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Abstract
The Greater Maputaland-Pondoland-Albany (GMPA) region of southern Africa was recently

designated as a centre of vertebrate endemism. The phylogeography of the vertebrate taxa

occupying this region may provide insights into the evolution of faunal endemism in south-

eastern Africa. Here we investigate the phylogeographic patterns of an understudied small

mammal species assemblage (Amblysomus) endemic to the GMPA, to test for cryptic diver-

sity within the genus, and to better understand diversification across the region. We sam-

pled specimens from 50 sites across the distributional range of Amblysomus, with
emphasis on the widespread A. hottentotus, to analyse geographic patterns of genetic

diversity using mitochondrial DNA (mtDNA) and nuclear intron data. Molecular dating was

used to elucidate the evolutionary and phylogeographic history of Amblysomus. Our phylo-

genetic reconstructions show that A. hottentotus comprises several distinct lineages, or

evolutionarily significant units (ESUs), some with restricted geographic ranges and thus

worthy of conservation attention. Divergence of the major lineages dated to the early Plio-

cene, with later radiations in the GMPA during the late-Pliocene to early-Pleistocene. Evolu-

tionary diversification within Amblysomusmay have been driven by uplift of the Great

Escarpment c. 5–3 million years ago (Ma), habitat changes associated with intensification

of the east-west rainfall gradient across South Africa and the influence of subsequent global

climatic cycles. These drivers possibly facilitated geographic spread of ancestral lineages,

local adaptation and vicariant isolation. Our study adds to growing empirical evidence iden-

tifying East and southern Africa as cradles of vertebrate diversity.

Introduction
The Afromontane Region of Africa [1, 2] is a biogeographic province containing several global
biodiversity hotspots. Many terrestrial biodiversity hotspots are principally based on the extent
of floristic endemism, yet several are also characterized by faunal endemism; the montane

PLOSONE | DOI:10.1371/journal.pone.0144995 December 18, 2015 1 / 20

OPEN ACCESS

Citation: Mynhardt S, Maree S, Pelser I, Bennett NC,
Bronner GN, Wilson JW, et al. (2015)
Phylogeography of a Morphologically Cryptic Golden
Mole Assemblage from South-Eastern Africa. PLoS
ONE 10(12): e0144995. doi:10.1371/journal.
pone.0144995

Editor: Axel Janke, BiK-F Biodiversity and Climate
Research Center, GERMANY

Received: March 20, 2015

Accepted: November 25, 2015

Published: December 18, 2015

Copyright: © 2015 Mynhardt et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All newly generated
sequences were deposited in GenBank (accession
numbers ND2: KM091963-KM092084; cyt b:
KT876416-KT876433; GHR: KT876403-KT876415;
S1 Table).

Funding: This work was supported by National
Research Foundation unique grant number 46995 to
PB for running expenses and bursary support;
Department of Science and Technology via the
National Research Foundation funds the South
African Research Chairs Initiative Chair for Mammal
Behavioural Ecology and Physiology held by NCB

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0144995&domain=pdf
http://creativecommons.org/licenses/by/4.0/


regions of Africa, in particular, are recognized as hotspots of vertebrate endemism [3–5].
While many biogeographic studies focus on the Eastern Afromontane Region [6–10], fewer
address southern Africa, despite the region’s biogeographic uniqueness for several taxa, includ-
ing mammals [11].

The Maputaland-Pondoland-Albany (MPA) hotspot [1, 12] represents the southern limit of
the Afromontane Region, stretching along the eastern coast of southern Africa, and extending
inland towards the Great Escarpment [13]. Although originally designated because of its floris-
tic diversity and endemism, it is also rich in terrestrial and freshwater fauna [1, 14–16].
Recently, Perera et al. [14] provided evidence for a Greater Maputaland-Pondoland-Albany
(GMPA) region of vertebrate endemism (Fig 1). The GMPA encompasses the Indian Ocean
Coastal Belt, the most highly threatened biome in South Africa [17]. These studies emphasize
the importance of south-eastern Africa for biodiversity conservation and provide a framework
for reassessing the evolutionary history of the co-distributed, often range-restricted taxa from
the region.

The proposed GMPA and its marginal extensions contain 146 endemic vertebrate species,
including eight mammals, of which five are golden moles [14]. Golden moles from the GMPA
are mostly narrow range endemics, with Amblysomus hottentotus being the only exception.
The distribution of this widespread species is naturally fragmented, with populations restricted
to patches of suitable habitat with abundant invertebrate prey and friable soils [20], and the
presence of cryptic diversity in this taxon is likely. Investigating the evolutionary history of the
highly fragmented insular populations of this species could therefore shed light on some of the
processes that have driven diversification in the region.

The GMPA encompasses the Drakensberg mountain range, which delimits the central and
north-western extent of the region. Uplift of this mountain range started in the late Miocene,
culminating in a major uplift event in the early Pliocene, c. 5–3 Ma, that raised the Great
Escarpment by 600–900 m [21]. It is likely that this event, along with other palaeo-ecological
and geomorphological events during the Neogene and Quaternary, was largely responsible for
shaping faunal diversification in the GMPA. Additionally, refugia associated with Plio-Pleisto-
cene global climatic cycles have been implicated in the diversification of numerous African fau-
nal taxa [22–24], and may also have impacted divergence across the GMPA.

