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Abstract

Centralized manufacturing and global supply chains have emerged as an efficient strategy

for large-scale production of goods throughout the 20th century. However, while this system

of production is highly efficient, it is not resilient. The COVID-19 pandemic has seen numer-

ous supply chains fail to adapt to sudden changes in supply and demand, including those for

goods critical to the pandemic response such as personal protective equipment. Here, we

consider the production of the non-woven polypropylene filtration media used in face filtering

respirators (FFRs). The FFR supply chain’s reliance on non-woven media sourced from

large, centralized manufacturing facilities led to a supply chain failure. In this study, we pres-

ent an alternative manufacturing strategy that allows us to move towards a more distributed

manufacturing practice that is both scalable and robust. Specifically, we demonstrate that a

fiber production technique known as centrifugal melt spinning can be implemented with

modified, commercially-available cotton candy machines to produce nano- and microscale

non-woven fibers. We evaluate several post processing strategies to transform the pro-

duced material into viable filtration media and then characterize these materials by measur-

ing filtration efficiency and breathability, comparing them against equivalent materials used

in commercially-available FFRs. Additionally, we demonstrate that waste plastic can be pro-

cessed with this technique, enabling the development of distributed recycling strategies to

address the growing plastic waste crisis. Since this method can be employed at small

scales, it allows for the development of an adaptable and rapidly deployable distributed

manufacturing network for non-woven materials that is financially accessible to more people

than is currently possible.
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Introduction

Non-woven materials represent a class of engineered fabrics that are ubiquitous in modern life

with applications including apparel, construction, medicine, and filtration [1–3]. In specific,

non-woven filtration media have recently received widespread attention for their use in air fil-

tration devices which provide protection against the inhalation of particulate matter [4] associ-

ated with increasing air pollution due to industrialization and urbanization [5–7], increasing

wildfires associated with climate change [8–11], and most recently to deter the spread of

COVID-19 [12–14]. In the context of the COVID-19 pandemic, failures in global supply

chains for non-woven materials have inspired researchers and left governments desperate to

find solutions to meet global demand surges [15, 16]. Recent research has identified commonly

available materials [17–19] that can be used as an improvised face covering while other work

has focused on developing effective reuse and decontamination protocols of existing PPE [20–

25]. However, little work has been done to address the production bottle-neck of the non-

woven filtration material at the center of these devices [13, 26]. Meanwhile, the shortage has

been exploited by bad actors who have introduced counterfeit N95 respirators into the market-

place [27] and has led to countries with domestic manufacturing capacity to enforce export

controls at the expense of those without such infrastructure, namely low and middle income

countries (LMICs) [12, 28–30]. Finally, the problem of managing plastic waste from an esti-

mated daily usage of 6.8 billion masks per day must be addressed in an environmentally

friendly manner [31, 32]. These events highlight the importance of rethinking the production

and supply chains associated with functional non-woven materials.

Distributed manufacturing (DM) is a framework that relies on geographically dispersed

manufacturing nodes operated at small scales to produce goods locally and equitably, offering

an alternative paradigm to centralized manufacturing Fig 1A [33–35]. Small- to medium-scale

manufacturing nodes are inherently more flexible and resilient than large-scale, centralized

production. For example, redundancy in a manufacturing network minimizes the risk of a sin-

gle point of failure to supply chains. Additionally, manufacturing at this scale requires less cap-

ital and time investment, increasing accessibility in LMIC environments and reducing the

financial burden of increasing capacity due to surge demand in mature markets [29]. The DM

approach has been validated in the context of additive manufacturing where the prevalence of

3D printing and digital design tools has enabled rapid and flexible manufacturing capacity to

respond to the present crisis at local scales [36–38]. A DM approach to mask manufacturing

was proposed during the initial pandemic response [39]; however, the proposal did not address

access to the non-woven filtration material—the main manufacturing bottle-neck. Further-

more, DM provides unique economic opportunities that would be challenging to implement

in a centralized model [33, 40]. For example, the development of complementary recycling

tools has allowed both new approaches for closed-cycle manufacturing [41] and users to exper-

iment with novel materials from local sources [35, 42, 43]. The development of distributed

recycling coupled to DM is a promising route towards increasing efficiency in collection and

recycling plastic waste [44–46]. From a sustainability perspective, there is the added benefit of

reducing the environmental impact associated with transportation in global supply chains and

waste streams [47]. There is a clear need for an analogous technology for the distributed fabri-

cation of non-woven materials that can be used in a variety of applications, including air

filtration.

The polypropylene (PP) micro- and nanoscale fibers used in non-woven filtration media

are a challenging technical target for distributed manufacturing. The rheological properties of

PP allow it to be transformed into thin fibers with dimensions necessary to achieve direct iner-

tial filtration. The dielectric properties of the material on the other hand allow manufacturers
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Fig 1. Distributed manufacturing and cotton candy machine for production of non-woven filtration media. A: Distributed manufacturing paradigm

allows for flexible, local production of material anywhere in the the world on short notice. B: Schematic illustration showing key steps of RJS process to

produce non-woven fiber mats. C: Implementation of RJS using a retrofitted, commercially-available cotton candy machine. D-E: the process deposits

fibers in a mat that can be collected and processed into filtration media. F: High speed camera footage showing ejection of material from the spinneret and

onset of a Rayleigh-Taylor instability G-H: leading to the formation of nano- and microscale fibers from extrusion holes much larger in size(* 500

