′, was estimated point by point for h considering the three regions determined by
the geometry of the tip [98].

For h between 0 and 10 nm, the AFM probe was considered as a semisphere
with a radius R of 10 nm :

Esphere = 3

4
√

R

F

h3/2
. (21.6)

For further penetration, the tip profile was viewed as a cone whose half angle varies
linearly from α1 = 25◦ at h = 10 nm to α2 = 45◦ when h reaches 300 nm:

Econe =
√

2

tan α

F

h2
. (21.7)

For an indentation deeper than 300 nm, α is considered constant to α2.
Figure 21.11 shows the change in the Young’s modulus when increasing the

penetration depth h. At first, the tip experienced a layer of increasing stiffness to
a penetration depth of about 100 nm, at which point the resistance of the cell to
penetration reached a maximum. Thereafter the cell became more compliant again.
The stiff layer may represent the outer layer of the cytoskeleton anchored to the cell
membrane. The Young’s modulus of the membrane can be thought of as the surface
tension of the membrane (0.5 N/m) divided by the thickness of the membrane
(around 10 nm), i. e., a pressure of around 50 MPa. The lipid head is responsible
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Fig. 21.11. When analyzing the ap-
proach curve, one can determine the
Young’s modulus of the sample sur-
face. Young’s modulus, which gives
a measure of cell elasticity in our
case, was found to depend on inden-
tation depth, showing two distinctive
parts of the plot: when the peripheral
part of the cell was penetrated, up
to about 100 nm into the cell, the
cell became increasingly stiffer. The
stiffness then dropped sharply upon
further penetration until it leveled out
after penetration to about 200 nm deep

Fig. 21.12. Top: Indentation depth as a function of time. The load was kept constant at 200 pN.
At time zero, the indentation was about 500 nm. Over time, the tip first penetrated rapidly and
then slowly from 500 to 1300 nm. This is evidence of a time-dependent response of the cell to
the tip. Bottom: Adhesion energy as a function of time. The tip was kept in contact with the
cell at a constant load of 200 pN. The longer the tip stays in contact with the cell, the larger the
adhesion that is observed. Statistical analysis shows that considerable changes occur during the
first 100 s, after which the mean value of the adhesion energy no longer changes

for crystalline elasticity, i. e., the change in the head-to-head distance can change
(high elasticity but low rupture). The lipid chain behaves with rubber elasticity
(low elasticity), which is related to the change of entropy (increase of order upon
pressure). It results in the properties that the cell membranes can be easily deformed
in the plane but do not resist the expansion (increase between the headgroup cannot
vary more than 2%).
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Further measurements of the Young’s modulus of cells have been performed with
human platelet cells (E = 1−50 kPa) [99], cardiac cells (E = 100 kPa), skeletal
muscle cells (E = 25 kPa), and endothelial cells (1–7 kPa) [100].

The analysis of the forced indentation of the epithelial cells by the tip reveals the
fate of a nanoparticle coming into contact with the lung’s epithelium and then being
actively loaded onto a cell. This situation will indeed occur in the lung. The lung’s
epithelium towards the air is covered by a thin aqueous layer and a molecular film of
pulmonary surfactant at the air–water interface. Transmission electron microscopy
of lung thin sections as well as scanning electron microscopy of the lung have
indeed shown that particles trapped between the surfactant layer and the epithelial
cells strongly deform the cells [101, 102].

The penetration depth was also investigated as a function of the contact time
between the tip and the cell at a given load. Figure 21.12 shows that the tip first
penetrated the cell down to 500 nm in less than 100 s. Equilibrium was reached for
approximately 1-μm depth (around half of the cell thickness). We assume that the
tip is either actively taken up or the cell rearranges its plasma membrane and the
cytoskeleton elements to accommodate the tip.

21.4.2.1
Adhesion Work

After the initial indentation, the tip was kept loaded onto the cell with 1 nN for
preset times ranging from 0 to 900 s under feedback control. Thereafter, the tip was
retracted and the tip adhesion was acquired.