Factors underlying diversification in golden moles are poorly understood. Low vagility,
characteristic of fossorial mammals, is likely the major feature restricting gene flow in these
small mammals. Diversification in subterranean mammals is not only affected by limited dis-
persal abilities and demographic factors (such as pronounced territoriality, agonistic aggression
and specialized life-history strategies), but also by stochastic factors such as habitat fragmenta-
tion (natural and anthropogenic) [25]. Physical barriers, such as rivers and mountain ranges
are often responsible for restricting gene flow between populations [26–29]. Spatially limited
dispersal potential leads to isolation by distance and genetic differentiation. Some landscapes
have revealed extremely complex spatial genetic patterns of its residents, resulting from the
combination of both subtle barriers to dispersal and isolation by distance [30].

The Chrysochloridae is a family of fossorial small mammals endemic to sub-Saharan Africa.
Ten of the 21 species are threatened according to the IUCN Red List [31]; major threats include
mining and urbanization, as well as habitat degradation. In addition to insufficient conserva-
tion prioritization, research concerning this afrotherian family has been limited, and there is a
general dearth of biological information for most species [32]. Clarifying the taxonomy of this
family is particularly urgent, in order to enable conservation prioritization [33].

Chrysochlorids are morphologically conservative and cryptic species likely exist within
some currently recognized species [32]. Incorrectly classifying cryptic endemic species as popu-
lations of widespread species could seriously impede the conservation of biodiversity [34]; such
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Fig 1. Map of southern Africa indicating the GMPA region, Amblysomus species distributions and sampling sites. The extent of the GMPA (solid
grey line) and its transitional extensions (broken grey lines) [14]. Samples were chosen to be representative of the known distribution ranges of all
Amblysomus species [18], and subspecies within A. hottentotus [19]. Sampling was more intensive along the KwaZulu-Natal coast where the presence of
cryptic taxa was expected (inset). See S1 Table for locality codes.

doi:10.1371/journal.pone.0144995.g001
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erroneous classification also obscures the evolutionary history of taxa, as species diversity and
range limits could be underestimated. The importance of discovering such cryptic diversity
within widespread species is now well recognized [35] and is regularly facilitated through phy-
logenetic and phylogeographic biodiversity research [34, 36, 37] (and references therein).

Amblysomus (Pomel, 1848) is one of ten chrysochlorid genera and is distributed across
southern Africa [38]. The genus currently comprises five species, primarily distinguished based
on morphology and cytogenetics: A. hottentotus (Smith, 1829; 2n = 30), A.marleyi (Roberts,
1931; 2n = 30), A. corriae (Thomas, 1905; 2n = 30), A. robustus (Bronner, 2000; 2n = 36) and
A. septentrionalis (Roberts, 1913; 2n = 34). Three of these species are GMPA endemics (Fig 1).
Amblysomus hottentotus is widely distributed and common in the mesic eastern parts of south-
ern Africa (Fig 1), in habitats ranging from coastal and afromontane forests to woodland
savanna and temperate grasslands [38]. Previous subspecific classifications were based on sub-
tle morphological distinctions, including body size, pelage colour, claw morphology, as well as
cranio-dental characteristics [20, 39], but many of these characters appear to be ambiguous
and inconclusive. This, together with pronounced intra-population variation in some morpho-
logical characters, clinal size variation with altitude, and the allopatry of some populations, has
led to uncertainty regarding the status of the five currently recognised subspecies [32]. Pro-
nounced genetic variation within A. h. pondoliae [40], and colour differences between A. h. iris
and A. h. pondoliae [19], suggest that some subspecies may represent valid species. In particu-
lar, the subspecific status of the geographically isolated A. h.meesteri is highly questionable
[20], amongst others based on cytogenetic [41] evidence.

In the current study, we sampled specimens from across the known distribution of Amblyso-
mus, with emphasis on A. hottentotus, to analyse geographic patterns of genetic diversity in
this genus using three gene regions. We investigate two hypotheses: (a) that cryptic diversity
exists within the supposedly widespread A. hottentotus, and (b) that geomorphological changes
and habitat heterogeneity primarily drove diversification in Amblysomus. We estimate diver-
gence dates to uncover the evolutionary and phylogeographic history of Amblysomus and its
diversification across the GMPA, and thereby gain insight into the evolution of faunal ende-
mism in south-eastern Africa.

Materials and Methods

Sample collection
Samples were collected between 2002 and 2011 (Permit numbers: MPB5304, CPB6003769,
1731/2005, 232/2007, WRO 23/05WR, WRO 77/07WR), and include 123 specimens from
across the Amblysomus distribution, with emphasis on A. hottentotus (Fig 1; S1 Table), and one
Neamblysomus julianae from Pretoria (Gauteng Province) as outgroup.

Individuals were captured with Hickman live-traps [42], which were baited with worms or
crickets from the native habitat, set for two to four days and GPS co-ordinates recorded. All
individuals were euthanized with halothane (Safe Pharmaceuticals Pvt. Ltd, Florida, South
Africa), stored frozen at −20°C and later dissected to obtain tissue samples (heart, liver, kidney,
pectoral muscle) that were stored in 70% ethanol or at −20°C. Carcasses were frozen at −20°C
for subsequent deposition in museum collections as vouchers (S1 Table).