− 1000μm).

https://doi.org/10.1371/journal.pone.0264933.g001
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to embed electrical charge that aid with filtration in the diffusive range, thus allowing filtration

of much smaller sized particles than is possible through inertial filtration alone [1]. The exist-

ing supply chain for this material relies on large-scale centralized manufacturing, using a pro-

cess known as melt-blowing. This process operates by passing hot, pressurized air around a

heated extrusion die to simultaneously melt and extrude molten polymer into non-woven

fibers. The extensive infrastructure needed for die fabrication and high energy costs required

to supply compressed, hot air makes this technique efficient but inflexible to surge demand

and economically inaccessible. While a typical melt blowing facility can produce filtration

media for more than 1 million masks per day, establishing additional manufacturing capacity

requires significant investments of both time (*months) and capital (*million USDs) [48].

Alternative methods for producing nano- and microscale non-woven fibers that could be

operated at small and medium scales include electrospinning and centrifugal melt spinning

(CMS) [49, 50]. While electrospinning has benefited from an enormous amount of research, it

is still limited by low throughput and an inability to work with low dielectric materials like PP

[49]. In contrast, CMS offers an order of magnitude improvement to throughput and is agnos-

tic to the electrical properties of the material, as it eliminates the usage of electrical potential to

draw fibers from a polymer pool. In contrast to melt blowing, CMS gains efficiency by decou-

pling melting and extrusion by using a controllable heating element to melt and centrifugal

forces generated by a rotating spinneret to extrude the polymer Fig 1B. Much of the academic

work related to the CMS method has used either the FibeRio device [50] or custom-built

devices. Several studies have demonstrated fabrication of nano- and microscale PP fibers using

CMS [51–53] and even a capacity to produce fibers from commonly available mixed recycled

plastics [52]. Indeed, CMS has been used as an enabling technology for distributed recycling

efforts [54]; however, the possibility of creating higher value-add, functional materials has not

been rigorously discussed in the academic literature.

Here, we demonstrate that CMS can be implemented with simple hardware and used to

obtain functional non-woven materials in a way that is commensurate with the requirements

of DM. Specifically, we use a modified commercially-available cotton candy machine (CCM)

to show that CMS is both a fast and affordable means to produce non-woven materials. In our

investigation, we consider the use of different resins on the morphology and performance of

the resulting non-woven materials. We explore strategies required for processing the produced

material into a functional fabric and for performing quality control in a distributed

manufacturing context. The performance of our functional fabrics is compared with commer-

cially-available N95 filters and evaluated according to filtration efficiency (FE) and pressure

drop (PD). The purpose of this work is to contribute to the ongoing discussion concerning the

limits and opportunities of small- and medium-scale manufacturing for the production of

medical equipment and—more generally—technologically advanced materials such as non-

wovens.

Results

Centrifugal melt spinning

Commercial CCMs consist of an electrically heated spinneret with a material reservoir that is

spun using a vertically mounted electric motor Fig 1C [55]. The spinneret is rotated while

being simultaneously heated to generate the centrifugal forces necessary for the extrusion of

the molten material contained within. The molten polymer extrudes through tiny orifices in

the spinneret in a radially outward direction in the spinneret’s frame of reference. The molten

polymer mass undergoes an extensional flow and thins out into smaller diameters [56]. Simul-

taneous cooling due to ambient temperature gradients and surrounding air flows causes
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solidification of the stretched melt flow, which ultimately defines the diameter of the resulting

fiber. These fibers then accumulate as a sheet on the walls of the cylindrical enclosure around

the spinneret.

With all the necessary principles for CMS present in the CCM, we decided to modify such a

device by replacing the wire screen on the spinneret with a solid aluminum ring having several

orifices (8–24) with uniform diameters ranging from 0.016”—0.038” (0.4064–0.9652 mm) (S1

Fig). These orifices allow for well-controlled extrusion of molten polymer and allow us to

obtain a fiber diameter range required for filtration media applications (0.1–10 μm). To pre-

vent self spooling of extruded fibers by the spinneret shaft, we introduced a simple cardboard

cover shield, which allowed formation of continuous flat fiber sheets on a conical surface

around the spinneret Fig 1D. Fibers accumulate as an annular sheet with the inner circumfer-

ence adhered to the spinneret and the outer circumference adhered to the collection cylinder.

The material used for further testing is obtained by cutting open the sheet radially and flatten-

ing it out on a surface to remove regions of the sheet which display defects associated with

static collection during batch assembly. We observe two types of processing defects. First,

material near the outer circumference has a lower density due to a constant mass flux being

deposited over an area which scales with radius2. Second, material near the inner circumfer-

ence becomes fused due to its close proximity to the heated spinneret. The material collected

between these two defect regions is shown in Fig 1E and was extruded in *2 min. and

weighs * 24–26 g, containing enough material for* 12 − 13 masks.

Through high speed imaging of the machine in operation, we also observed the breakup of

pre-solidified jets into smaller droplets due to the presence of a Rayleigh-Plateau instability,

often resulting in the formation of microspheres. We consider the presence of microspheres to

be a source of contamination for filtration media since they can be dislodged by air currents.

This can be controlled by using higher viscosity or higher surface tension materials, or utilising

electric fields for drawing fibers (Fig 1F–1H), as has been reported previously [51, 57, 58].