The retrace curve was used to calculate the adhesion energy Γ between the tip
and the cell:

Γ =
h2∑

h1

Fretrace(hi)(hi+1 − hi) . (21.8)

Fretrace(hi) is the adhesion force at hi . The point of the initial contact between the tip
and the cell surface, h1, was determined from the approach part of the force curve;
h2 corresponds to the last jump out of contact.

Upon the penetration into the cell, the adhesion energy also increases. This
indicates that the tip becomes engulfed by the membrane and the area of interaction
increases (Fig. 21.12). Our results suggest that the process of particle uptake by
lung epithelial cells occurs over approximately 100 s. This appears to be the time
necessary for the nanoparticle to increase its surface area in contact with the cell
and, hence, its adhesive interaction. Other authors have also shown [103] that the
increase in adhesion between a polystyrene sphere to mica with increasing load
or contact time is due to the plastic deformation. Load dependence and contact
time dependence also indicate plastic and viscoelastic deformation [104]. A linear
dependence of adhesion force on the reduced radius Reff = R1 R2/(R1 + R2), where
R1 and R2 are the radii of the two particles, was found by Heim et al. [105].

Particles of 50–100 nm in diameter are not phagocytosed [106,107]. They enter
cells in the absence of clathrin and caveolin, associated with active uptake. Even



230 Z. Leonenko et al.

Fig. 21.13. Correlation between the
indentation depth (Fig. 21.12, top)
and the adhesion energy (Fig. 21.12,
bottom) for all the measurements
(around 100 points). The deeper the
indentation, the higher is the adhesion
energy

when an actin-based mechanism has been ruled out [107], nanoparticles inside
a cell are not surrounded by membrane and, hence, are not taken up through vesicle
formation.

The AFM investigation suggests the adhesive interaction in particle uptake can
now be measured by our approach and used as a significant parameter test. Particles
with different surface properties and different geometries can be mimicked by mod-
ified atomic force microscope tips. The adhesive interaction of a particle with the
plasma membrane in the lung depends also on the particle history. Airborne particles,
after crossing a surfactant layer at the air–water interface of a cell culture dish, have
been shown to be more readily taken up than particles added to the media [108]. They
may have become coated with a film of pulmonary surfactant and, as a consequence,
have penetrated the epithelial cells differently. Whether this is related to a change
in adhesive interaction can be tested by coating atomic force microscope tips with
surfactant.

21.5
Conclusions

Measurements of forces with the atomic force microscope can determine the lo-
cal changes in the mechanical and electrical properties induced by the absorption
of proteins within lipid monolayers or bilayers. Such studies have offered new
perspectives in the identification and characterization of the pulmonary surfac-
tant films in air, model membranes in liquid media, as well as cell membranes
in media.

In air, the adhesion forces of particles are known to be 10 times higher than in
aqueous media. For a given applied load, the differences in the magnitude of the
force do not depend on the contact area, which is similar in air or in a liquid. In
fact, the van der Waals forces are screened under a liquid, thereby reducing the total
adhesion forces. However, the adhesion forces can be modulated by varying the
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contact area between the particle and the layer. We have shown that the temperature
or the anesthetic incorporation can largely modify the fluidity of the membrane.

Using the AFM probe as a nanoparticle model is an idea to evaluate the ability
of the particle to interact with the cell. Although many kinds of force curve cannot
yet be interpreted, for instance, the role of the hydrophobic attraction between tails,
our work is a starting point to understand how the particle can penetrate through the
lipid layer. For example, the nonnegligible role of the electrical forces in air has been
proved and the electrical potential of the layer is of importance in the adsorption
process involving the electrical barrier.

The mechanical properties of the cell, and in general the plastic deformation,
have been investigated. The role of the membrane as a mechanical barrier is clearly
observed by measuring the Young’s modulus as a function of the penetration depth.
Those properties depend on many parameters: the particle speed, the particle size, the
applied load. Also, the duration of the contact is crucial in the incorporation ability of
the particles. The complexity of the phenomenon cannot of course be satisfactorily
and fully described, but some empirical trend can be locally and statistically defined.
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