Ethics statement
This study was conducted in accordance with the UK Home Office Animals (Scientific Proce-
dures) Act 1986 and with the regulations of the University of Pretoria’s Animal Ethics Com-
mittee (ethics clearance no. EC100-13). Animals were euthanized with halothane, and all
efforts were made to minimize suffering.
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Justification of marker choice
In a pilot study using a representative sample of 26 A. hottentotus individuals, including all five
subspecies, three mitochondrial markers (control region, NADH Dehydrogenase 2 and cyto-
chrome b) were assessed to determine which would provide the best resolution at the level of
phylogenetic inference required for our study. We considered the extent of genetic polymor-
phism required to address our questions, and selected these markers based on the amount of
constraint acting on them and the resulting rate of nucleotide substitution and variability [43].
It is desirable to select a marker with enough variation for adequate phylogenetic signal to be
detected, yet not so variable that random noise obscures the true evolutionary patterns [44].

We determined that NADH Dehydrogenase 2 (MT-ND2) provided the best resolution and
therefore proceeded to sequence this gene for our entire dataset of 124 individuals, along with
the more conventionally used cytochrome b (cyt b) region in a subset of 18 individuals, repre-
sentative of the major mitochondrial lineages as revealed byMT-ND2.

As a nuclear marker, we considered the use of an intron, which could provide adequate vari-
ability, and hence appropriate resolution at the current phylogenetic level. In 2004, Aitken
et al. [45] used ‘comparative anchor tagged sequences’ (‘CATS’ [46]) or ‘exon priming intron
crossing’ (‘EPIC’ [47]) primers to screen 202 loci in 16 representatives of the major mammalian
clades, and we chose one of these loci (GHR, growth hormone receptor, intron 9) that consis-
tently amplified a single PCR product in the African elephant (an afrothere and therefore a rel-
ative of golden moles) to use in our dataset.

DNA extraction, PCR and sequencing
DNA was extracted from tissue samples using standard phenol-chloroform extraction [48].
DNA quantity and quality were assessed using a NanoDrop Spectrophotometer (NanoDrop
Technologies, Inc., http://www.nanodrop.com), samples diluted to 90–200 ng/μl with ddH2O
and stored at -20°C. Amplification ofMT-ND2 was conducted using the primer pair Met-1
(L4436) and Trp-2 (H5540) [49] to amplify the entire gene (1044bp). Amplification of cyt b
was conducted using the primer pair L14841 [50] and H15915 [51] to amplify a 1113bp frag-
ment, constituting 1067bp of the 1140bp gene. The nuclear GHR intron 9 (743bp) was ampli-
fied using the primer pair HFGGEX8D and HFGGEX9U [52]. PCR reactions consisted of 50–
100 ng DNA, 1x amplification buffer, 2.5 mMMgCl2, 200 μM of each dNTP (Promega, Johan-
nesburg, South Africa), 0.4 μM of each primer and 1 U Supertherm Taq polymerase (Southern
Cross Biotechnology, Cape Town, South Africa). The cycling parameters for the PCR involved
an initial denaturation step of 4 min at 94°C, followed by 25 cycles of 30s at 94°C, 30s at the
optimal annealing temperature for each marker (56°C to 62°C), and 20s at 72°C, and a final
extension of 30 minutes at 72°C.

The purified PCR products were bi-directionally sequenced using a BigDye Cycle Sequenc-
ing Kit (Applied Biosystems, Foster City, CA, USA) and an automated sequencer (ABI 3130
Genetic Analyser, Applied Biosystems). Sequence electropherograms were visualized using
BIOEDIT Sequence Alignment Editor [53], and multiple sequence alignments constructed using
MEGA V6 [54]. All newly generated sequences were deposited in GenBank (accession numbers
ND2: KM091963-KM092084; cyt b: KT876416-KT876433; GHR: KT876403-KT876415; S1
Table).

Phylogenetic and phylogeographic reconstruction
Phylogenetic analyses were performed based on the combined data matrix of the three targeted
gene regions in a representative sample of 17 individuals. Both a partitioned Maximum Likeli-
hood (ML) method [55], as implemented in RAXML v7.2.6 [56], and Bayesian inference, as
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implemented in MRBAYES v3.2 [57], were used to infer phylogenies. Partitions were allocated
with respect to the three gene regions and to codon positions for the two protein-coding genes.
JMODELTEST V2.1.7 [58, 59] was used to determine the best-fit model of sequence evolution for
each partition using the Bayesian Information Criterion (BIC) [60] to choose among alterna-
tive models. The best-fit model for each partition was used to inform the model parameters
applied in MRBAYES, while the GTR+G substitution model was employed in RAxML, since this
program only accommodates GTR-related [61] models. Bootstrap analysis (bs, 1000 replicates)
and Bayesian posterior probabilities (bpp) were used to generate statistical support values for
the nodes [62].

TCS v1.21 [63] was used to generate minimum spanning allele networks in order to assess
the finer scale diversity within the major clades retrieved in the phylogenetic reconstruction,
and for inference of phylogeographic distributions of these clades. Analyses were based on the
larger dataset of 124MT-ND2 sequences. Genealogical relationships between different haplo-
types were inferred within a statistical parsimony framework [64] reflecting only connections
made within a 95% confidence interval. Maps were generated using ARCMAP v.10 [65] with
GLOBE data [66], and figures were generated using ADOBE PHOTOSHOP v. 10.0.1.