Another source of microsphere formation is the breaking up of a polymer flow stream at the

orifice tip itself. Having a replaceable aluminium ring design allowed us to easily debug and

tune the geometry of the fiber being produced by simply swapping the ring with a different ori-

fice size. In general, we observe that larger orifices lead to larger diameters; however, we finally

settled on an orifice size of 0.024 inches for the data presented in this study.

One of the limitations of using a commercially-available CCM, is the lack of precise temper-

ature control and access to only a single RPM value. As a result our study considers fibers pro-

duced at T = 160 − 200˚C and 3,500 RPM. This range in measured temperatures is a result of a

changing amount of material in the reservoir. As material is depleted, the constant-voltage

heat source continues to provide the same energy input leading to higher observed

temperatures.

Application of an electric field during the fiber extrusion process has been used to minimize

the production of microspheres [57], reduce fiber diameter, and to impart an electric charge to

the material—which is a common strategy for increasing the FE of the non-woven material

[59–61]. The presence of an electric field during fiber extension has also been shown to pro-

duce charges embedded within the fiber volume that are more stable against environmental

conditions such as humidity and temperature compared to surface charges [59, 62]. To imple-

ment similar strategies, we connected a -5kV potential source with the negative terminal

placed on the collection drum. Since the spinneret was electrically grounded, a field was estab-

lished with the spinneret at ground potential and the collection drum at -5kV negative poten-

tial, allowing for polarization of the extruded molten polymer.

We characterized the charge of the material with a handheld, electrostatic surface DC volt-

meter. The readings of the voltmeter only provide a crude description of the charge
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distribution on the surface of and inside the material [63]. Measurements performed right

after the material is produced lead to the most consistent readings ranging from -1 to -10 kV.

The surface potential is relatively uniform (varying about 30%) along the surface and is similar

on both sides of the collected fiber sheet. We also observed that surface contact with other

dielectric materials used for handling and storing the fibers lead to high variance in the charge

measurement of the sheet. Such large variance is similar to previous work in the literature

using similar characterization methods [64]. This suggests that most of the collected charge

was either able to conduct or get exchanged through triboelectric charge transfer. The low

charge retention could be attributed to the conduction properties of the material, predomi-

nantly surface accumulation of charges instead of the bulk or the energy level of the localized

bulk charge trapping sites [65, 66]. We tested this hypothesis by utilising a custom made

corona discharge device using a van de Graaff generator and friction induced triboelectric

charge transfer from commonly available polystyrene packaging material. Such treatments

resulted in temporary enhancement of surface charges which have been recently utilized for

rejuvenation of filtration properties post decontamination of N95 masks [64, 67–69], but the

material maintained aggressive charge exchange properties with the surfaces in contact.

Fiber morphology and processing

As compared to the fiber sheets obtained through the commercial melt-blowing process, those

obtained through our method have lower density of fibers and hence require additional post

processing before they can be evaluated as candidates for air filtration media, an approach that

is distinct from one of the recent studies in this space [26]. Here, we consider two approaches

for densification: 1) calendaring and 2) compaction. We compare the fiber morphology of the

resulting materials against commercially-available N95 FFR filter media (Fig 2A and 2B)

through scanning electron microscopy (SEM). Our calendaring process was carried out using

cold lamination rollers. The material is supported between two layers of spun-bound PP to

prevent adhesion of the material to the rollers. The support layer is then removed for subse-

quent testing. The resulting material shows an increase in density but still lower than that of

the reference material. Meanwhile compaction was carried out with and without the applica-

tion of heat (130˚C). We find that application of heat is important to increase the density of

the material and produces a densification similar to that of the reference material. Compaction

without heat produces the least dense of the samples considered here. Both of these techniques

allow for the construction of multi-ply filters which makes them more mechanically robust.

Additionally, multi-layer constructions of filtration media are important since a failure in a

single layer will not lead to a failure of the entire filtration device, since a defect at a position in

one layer can be compensated by continuous material deposition in the other layers.

Comparison of the material microstructure (Fig 2B) provides further insights. We find that

the sample subjected to calendaring is most similar at the microscale to the N95 reference

material. Heat compaction produces a fusion of the fiber network which results in extremely

large pressure drops (data not presented). This can be understood by noting a significant

reduction in pore size compared with the other samples in our study. Reduction in the applied

shear forces during calendaring also contributes to preserving randomness in the fiber net-

work, which has been realized by industrial processes for ensuring high FEs through complex

carding processes [70].

We finally examine the morphology of individual fibers for calendared samples (Fig 2C).

We see that the N95 reference material has an average fiber diameter of 3.7 ± 2.6μm. However,

the distribution of fiber diameters shows that while most of the fibers are on the single micron

scale, the distribution extends to include much larger fibers. This wide distribution allows for
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Fig 2. Fiber processing and characterization. A: Produced fibers must be processed into dense mats before they can be used as a filtration media. We

evaluate two methods: i) calendaring and ii) compaction. Photographs show as-produced material (left) and material after compaction (right). B: SEM

characterization of large-scale features of non-woven filtration media produced using Pinnacle 1112 PP homopolymer (MFI = 12 g/10 min). Insets

show a macroscopic section of material obtained after each densification process compared with material obtained from a commercial N95 mask; scale

bar represents to 1 cm. C: SEM characterization (top) enables comparison of fiber morphology between commercial N95 and fibers produced from

using a modified CCM (image obtained from calendared sample shown in part B). Histograms (bottom) of fiber diameters show that both samples

share a similar long-tailed distribution of fiber diameters. The black curve is a continuous probability distribution derived from the experimental data.

Insets show the same distribution plotted on a logarithmic axis. Fiber diameters were measured from the sample at several different locations using 150

fiber counts.

https://doi.org/10.1371/journal.pone.0264933.g002
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larger fibers to act as a support for the smaller fibers which are typically more fragile. The fibers

produced by our method using PP resin with MFI = 12g/10min have slightly larger average

fiber diameters (3.4 ± 3.0μm) and a similar long-tailed distribution that is skewed more heavily

towards large diameter fibers. These morphological similarities with the reference material at

all length scales make these materials promising candidates for use as air filtration media.

Additionally, we processed PP resins with increasing MFIs which are typically used in tradi-

tional melt-blowing manufacturing (S3 Fig). We find that resins with MFI = 50, 500, 1550g/

10min give fibers with diameters 5.2 ± 3.8μm, 4.1 ± 3.9μm, and 3.8 ± 5.2μm, respectively. In

general, increasing MFI results in fiber diameter distributions that have a higher fraction of

small diameter fibers (* 1μm).

However, we note the presence of artifacts associated with batch processing. The continu-

ous sheet of fibers collected after a run shows variations in the fiber diameters with the size of

the fibers decreasing with newer fibers deposited on upper layers. One possible explanation for

this is the variable amount of heat absorbed by the material depending on the time it spends in

the spinneret. The material to extrude last suffers from higher polymer decomposition and has

altered mechanical properties. Moreover, smaller amounts of material in the spinneret also

prevents the orifices from being completely filled during the extrusion, which reduces the

effective orifice diameter participating in the extrusion, thus altering the nominal diameter

and mechanical properties of the fibers expected during a run.

Material performance

We evaluated the FEs and PDs of the processed materials using a setup similar to that used in

previous studies on filtration materials (S2 Fig) [71]. FE measurements were made using

incense smoke as a source of particles with a range from 0.01 to 5.0 μm with a flow rate of 2.8

L/min. This rate is set by the particle counter (S2A Fig). We note that this flow rate is substan-

tially lower than what is specified by conventional testing standards [17, 20]. PD represents the

air resistance across the filtration media with lower values indicating higher breathability. All

measurements were made with a flow rate of 5 L/min. Samples are excised from calendared

material with diameter 17.25 mm (S2B Fig). Under these test conditions, we show that several

of our produced materials have FEs comparable to the N95 reference material of the same

dimensions subject to the same experimental conditions (Fig 3A). In specific, the N95 sample

had a measured FE of 97.34 ± 0.57% compared with 94.48 ± 1.23% of our best material

(MFI = 12g/10 min, 3ply). While several of our samples performed quite well, there are impor-

tant trade-offs in material performance that are dependent on material processing. For exam-

ple, our best material (MFI = 12g/10min, 3ply) has a pressure drop of 16.28 ± 3.43 cm H2O
which just underperforms that of the N95 reference 3.69 ± 0.39 cm H2O. However, by reducing

the number of plys in the construction, we can reduce the pressure drop to 6.76 ± 0.74 mm
H2O/cm2 with only a slight sacrifice in filtration efficiency 87.26±1.77%.

To better understand the design space associated with material processing, we consider the

effects of density on both FE and PD. We find that density does not have a significant impact

on FE (Fig 3B). However, we do observe a significant reduction in FE for single ply samples

with decreasing density. We can understand this observation by recognising that any defects

in the non-woven material will lead to a failure of the filter. This failure mode can easily be

remedied by adding a second ply which allows defects in one layer to be compensated by func-

tional regions of the other layer. We also considered the effect of the relative orientation of

sheets for two-ply filters. We find that there are no significant effects, confirming the presence

of sufficiently random fiber orientations observed in the microstructure of single layers. We

also observe a significant dependence of PD on density. Increasing density results in reduced
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breathability. Our data suggests that two-ply materials find a good balance between FE and

breathability. More generally, we have shown that a modified cotton candy machine can be

used to produce functional fabrics which might be useful in air filtration applications. While

the performance metrics are less than those of the N95 reference material, they are comparable

with those of community-based mask manufacturing efforts [72].

Fig 3. Performance of non-woven filtration media. A: Filtration efficiency and B: pressure drop for several different materials produced via CMS

plotted against the grammage of the sample. The numbers in the legend indicate the melt flow indices of the polymers. C: Phase plot of filtration

efficiency vs pressure drop with marker size representing grammage of the sample. The markers represent mean reading from N� 3 samples with a

triplicate experiment for each sample. The error bars represent standard error of the mean on each side for both vertical and horizontal axes. The

dashed lines represent the corresponding measurements for the filter material extracted from N95 FFRs. All the samples were prepared using 30g of

polymer material except for those with explicitly mentioned values of 12g.

https://doi.org/10.1371/journal.pone.0264933.g003
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Distributed manufacturing and recycling

Having shown that functional fabrics can be produced using relatively simple hardware, we

now explore what this implies for distributed manufacturing and recycling of plastics, specifi-

cally non-woven materials (Fig 4A). A key problem associated with the manufacture of plastic-

derived materials is their collection and disposal. Currently, most waste streams involve inter-

national supply chains, adding to their carbon footprint and creating friction due to evolving

international trade agreements [47, 73]. However, in many other regions, such waste streams

are either non-existent or poorly managed [32]. As a result, waste often ends up in the environ-

ment. This problem has been exacerbated by the ongoing COVID-19 pandemic which has

seen not only an increase in plastic waste from single-use medical equipment [32] but also an

increase in single-use packaging material [74]. By distributing tools for plastic processing, an

economic incentive is created to more efficiently collect plastic since this material can be re-

purposed or up-cycled [73]. Currently, most tools designed to be operated at local scales focus

on either additive manufacturing (e.g. 3D printing) [36] or extrusion based technologies [46].