Summary statistics were calculated in ARLEQUIN v3.5 [67] for all major Amblysomus lineages
comprising adequateMT-ND2 sample sizes. A. septentrionalis and A. robustus did not have
adequate sample sizes and were therefore analysed along with A. h. longiceps as a single popula-
tion, given the results of the phylogenetic analysis (see Results). A. corriae and the Umtata line-
age also had inadequate sample sizes for population-level statistics, but could not be similarly
grouped with other lineages and were therefore omitted from these calculations. Evolutionary
divergence was estimated over sequence pairs between all major clades, based on all three gene
regions, using MEGA V6.

Divergence dating
Divergence dates between clades were estimated from the combined molecular dataset using
BEAST v2.3 [68]. Molecular clock tests were performed under the best-fit evolutionary model
for each gene partition using MEGA V6 [54] to determine appropriate partition-specific rate pri-
ors to be specified in all dating analyses. Since onlyMT-ND2 was found to behave in a clock-
like manner, we specified a strict clock with an initial rate of 1% per Myr for this partition
(which is the average rate previously described for this gene in mammals [69]), and a relaxed
uncorrelated lognormal clock [70] was specified for the other two partitions. Three well-docu-
mented intra-afrotherian fossil calibration dates were used: the first appearance of stem-Afro-
soricida (c. 37.0–16.4 million years ago; Ma) [71], and two extinct chrysochlorid species,
Chrysochloris arenosa (c. 6.5–5.0 Ma) [72] and Proamblysomus antiquus (ca. 4.5–0.5 Ma) [73].
It is widely acknowledged that fossil dates represent good minimum age constraints, but poor
maximum age constraints [74]. Thus for all fossil calibrations, priors were specified with hard
minimum (lower) bounds and soft maximum (upper) bounds, so that 95% of the probability
was contained between the two. Sequences for Chrysochloris asiatica (Cape golden mole) and
Microgale longicaudata (lesser long-tailed shrew tenrec) were downloaded from GenBank and
used as outgroup taxa in the divergence dating analyses (accession numbers C. asiatica:
AB096866.1 (MT-ND2+cyt b), AJ428944.1 (MT-ND2+cyt b);M. longicaudata: AY193410.1
(MT-ND2), AY193412.1 (MT-ND2), and AY193416.1 (MT-ND2)).

The best-fit substitution models were specified for each gene (MT-ND2: HKY+G [75, 76];
cyt b: GTR+G+I [77]; GHR: HKY+G), along with codon partitioning for the two protein-cod-
ing genes, and the Yule model was selected as tree prior. Coalescent analyses were also con-
ducted using the Bayesian Skyline model for each of the major clades retrieved in the species-
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level analysis, using only the largerMT-ND2 dataset, comprising adequate sample sizes for
population analyses. MCMC simulations ran for 30 million generations, sampling every 3000
generations. Convergence and mixing were assessed and effective sample size (ESS) values
monitored using TRACER v1.6 [78]. The maximum clade credibility tree was produced in
TREEANNOTATOR v1.7.2, after discarding the first 100 trees as burnin, and the tree was visualized
using FIGTREE v1.4.2 [79].

Results

Phylogenetic reconstruction
The ML and Bayesian gene trees produced identical topologies with respect to the major line-
ages (see S1 Fig); with few exceptions the deeper nodes were well supported. Although most
samples separated into their putative species or subspecies according to the prevailing classifi-
cation hypothesis, the phylogenetic tree (Fig 2) revealed some remarkable exceptions.

While A.marleyi and A. corriae are monophyletic lineages (clades O and M) and separate
clearly from other Amblysomus species, consistent with the current taxonomic treatment, A.
robustus and A. septentrionalis (clades A and B) instead cluster within A. hottentotus, sister to
A. h. longiceps (clades C-E). Amblysomus h.meesteri (clade N) is sister to A.marleyi, and clearly
distinct from A. hottentotus.

Samples from locality UM constitute a unique lineage (clade F), sister to A. h. longiceps, A.
septentrionalis and A. robustus (bs 64%, bpp 0.90), while A. h. hottentotus clusters as a poorly
supported monophyletic sister clade (bs 54%, bpp 0.8). Samples from EL and KW cluster with
A. h. hottentotus, and not with A. h. pondoliae as expected, indicating that A. h. pondoliae does
not range as far south along the coast as previously suggested (Fig 1).

Amblysomus h. pondoliae (clades H-J) constitutes a monophyletic clade, sister to the above-
mentioned lineages (bs 97%, bpp 1.0). A striking finding is that samples from the northernmost
localities of the currently understood distribution of A. h. pondoliae (D, UR, AM, WV, UI and
IL) are retrieved as a sister clade to A. h. iris (clade L), and are thus substantially divergent from
A. h. pondoliae. Evidently this central coastal clade (clade K), represents a cryptic lineage more
closely related to A. h. iris fromMaputaland to the north than to A. h. pondoliae from the Kwa-
Zulu-Natal (KZN) Coastal Belt to the south.