To the best of our knowledge, Polyfloss is the single example of an effort using CMS technol-

ogy for recycling, operating as a grassroots organization to transform waste plastic into build-

ing insulation [54]. The potential for more sophisticated non-woven fabrics has not been

explored.

Here, we show that plastics from consumer waste streams can be incorporated into the

non-woven production process. In general, the processing of polymer blends or even differing

grades of the same polymer can pose challenges, particularly mixing of polymers with different

thermal and rheological properties. Furthermore, multi-generation processing (e.g. processing

the same plastic multiple times) can lead to changes in material properties [41]. As a simple

demonstration that the process presented in this report can empower people to experiment

with sustainable, closed-cycle manufacturing, we show that a fraction of the virgin PP resin

can be replaced with PP obtained from consumer waste (Fig 4B–4E). At low fractions (1:5), we

observe inclusion of phase separated droplets of recycled material within the solidified fibers

from virgin polymer [75]. SEM analysis shows that the material also contains more micro-

spheres than found in material prepared from unmixed, virgin polypropylene (Fig 4F–4I). As

the fraction of recycled polypropylene is increased, the presence of microspheres increases but

the fibers are similar in morphology to those made from lower fraction blends (Fig 4G–4I),

indicating saturation towards mixing between the polymers.

The scalability of CMS is a key factor in assessing its viability as the technological basis for

distributed manufacturing. Rogalski et al. report that a lab-scale CMS device can produce up

60 g/h of material per orifice (roughly 100 times greater than typical rates for electrospinning)

[49]. Our experiments are in good agreement with these rate estimates across several different

implementations. Given that a typical N95 FFR contains * 2g of filtration material, we esti-

mate that a rotating chuck with a single orifice can produce material sufficient for 500–1000

N95 FFR in a 16 hour day if operated continuously. We set an upper estimate of the motor,

heating element, and metal chuck to cost $1000 USD and can be set up in at most several days.

We note that increasing the number of orifices per chuck and operating multiple chucks in

parallel can offer significant improvements over this lower bound on throughput. The pro-

duced material must be assembled into a functional FFR. When coupled with a local mask pro-

duction effort [72, 76], a few devices operated in parallel can provide a flexible and significant

surge capacity for a local community.

The advantages of this approach become apparent when compared with the time and capi-

tal cost of establishing a conventional melt-blowing facility. Such a facility costs 0.1 − 1 million

USD and requires several months to bring production capacity of *1 million masks/day
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Fig 4. Incorporation of locally sourced recycled material. A: A distributed manufacturing framework enables incorporation of cycles within

material life from raw polymer to dumping sites at landfills or oceans. Access to machines like the one presented in the study allows addition of

value during recycling process, improving the chances of the material to be reused for multiple applications during its lifetime. B-E: Locally sourced

waste polypropylene was cut into small pieces and combined with virgin 1112 PP resin at 1:5 ratio to produce fiber sheet. F-H: Light micrographs of

thick fiber stems at 30x magnification. Phase separated droplets of waste material are visible inside as dark inclusion, which increase in number as

we go from 20% (F) to 80% (H) proportion of recycled polymer. G-I: SEM characterization of the recycled-PP/PP hybrid showing unnoticeable

variation in fiber morphology as we go from 20% (G) to 80% (I) proportion of recycled polymer.

https://doi.org/10.1371/journal.pone.0264933.g004
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online [48, 77]. A similar capital investment of 1 million USD would enable the establishment

of a distributed network of 1000 CMS setups, which, at a rate of 1000 masks per day per setup

would successfully match the output of a centralised melt blowing facility. It is important to

note that this comparison reveals that the ratio of capital investment to mask output is equiva-

lent for the two manufacturing models. What is gained is the ability for rapid deployment, sup-

ply chain resiliency, and increased accessibility. Since the required hardware can be readily

sourced or manufactured on-site using digital fabrication tools [78], surge capacity can be

quickly brought online in areas where it is needed the most during times of crisis without

being a financial burden for existing manufacturers. Furthermore, operating at a smaller scale

lowers the capital burden required for operating this manufacturing capacity. This can enable

domestic manufacturing capacity in LMICs where export restrictions and market competition

has made access to reliable filtration media prohibitive and provide flexible surge capacity in

mature markets in times of crisis.

We thus envision the ideal life cycle of a mask during an emergency response to be as fol-

lows (Fig 4A). Polypropylene is sourced locally [79] by micro-factory operators who convert

raw polypropylene pellets into non-woven material using a small scale production tool like the

one described here. Typically, a face filtering respirator consists of a filtration layer separated

by two support layers. The filtration layer is produced from high MFI PP (> 1000 MFI); how-

ever, appropriate grades of polylactic acid have recently been shown to be effective—pointing

the way toward a potentially broader set of candidate materials [80]. Meanwhile the support

layers are produced from low MFI PP (<100 MFI) characterized by much larger mean fiber

diameters. The ability to process multiple grades of polypropylene spanning several orders of

magnitude point the way towards producing both support and filtration layers using the same

device. However, we anticipate that this will require careful tuning of operating parameters,

specifically temperature and rotation speed. These produced materials can then be processed

into a device using community volunteers [72, 76]. Depending on how the micro-factory is

financed, the produced masks can be freely distributed to the community or sold to recoup

capital expenditures. After the mask has served its useful life, the masks can be collected at the

same scale at which they were produced. To create an incentive for collection, a deposit can be

associated with mask return. Numerous reports have emerged concerning proper handling of

used masks that would render them safe to handle [23–25, 81]. For example, heat treatment at

50 C for 20 mins [23] or treatment with 1% NaOCl [24] The collected masks could then be

recycled and re-purposed. Here, there are numerous possibilities. In one scenario, masks

could be incorporated with virgin resin to make new masks with lower raw material input.

Alternatively, the filtration material could be used in a more general application, e.g. building

air ventilators. There are also value-added applications which have very low material stan-

dards, examples include building insulation [54] or concrete [32]. The key idea is that the abil-

ity to locally repurpose the material will create an incentive to reduce waste leakage into the

environment as it eliminates energy and resource expenditure for identification and segrega-

tion which would be required at centralized dumping sites [73]. Of course, this framework is

quite general and not just limited to face masks but can be applied to a wide range of plastics

beyond the crisis response by extending what can be done locally beyond collected plastics

using additive manufacturing with 3D printers.

Discussion

In this study, we have shown that with relatively minimal hardware requirements, non-woven

materials with an air filtration performance comparable to commercially-available products

can be produced. We achieved this by modifying an existing CCM design that works on the
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principle of CMS. Although CMS has been a known approach to process molten polymers

into fibers, this study demonstrates the capability to produce a functional PP filtration media

using CMS for the first time. However, consistent production of high quality material through

such a setup will require optimization and further process design. For example, in some

instances we observe decomposition of PP resin and the production of brittle fibers. Both of

these observations highlight the importance of thermal management during processing. Brittle

fibers can result from either an increased crystalline content within the material or from the

introduction of defects the production of which are highly temperature dependent processes.

This issue can be addressed by incorporating feedback into temperature control (e.g. PID con-

trol) or by operating the device in an enclosed chamber. The former will also likely address the

issue of polymer decomposition. Another approach to address this issue is to operate the

device in a continuous manner, thereby ensuring that the thermal load is constant and mini-

mizing temperature fluctuations. This also has the advantage of increasing throughput and

ease of operation. An alternative approach might be to use lower viscosity polymer resins that

will be ejected into fibers at higher rates at a given temperature. Previous reports suggest that

microsphere contamination can also be addressed through more stringent temperature control

or by increasing polymer flow rates [51]. The rotation speed of the spinneret is another control

parameter that might provide access to wider range of fiber morphologies and increased

throughput [3]. Meanwhile, polymer additives can be used to address some of the other issues

encountered in this work. For example, ionic surfactants can be incorporated to help retain

electrostatic charging while interfacial energy reducing agents can be employed to improve

mixing between recycled and virgin polymers. More generally, access to low-cost tools will

accelerate the rate of innovation in polymer processing. For instance, the proliferation of 3D

printing has allowed for a broad range of new composite materials that leverage waste streams

or unique, local resources to produce new filament materials, including composite materials.

Conclusion

In this study, we have demonstrated that CMS can be performed using simple hardware to

produce non-woven plastics from both raw plastic feed stock and consumer waste streams.

The specific implementation in this paper was realized by repurposing a commercially-avail-

able cotton candy machine to produce air-filtration media. After appropriate processing, the

produced materials consistently exhibit filtration efficiencies near those of the reference mate-

rial. Additionally, we show that it is possible to process consumer waste streams into non-

woven materials, enabling the possibility that distributed manufacturing and recycling can be

realized in the same device. The physical mechanism underlying fiber production can be

implemented at significantly reduced capital and time investment compared with existing

manufacturing techniques, providing an elastic manufacturing capacity that is critical during

times of crisis. Moreover, the flexibility made accessible through a shift in manufacturing strat-

egy has allowed us to probe a broad range of materials and quickly test their properties which

would have been impossible with a centralised large scale manufacturing unit.

The next direction for this work is to develop an open-source tool which will enable the

manufacturing of a wide range of non-woven media for a variety of application. The existence

of such a tool will help to realize a distributed manufacturing network whose nodes can be

operated by a far broader set of communities than is currently possible. While we have demon-

strated that this approach is technically feasible and can be scaled, there are regulatory and

organizational challenges that must be met. Similarly, developing a regulatory framework that

can accommodate decentralized manufacturing has been a key challenge for the field of open

manufacturing as a whole. While concerns have been raised over the ability of small scale
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manufacturers to produce high quality goods, we see this a challenge to be overcome rather

than a fundamental obstacle. It remains an open challenge to reconcile these tools and

approaches with standards set by regulatory bodies, particularly in developed countries [33].