Phylogeographic analysis
All theMT-ND2 lineages analysed were generally characterized by high haplotype diversity
and low nucleotide diversity (Table 1). Tajima’s D values were negative and non-significant for
all lineages analysed, except A. h. iris (positive; non-significant). Fu’s Fs was similarly negative
and non-significant for all but the Central coastal clade (positive; non-significant), the
extended A. h. longiceps clade (negative; significant) and A. h.meesteri (negative; significant).
Fu’s Fs is very sensitive to population demographic expansion, which generally leads to large
negative Fs values, therefore the significant negative values obtained for the latter two lineages
could possibly reflect recent population expansions. Pairwise genetic distances for the various
Amblysomus lineages ranged from 0.4% to 6.8% (S2 Table).

The close phylogenetic affinity of A. h. longiceps, A. septentrionalis and A. robustus sug-
gested by the phylogenetic tree (Fig 2) is borne out by a minimum spanningMT-ND2 haplo-
type network (Fig 3), revealing that these taxa represent at least five major evolutionary
lineages (separated by 8–15 mutations). Most localities are lineage-specific, the only exceptions
being GG, where two A. h. longiceps lineages were found, and ER, where both A. h. longiceps
and A. septentrionalis were retrieved (Fig 3). A. septentrionalis (clade A) does not represent a
monophyletic clade, since the two samples from NF and ER are both more closely related to
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the A. robustus individual from DU than they are to each other, while the individual from SW
could not be connected at the 95% confidence limit.

The finding that samples from the central coast of KZN represent a lineage distinct from A.
h. pondoliae (Fig 2) is corroborated by theMT-ND2 haplotype network (Fig 4). This reveals

Fig 2. The Maximum Likelihood and Bayesian consensus topology for the representative combined dataset, with nodal support indicated by
bootstrap values above and posterior probabilities below branches.Designation of Amblysomus hottentotus subspecies and other Amblysomus
species (clades A-O) are denoted by coloured squares and empty triangles respectively. The colours correspond to the sampling localities depicted on the
associated map and in Fig 1. Circle sizes are representative of sample size; see S1 Table for sampling locality details. BPP values < 0.95 are indicated in
italics.

doi:10.1371/journal.pone.0144995.g002
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that A. h. pondoliae, as currently recognized, comprises two highly divergent evolutionary line-
ages, both more closely related to A. h. longiceps than to each other. The A. h. pondoliae sam-
ples south of the Mpambayoni estuary form two distinct clades separated by 14 mutational
steps (Fig 4). Both lineages were retrieved at SL and PS. Interestingly, one of three alleles from
AM, representing two individuals, clusters more closely with A. h. iris than with the other Cen-
tral Coast samples (see green wedge in Fig 4).

Table 1. Summary statistics for selected Amblysomus lineages.1

Population n unique haplotypes H π Neutrality tests

Tajima's D P value Fu's Fs P value

A. robustus + A. septentrionalis + A. h. longiceps 34 27 0.984 1.40% -0.882 0.206 -7.878 0.012

A. h. hottentotus 11 5 0.618 0.21% -1.845 0.014 -0.233 0.440

A. h. pondoliae 41 30 0.976 1.63% -1.017 0.162 -5.785 0.042

A. h. iris 6 6 1.000 0.92% 0.002 0.528 -1.086 0.161

Central coastal clade 12 7 0.879 0.80% -0.527 0.314 1.277 0.751

A. h. meesteri 8 5 0.786 0.12% -1.030 0.216 -2.383 0.012

1Summary statistics for selected Amblysomus lineages, based on MT-ND2 sequences of 112 individuals. H = haplotype diversity; π = nucleotide diversity.

Significant Fu’s Fs values are shown in italics.

doi:10.1371/journal.pone.0144995.t001

Fig 3. Phylogeographic patterns of three Amblysomus lineages.Minimum spanning network of 22 A. h. longiceps alleles, two A. robustus alleles and
three A. septentrionalis alleles based onMT-ND2 sequences of 34 individuals. The map illustrates the sampling distribution. The colours of the circles in both
the allele network and the map correspond to those in Fig 2. Dotted lines represent connections that could not be made at the 95% confidence limit.

doi:10.1371/journal.pone.0144995.g003
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Divergence dating
In the molecular clock test, the null hypothesis of equal evolutionary rate throughout the tree
was rejected for cyt b and the GHR intron at a 95% significance level (P = 0.0), but not for
MT-ND2 (P = 0.9994), therefore the use of a strict clock was deemed acceptable for this parti-
tion only. The deepest split within Amblysomus was dated to the early Pliocene, c. 4.42 Ma (Fig
5; see also S2 Fig). Further diversification occurred in the mid-Pliocene (~3 Ma), resulting in
the separation of A. corriae, and a presumably northern coastal lineage, from the ancestral line-
age(s). Several splitting events coincide with the late Pliocene, including ancestors to A. h. pon-
doliae and A. h. hottentotus, as well as the separation of A. h.meesteri and A.marleyi.
Divergence of the unique lineage from Umtata dates to the early Pleistocene. Surprisingly, the
divergence of A. robustus and A. septentrionalis from A. hottentotus is estimated at only c. 0.99
Ma, almost contemporaneous with the divergence between the Central Coast lineage and A. h.
iris (1.01 Ma). Further divergence of the major lineages occurred throughout the Pleistocene,
as borne out in the lineage-specific coalescent-based divergence dating trees (S3 Fig), which
further corroborate the divergence dates of the major lineages.