By integrating this device with appropriate quality control testing tools, we aim to create a rap-

idly deployable factory-in-a-box that can be operated even in resource constrained environ-

ments to produce non-woven filtration media on short notice. To this end, we have launched

an open-source initiative called Project 1000-by-1000 with the ultimate goal of producing a

tool that can operate in a continuous manner [82].

This work is important because it provides an alternative to a brittle supply chain that has

left a large portion of the global population under served. The flexibility of the underlying

method allows for a variety of materials to be reused, including discarded facecoverings or any

waste plastic with the requisite physical properties, allowing application of closed-cycle

manufacturing thinking to a new class of materials, namely non-woven plastics. The current

set of applications for non-woven materials beyond FFRs is incredibly broad, ranging from

industrial ventilation filters [1] to feminine hygiene [2]. The case of feminine hygiene products

deserves more discussion since similar issues around manufacture, distribution, and waste

management stand to benefit from innovation in technology enabling distributed production

of non-woven materials [83]. Indeed, distributed, local manufacturing has been identified as a

promising route since it minimizes the effects of high import tariffs associated with foreign

produced goods. However, existing decentralized, local manufacturing suffers from low-qual-

ity standards, inefficiency, and low through-put. While our work focuses on the production of

polypropylene melt-blown fibers, the same technology represents a promising approach for

manufacturing materials that might be useful in feminine hygiene products with a higher qual-

ity and throughput than is currently possible. More generally, access to a low-cost manufactur-

ing device enables distributed experimentation and adaptation, empowering people to

discover new materials to use in traditional non-woven applications or to identify new applica-

tions for non-woven materials altogether that can be shared in open access online databases

[84]. This project was inspired by a failure of conventional supply chains to provide a critical

material needed for FFR manufacturing, but we anticipate that the utility of the presented

approach will be valued well after the on-going COVID-19 crisis has subsided.

Materials and methods

Polymer materials

Polypropylene of different melt flow rates (MFR) were acquired and used without modifica-

tion: Sigma Aldrich isotactic polypropylene Mw* 250, 000 (MFI = 10–14 g/10 min), Pinnacle

polypropylene 1112 (MFI = 12 g/10 min), Ineos polypropylene 100-CA50 (MFI = 50 g/10

min), ExxonMobil Achieve™ Advanced PP6035G1 (MFR = 500 g/10 min), and ExxonMobil

Achieve™ Advanced PP6936G2 (MFI = 1550 g/10 min). Commercial N95 FFR used as refer-

ence material was obtained from a Kimberly-Clark 62126 Particulate Filter Respirator and Sur-

gical Mask (Kimberly-Clark Professional, Roswell, GA).

Cotton candy machine

We purchased the Spin Magic 5 quick release head cotton candy machine (Paragon Inc., USA)

and performed the following modifications to its design to achieve the production of flat fiber

sheets. Firstly, we replaced the cylindrical wire mesh on the spinneret with a solid aluminium

cylindrical ring of identical dimensions (15cm x 4.5 cm, 1mm thick) (S1A Fig). The aluminium

cylindrical ring was also pre-drilled with holes around its circumference in the diameter range

0.016” − 0.038” (0.4064–0.9652 mm) to create pores for melt extrusion. Secondly, we utilised
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layers of Kapton(polyimide) film tape to create a tight heat-resistant seal between the alumin-

ium ring and the contact surfaces with the top cap and the base of the spinner, to prevent any

leakage of the polymer melt (S1A Fig). Finally, we fitted a cylindrical cardboard covering to

shield the gap between the rotating spinneret and the motor cap at the bottom, to prevent any

spooling of produced fibers from the spinneret on the motor shaft itself (S1B Fig). This allows

fibers to deposit in spiral pattern forming a conical sheet manifold. This deposited material is

cut open to make a flat sheet (Fig 1D and 1E). In order to create an electric field between the

spinneret and the collection surface, we attached a -5 kV potential source (Model PMT2000,

Advanced Research Instruments Corp.) with the negative terminal placed on the collection

drum.

Temperature measurement

The commercial cotton candy machine comes with an in-built voltage controller for varying

the heat being delivered to the spinneret. The current is supplied to the spiral heating element

within the rotating spinneret through two carbon brush based rotating connections. In order

to melt polypropylene (melting temperature 160˚C) efficiently and without much decomposi-

tion, the machine was set to a heat setting of 7–8, which resulted in the temperature ranging

between 160˚C—200˚C depending on the running status and the amount of polymer mass

available for melting. The temperature measurements were done using a FLIR One Pro LT

smartphone module infrared camera and Etekcity Lasergrip 800 Digital Infrared Laser Tem-

perature Gun.

Surface voltage measurement

All surface voltage measurements were performed using a commerical SVM2 surface DC volt-

meter (Alphalab Inc., USA). The surface charges were then calculated based on the measured

voltages. Most ideal measurements can be done for infinitely large sheets, but we approxi-

mated the measurement process by using smaple sheets with a size of at least 10 cm by 10 cm.

Samples were kept 2.54 cm away from the sensor for the measurements.

Densification of non-woven filtration media

Densification of the produced fibers was performed either by compaction or calendaring.

Compaction was performed both with and without heat. Briefly,the uncompacted material

was loaded into a cylindrical pipe and pressed against a heated metal plate (130˚C, 30 s, 4.23 kg

cm−2). Calendaring was carried out without heat by feeding single or multiple sheets of

uncompacted material through rollers (VEVOR 39” Hand Crank Pressure Cold Roll lamina-

tor) lined with spun-bound PP to prevent exfoliation through material adhesion with the roller

surface. Layering of the raw material allowed for the fabrication of multi-ply filters. In this

study we tested filters with up to 4-plies. Three independent replicates were prepared for each

sample tested, sourcing from the same batch of material produced for each of the different PP

resins. Circular samples (17.25 mm diam.) for filtration testing were excised from this com-

pacted material.

Scanning electron microscopy

A Hitachi S3400N SEM operated at 5 keV was used to obtain the micrographs. The compacted

fiber samples were attached to the stage using conductive silver paste. and sputter coated Au/

Pd (60:40 ratio). Histograms of fiber diameters were produced by measuring multiple locations
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from the same sample; 150 fiber diameters were extracted from SEM micrographs using the

ImageJ package (version 1.52q).

High speed imaging

We performed high speed imaging of the centrifugal melt extrusion process using Phanton

VEO 640S high-speed camera along with a Tamron 70–300 F/4–5.6 Di LD, Model A17. The

field of view was illuminated using a 10000 lumens LED flashlight.

Filtration efficiency measurements

The filter efficiency testing is done using a custom experimental setup made using a handheld

particle counter (Model 3016 IAQ, LightHouse, USA) and a sample holder cartridge made

from pipe connectors (universal cuff adaptor, teleflex multi-adaptor) (S2A Fig). Whereas, a

typical testing setup uses an all-in-one filter tester, e.g. 8130A automated filter tester (TSI Auto-

mated, USA), that supports a flow rate up to 110 L min−1, our system was run at an airflow

rate of 2.83 L min−1, which was limited by the flow rate provided by the handheld particle

counter.

We tested two approaches for generating particles for filtration measurement. In the first

one, we used a burning 100 g incense as particle source (Nag Champa, Satya Sai Baba, India).

The incense produces particles of various sizes, including those in the range picked up by the

detector (0.30–10 μm), and primarily in the 0.30–0.49 μm range. A similar set up had been

used in previous studies of air filters [71]. In the second one, we repeated the measurements

with particle counts directly collected from room air (without using an incense source) as sug-

gested by Leite et al. [85] and were able to achieve similar results. Since the second approach

was much simpler, we only report results from the second approach.

Each sample was tested in triplicates and at least three unique samples were tested. Circular

discs of diameter 17.25 mm were cut from the calendered filtration media sheets and sand-

wiched between holed acrylic supports and sealed on the sides using Parafilm tape. The effec-

tive exposed area of the samples through the acrylic supports was 0.291 cm2. The cartridge was

then securely locked in a pipe connector assembly as shown in S2B Fig. The filtration efficiency

is calculated as follows, using the 0.3 μm particle count from the sensor readings -

Filtration Efficiency ¼
ðnwithout filter � nwith filterÞ

nwithout filter
� 100 ð1Þ

Where nwithout filter is the particle count without the filter and nwith filter is the same with the

filter.

Pressure drop measurements

For all the pressure drop measurements presented, we utilized volumetric flow rates that

resulted in face velocities comparable to what has been used in the literature. For our analysis,

we followed reference flow rate values of 30 L/min used for a sample diameter of 40 mm [86].

For these values, the face velocity comes out to be 23.88 m/min. In order to match these veloci-

ties for our exposed sample area of 0.291 cm2, we required a flow rate of 0.698 L/min. Hence,

we performed all our experiments with compressed air flow velocities just right below this

value, varying in the range 0.56–0.62 L/min.

The same sample-containing capsule used for filtration testing was also used for pressure

drop measurements. The airflow rate was measured using a Mass Flow Meter SFM3300 (Sen-

sirion AG, Switzerland) and the pressure drop was measured using a Honeywell ABP Series
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pressure sensor (Model ABPDANN005PG2A3, Honeywell International Inc., USA). Sensor

data was acquired using an Arduino Mega microcontroller development board (Arduino AG,

Italy).

Supporting information

S1 Fig. Modifications done to the commercial cotton candy machine. a The wire screen that

was used with the spinneret was replaced with an aluminium cylindrical ring of identical

dimensions. Holes were drilled near the top edge of the cylinder to allow polymer melt to

extrude through. b Installation of cardboard cover to hide the motor shaft in order to prevent

spooling of extruded fibers by the motor shaft, thus allowing formation of a continuous sheet.

(TIF)

S2 Fig. Fitration efficiency and pressure drop measurement testing setup. a, Filtration test-

ing setup consisting of 1: Incense stick 2: Test filter assembly. 3: Lighthouse 3016 handheld

particle counter b, schematic of est filter assembly where compressed sample is placed between

two acrylic mesh screens, sealed on the sides with paraffin tape and held in place using the

pipe screw setup.c, Pressure drop testing set up consisting of 1: Flow control valve 2: Airflow

measurement sensor 3: Test filter assembly 4: Pressure sensor and micro-controller.

(TIF)

S3 Fig. Morphological characterization of fibers. SEM characterization of of fibers produced

from PP with 50 (a, d), 500 (b, e), and 1550 (c, f) MFI. Histograms (g, h, i) show distribution

of fiber diameters obtained from SEM images in at least three separate locations.

(TIF)

S1 Video. Modifed cotton candy machine in operation. Operation of repurposed cotton

candy machine showing the use of recycled PP fibers to produce new layers of non-woven

material.

(MP4)
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