Discussion

Phylogenetic relationships and taxonomic implications
The early divergence of A. corriae and A.marleyi from other Amblysomus supports their recog-
nition as valid species. However, the pattern of divergence within the remaining Amblysomus

Fig 4. Phylogeographic patterns of south-central coast Amblysomus lineages.Minimum spanning network of 25 A. h. pondoliae alleles based on
MT-ND2 sequences of 33 individuals and 12 Central Coast alleles of 18 individuals, with corresponding colour-coded map. The A. h. longiceps alleles that
may link A. h. pondoliae and the North Coast samples are included for clarity. Dotted lines represent connections that could not be made at the 95%
confidence limit.

doi:10.1371/journal.pone.0144995.g004
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taxa suggests greater taxonomic diversity than indicated by the current classification [32, 38].
Although further studies incorporating additional molecular and more detailed morphometric
data will be needed to conclusively resolve the taxonomy of Amblysomus, the non-monophyly
of some species within this genus provides compelling evidence that a systematic revision is
needed. Given the high levels of mtDNA sequence divergence, the divergence times of all
major clades, and other factors discussed in more detail below, we propose that A. hottentotus
is a species complex with major lineages likely representing distinct species. However, until
more rigorous species delimitation methods (e.g. Bayesian Phylogenetics and Phylogeography,
BPP [80], or SpeDeSTEM [81]) can be applied, along with the inclusion of more nuclear data
in particular, we refrain from making a formal taxonomic revision. Instead, given the probable
conservation implications for the cryptic lineages uncovered here, we refer to unique evolu-
tionary lineages as evolutionarily significant units (ESUs [82]) which, depending on associated
range and abundance, may warrant urgent conservation attention.

Fig 5. Chronogram of diversification in Amblysomus.Maximum clade credibility tree obtained from the fossil-calibrated BEAST analysis of the three gene
regions combined. Values above nodes indicate posterior probabilities and values below nodes indicate the node ages. The Proamblysomus antiquus fossil
calibration point is marked with an asterisk. (See S2 Fig for the three-fossil-calibrated tree.) Node bars represent the 95% HPD credibility intervals. The time
line is given in millions of years ago (Ma) with the relevant epochs shown below.

doi:10.1371/journal.pone.0144995.g005
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Our results reveal that A. h.meesteri is a monophyletic lineage highly divergent from A. hot-
tentotus. This ESU is a geographically isolated population that also differs morphologically
[20] and cytogenetically [41] from other A. hottentotus, and almost certainly represents a
unique species. The current taxonomic recognition of three subspecies (A. h. hottentotus, A. h.
pondoliae and A. h. iris) along the GMPA coast is challenged by our results, which conclusively
show that there are four coastal ESUs. Amblysomus from the Central Coast (localities UK
northwards to UI) could therefore represent a distinct species for which the name A. natalensis
(type locality Durban)[83] would be available. Amblysomus from the Maputaland coastal local-
ities north of the Thugela River could similarly represent the distinct species A. iris. The appar-
ent sympatry of these ESUs at AM requires further investigation, but may be the result of
accidental anthropogenic transport of golden moles (in topsoils and sands for construction
projects) further north along this highly developed coast. Samples from the KZN Coastal Belt
region south of SB represent a distinct ESU (possibly worthy of species status), and samples
from EL and KW, previously assigned to A. h. pondoliae, instead belong to A. h. hottentotus,
which therefore ranges further north than previously hypothesized, and probably also repre-
sents a unique species (A. hottentotus) [19]. The precise geographic limits of these taxa, and the
status of the unique lineage found at UM, await finer-scale phylogeographic analysis.

Perhaps the most intriguing finding of this study is the clustering of A. septentrionalis and
A. robustus within an A. hottentotus clade. Aside from the unexpectedly recent divergence of A.
robustus (c. 0.68 Ma; Fig 5), there is no reason to argue against the validity of this species: it
occupies an isolated geographic range, around DU and BE (Fig 1), and was afforded species sta-
tus based on its unique karyotype, as well as morphological characteristics [84]. Amblysomus
septentrionalis, on the other hand, is found sympatrically with A. h. longiceps at ER. However,
this species is also karyotypically distinct (2n = 34) from A. h. longiceps (2n = 30) [20, 85], indi-
cating that these three taxa must be treated as separate ESUs, and that full specific status for A.
h. longicepsmay be warranted. Further analysis involving more geographic samples and genes
will be needed to resolve taxonomic relationships within the major Amblysomus ESUs dis-
cussed here.

While we present compelling evidence that some of the cryptic lineages identified by our
analyses may be valid species, this remains to be corroborated. RAD-sequencing studies are
currently underway to provide stronger nuclear support for such decisions, as well as to address
some of the fine-scale questions raised by this study. Further sampling, as well as ecological
niche modelling, could also provide additional information to support a taxonomic revision.
Until then, it is important that the cryptic diversity and ESUs described here be recognised,
and that possible conservation implications be addressed.

Historical biogeography
The major evolutionary divergences within Amblysomus are strikingly congruent with palaeo-
ecological and geomorphological events during the Neogene and Quaternary [21, 86, 87] that
are thought to have shaped the southern African subcontinent and phylogeographic patterning
of its diverse faunas. Evolutionary diversification within Amblysomus, starting c. 4.42 Ma, coin-
cided with the epeirogenic uplift of the Great Escarpment c. 5–3 Ma [21], and the onset of Plio-
Pleistocene climatic cycles. These cycles greatly impacted the establishment and expansion of
several biomes [88], while associated marine transgressions and regressions shaped topo-
edaphic heterogeneity of the southern and eastern coasts [89]. These events had dramatic
impacts on the diversity and availability of all ecosystems in which Amblysomus today exists.

Diversification in the early-mid Pliocene. In the early Pliocene, relief along the eastern
coast of South Africa was less steep without deep incision by rivers, and climates were warm
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and humid enough to support woodlands [21], much like the coastal savanna inhabited by
Amblysomus today. These conditions may have facilitated the dispersal of a stem Amblysomus
that became widespread. The major uplift c. 5–3 Ma potentially isolated populations in the
north of the ancestral range that gave rise to the ancestors of extant A.marleyi and A. h.mees-
teri, which likely represent biogeographic relicts associated with the Lebombo mountain range
and the northern Drakensberg. Both of these regions are prominent in terms of narrow endem-
ics within the GMPA [14]. During the late Pliocene the Maputaland Coastal Plain began form-
ing as a result of wind-blown sedimentation during marine regressions following the mid-
Miocene sea-level highstand [90, 91]. Aeolian reworking of the resulting sand dunes associated
with global glacial/interglacial climatic cycles occurred throughout the Middle to Late Pleisto-
cene and Holocene [91]. Formation of this coastal plain, along with the extensive Mkhuze
River that forms its south-western boundary, may therefore have served as a biogeographic
barrier restricting possible gene flow between emerging A.marleyi in the Lebombo mountain
range and the northernmost coastal populations of Amblysomus, with subsequent competitive
exclusion by the extant sand specialist Calcochloris obtusirostris (yellow golden mole).

Southernmost Amblysomus populations may have become isolated in the developing Fyn-
bos Biome, which was established by the late Pliocene [89]. An increase in aridity and rainfall
seasonality in the interior [92] was coupled with an increase in the east-west rainfall gradient,
subsequent to the uplift of the Escarpment [93]. Since golden moles are highly dependent on
soil friability, which is dependent on rainfall, these changes could have had a significant impact
on their ranges. Amblysomus corriaemay have been driven to adapt to the western winter-rain-
fall zone, established around the Miocene-Pliocene boundary [94].

Although the uplift along the southern Cape coast was less pronounced, there was a dra-
matic increase in relief with deep incision by river gorges and increased erosion that exposed
more fertile Cretaceous sediments, leading to elevated topo-edaphic heterogeneity that facili-
tated diversification of numerous endemic Cape floral clades [95]. The “Bedford Gap” (Fig 1)
[96], supporting structurally complex and transitional xerophilous thicket vegetation, along
deep river valleys from inland to the coast may have restricted gene flow between ancestral lin-
eages of A. corriae (in developing Fynbos) and an inland Amblysomus lineage (in coastal
Savanna) further north. This gap, established by the end of the Pliocene, also coincides with
the transition between winter/aseasonal and summer rainfall zones [92], and has been impli-
cated as an important biogeographic barrier in many diverse taxa, including the southern Afri-
can shrew (Mysorex varius), which occurs sympatrically with populations of the GMPA
endemic, Sclater’s Forest Shrew (Myosorex sclateri) [97], another shrew (Myosorex cafer sensu
stricto) [98], the southern African frog (Strongylopus grayii) [99], the Cape girdled lizard (Cor-
dylus cordylus) [100], the tree hyrax (Dendrohyrax arboreus arboureus), the samango monkey
(Cercopithecus mitis labiatus) and the oribi antelope (Ourebia ourebia) [96].

Late Pliocene diversification and emergence of coastal lineages. Although only the most
high-lying regions of southern Africa experienced the direct effects of peri-glacial conditions
[92, 101], global climatic cycles have been implicated as driving phylogeographic patterning of
both floral and faunal assemblages, e.g. the endemic Cape flora [89], and numerous vertebrates
(see [102] and references therein for small mammal examples). Specifically, three peaks of cool-
ing and aridification occurred in Africa at c. 2.8±0.2, 1.7±0.1 and 1.0±0.2 Ma, interspersed by
warmer, humid periods [103]. It is likely that these climatic fluctuations impacted adaptation,
migration and diversification of ancestral Amblysomus taxa by causing expansion and contrac-
tion of suitable habitats.

Marine regressions and transgressions associated with Pliocene climatic cycles were suffi-
cient to change sea levels along the South African coast by 120–130 m above or below current
levels, although this would have been differential along the coast due to the variation in slope
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and width of the continental shelf [104]. Such changes in sea level, together with incision of
landscapes by deep river gorges along the GMPA coast, created a dynamic spatio-temporal set-
ting along the narrow coastal plain that may have driven diversification of the coastal clades
(A. h. pondoliae, A. h. iris and the Central coastal clade) between 2.5 and 2 Ma. Cooling and ari-
dification led to the spread of more open habitats towards the retreating coastline, and the
expansion of ancestral lineages from inland refugia towards the coast owing to increased aridity
in the interior. During subsequent warmer and wetter periods, ancestral populations may have
moved inland owing to rising sea levels, and the spread of coastal woodland habitats [105].

Such range changes, however, would have been constrained by the many perennial rivers
that flow from the escarpment eastwards to the coast. This scenario is consistent with the pres-
ence of two divergent lineages (A. h. pondoliae and the Central coastal clade) along the south-
central KZN coast that are more closely related to inland A. h. longiceps than to each other.
Amblysomus h. pondoliae and the Central coastal clade may therefore be descendants of two
separate colonization events from an ancestral population that probably inhabited the Dra-
kensberg foothills further inland. Gene flow between A. h. longiceps and these coastal lineages
may have been (and continue to be) constrained further by the unfavourable clay soils that pre-
vail from the Drakensberg foothills of the northeastern border of Lesotho across to the Thugela
River [106]. The Mpambayoni River at Scottburgh (SB), and the Mkomazi River at Umkomaas
(UK), form wide estuaries stretching several kilometres inland, that have been present since the
early Pliocene, and may have served as biogeographic barriers that channeled range expansions
and contractions, and probably continue to reinforce the genetic distinctiveness of these coastal
lineages. Divergence between the closely related A. h. iris and Central coastal clade, may simi-
larly have been mediated by the Thugela River (the largest river in KZN) which continues to
act as a dispersal barrier.

Inland radiation in the Plio-Pleistocene. The early Pliocene uplift raised a large area of
eastern-central South Africa into cooler, higher altitudinal zones suitable for grasslands, and
was followed by an increase in aridity and rainfall seasonality in the interior [92]. Pliocene
cooling and aridification events amplified this overall effect, leading to the emergence and
spread of the Grassland and Savanna Biomes [21, 105] in which four Amblysomus lineages (A.
septentrionalis, A. robustus, A. h. longiceps, and the distinct UM lineage) now occur. The cur-
rent Grassland and Savanna Biomes comprise both arid and mesic bioregions [105]. Drakens-
berg grasslands on the eastern slopes of the Great Escarpment, where A. h. longiceps today
occurs, are dominated by C3 grasses, reflecting persistence of more stable and moister Quater-
nary climates. Grasslands on the plateau of the Great Escarpment further north are instead
dominated by C4 grasses, which flourished in the cooler and drier high altitude zone [88].
While periods of aridification were characterized by the spread of more arid-adapted C4 vege-
tation in the interior of South Africa (to the west of the escarpment), the more mesic grassland
bioregions associated with the escarpment likely remained more stable and are associated with
centres of endemism in the Grassland Biome [88]. Mesic patches within this mosaic of biore-
gions may have acted as refugia for ancestral Amblysomus lineages.

The estimated divergence of the inland Amblysomus lineages (c. 1.8–0.5 Ma; Fig 5) coincide
with Plio-Pleistocene climatic oscillations and strongly suggests that the expansion of more
open habitats during drier periods facilitated colonization, with subsequent contraction of
these habitats during warmer wetter periods leading to allopatric isolation of populations in
patches of suitable mesic habitat. The divergence of these lineages thus appears to be the result
of vicariance associated with expansion and contraction of suitable habitats. The sympatric
occurrence of A. h. longiceps and A. septentrionalis at ER may be ascribed to secondary contact
between two previously isolated lineages.
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Conclusion
In the present study we uncover substantial cryptic diversity in A. hottentotus, and therefore
propose that this species is in fact a species complex, with the major lineages (ESUs) possibly
representing distinct species. We provide support for the current recognition of A. corriae and
A.marleyi, and additionally for the recognition of A.meesteri, A. longiceps, A. iris, A. pondoliae,
A. natalensis and A. hottentotus as valid species, but refrain from formal taxonomic revision
until this hypothesis can be further corroborated by more rigorous species delimitation.

Amblysomus hottentotus has until now been considered widespread and abundant and, as a
result, is not under formal protection. The threats posed to the cryptic taxa that have been
uncovered here remain to be determined, and consequently, the conservation status of the
newly recognized ESUs will need re-examination. We expect that a similar pattern of cryptic
diversity may be found in other species distributed within and across the GMPA, particularly
other widespread golden mole species, such as the Cape golden mole (Chrysochloris asiatica),
as well as other poorly studied southern African endemics. Phylogenetic studies will be particu-
larly important for insular populations of “widespread” species that are similarly range-
restricted, and might also contain cryptic species in need of conservation attention.

In addition to uncovering cryptic diversity in Amblysomus, this study provides evidence in
support of our hypothesis that geomorphological changes and habitat heterogeneity primarily
drove diversification in Amblysomus. Our study implicates the uplift of the Great Escarpment,
as well as various palaeo-ecological and geomorphological events during the Neogene and
Quaternary in shaping diversification of Amblysomus across the GMPA. The Plio-Pleistocene
global climatic cycles that established the inland vegetation heterogeneity of South Africa were
instrumental in establishing the deeper splits, with subsequent gene flow between coastal line-
ages being constrained by the many perennial rivers that flow from the escarpment towards the
coast. These rivers probably served as biogeographic barriers that channeled range expansions
and contractions, and continue to reinforce the genetic distinctiveness of these lineages.

Similar patterns of divergence have been reported in a diversity of other co-distributed taxa,
as we have discussed. One study focusing on southern African shrews, in particular, which are
co-distributed across a highly similar geographic range to Amblysomus, also demonstrated
rapid divergence of major lineages around 2 Ma, and similarly implicated the influence of rain-
fall regime and landscape heterogeneity as major drivers of this divergence [97]. Our study
therefore adds to a growing body of work describing the geomorphological changes and habitat
heterogeneity that primarily drove diversification in the region.
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